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Resting-State Glutamate and GABA Concentrations Predict
Task-Induced Deactivation in the Default Mode Network
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Deactivation of the human brain’s default mode network (DMN) is regarded as suppression of endogenous activity to support exogenous
task-related processes. This phenomenon has important functional relevance and insufficient DMN deactivation has been implicated in
several neuropsychiatric disorders. However, the neurochemical mechanism of the DMN�s deactivation remains largely unknown. In the
present study, we test the hypothesis that the major excitatory and inhibitory neurotransmitters, glutamate and GABA, respectively, are
associated with DMN deactivation. We used magnetic resonance spectroscopy to measure neurotransmitter concentrations in the pos-
terior cingulate cortex/precuneus (PCC/PCu), a key component of the DMN, and functional magnetic resonance imaging to evaluate DMN
deactivation induced by an n-back working memory task. Our results demonstrate significant associations of glutamate and GABA with
DMN deactivation. Specifically, high regional GABA concentration in the PCC/PCu area is associated with enhanced deactivation induced
by the task in the same region, whereas high glutamate concentration is associated with reduced deactivation. Furthermore, the associ-
ation between GABA and DMN deactivation increases with the cognitive loads. These neurochemical characteristics of DMN deactivation
may provide novel insights toward better understanding of the DMN�s functions under normal physiological conditions and dysfunc-
tions in neuropsychiatric disorders.

Introduction
Neuroimaging studies have demonstrated that, compared with
the resting state, activity in a set of brain regions including the
posterior cingulate cortex/precuneus (PCC/PCu), medial pre-
frontal cortex (mPFC), and hippocampus consistently decrease
(termed as deactivation) during a wide range of tasks requiring
external orientation (Shulman et al., 1997). These distributed
brain regions were defined as the default mode network (DMN)
by Raichle et al. (2001). DMN deactivation is thought to be asso-
ciated with suppression of spontaneous brain activities and real-
location of resources to ongoing, attention-demanding tasks
(McKiernan et al., 2003); therefore, the more demanding the
task, the stronger the deactivation of the DMN tends to be (Singh
and Fawcett, 2008). Furthermore, several studies have found that
DMN deactivation is correlated with behavioral performance.
For example, stronger deactivation of PCC in a working memory
(WM) task predicts better performance (Anticevic et al., 2010).
In contrast to DMN function in healthy participants, failure of
DMN deactivation has been observed in psychiatric disorders such
as schizophrenia (Whitfield-Gabrieli et al., 2009), Alzheimer’s dis-

ease (Greicius et al., 2004), and autism (Kennedy et al., 2006). These
findings indicate the importance of DMN deactivation contributing
to both normal cognitive functions and psychiatric disorders. How-
ever, the underlying neurochemical mechanism of DMN deactiva-
tion remains largely unknown.

DMN deactivation has been well depicted by blood oxygen
level– dependent (BOLD) imaging (Ogawa et al., 1990). Al-
though influenced by multiple physiological and biophysical fac-
tors (Ogawa et al., 1993), BOLD signal has been found to be
coupled with neural activity (Logothetis et al., 2001). Particularly,
negative BOLD response has been found to associate with de-
creased neural activity (Stefanovic et al., 2004; Shmuel et al.,
2006). At the cellular level, neuronal activity is regulated by mul-
tiple neurochemical processes including cycling of glutamate and
GABA, the major excitatory and inhibitory neurotransmitters in
the CNS. The coordination between glutamatergic neurons and
GABAergic interneurons is believed to have a direct impact on
BOLD contrast (Logothetis et al., 2001; Buzsáki et al., 2007).
Congruent with this idea, previous studies have shown a negative
correlation between GABA concentration and BOLD signals
(Northoff et al., 2007; Stagg et al., 2011). A positive correlation
between glutamate concentration and BOLD signal change has
also been reported (Enzi et al., 2012). In addition, associations
among glutamate, GABA, and functional connectivity have been
reported (Kapogiannis et al., 2013). However, the coordinative
effects of glutamate and GABA on task-induced BOLD change
have so far not been well demonstrated.

By combining BOLD and magnetic resonance spectroscopy
(MRS) techniques, the relationship between neurotransmitters
and brain activation/deactivation can be examined at a system
level. Based upon the findings mentioned above, we hypothe-
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sized that DMN deactivation is associated with both excitatory
and inhibitory neurotransmitters and the associations are depen-
dent on cognitive load. To test this hypothesis, the present study
examined the relationship between DMN deactivation induced
by a WM task with different loads and the endogenous concen-
trations of glutamate and GABA in the PCC/PCu region. Positive
and negative correlations with BOLD signals were expected for
glutamate and GABA, respectively, in a load-dependent fashion.

Materials and Methods
Subjects. Twenty-four healthy subjects (age: 34.4 � 8.6 years; 10 females)
participated in the study. Subjects had no histories of neurological or
psychiatric disorders and had no current or past drug abuse. The use of
drugs that affect neurotransmitter levels or cortical inhibition and exci-
tation was exclusionary for participants in this study. Participants were
questioned about prescription medication and illicit drug use and under-

went urine toxicology assessing the presence of
prescription medications and drugs of abuse at
their initial screening visit. They were also
screened for drugs of abuse (urine toxicology)
including benzodiazepines on the day of
scanning. Before the experiment, all subjects
provided written informed consent approved
by the Institutional Review Board of the Na-
tional Institute on Drug Abuse.

MRS data acquisition and processing. MRS
and fMRI scans were performed on a Siemens
3T Trio scanner using a 12-channel coil. The
MRS experiments preceded the fMRI task. A
2.4 � 3.2 � 3.6 cm 3 voxel of interest (VOI) was
placed at the PCC/PCu (Fig. 1a) and a control
region was placed at the primary visual cortex.
The 1H spectrum optimized for detecting
GABA was acquired by a MEGA-PRESS se-
quence (Rothman et al., 1984; Mescher et al.,
1998) with the following parameters: TE/TR �
68/5000 ms; number of average � 96 (scan
time � 8 min). The editing pulses with a duration
of 19.9 ms and a bandwidth of 45 Hz were applied
alternatively at frequency of 1.9 or 7.5 ppm. There
were two loops in the GABA sequence: the inter-
leaving of edit on/off in the inner loop and the
averaging in the outer loop. It has been reported
in the literatures that PRESS with TE �30 ms
achieves reliable glutamate detections (Mullins et
al., 2008; Hancu, 2009). Therefore, the glutamate
concentration was obtained by a PRESS sequence
(TE/TR�30/3000 ms; number of average�128;
scan time � 6 min) from the same VOI. Field
map shimming was performed before MRS scans
to ensure the line-width of water �14 Hz. A VA-
POR (VAriable pulse Power and Optimized Re-
laxation delays) module (Tkác et al., 1999) was
used in both sequences to achieve water suppres-
sion. Spectra of water were also acquired from the
same VOI using the same MEGA-PRESS and
PRESS sequences without the water suppression
module, respectively. The number of average of
the water spectra was 16. All MRS data were
quantified using LCModel (version 6.3–0D;
Provencher, 1993, 2001; Fig. 1b). The LCModel
assumes that the experimental spectrum can be
fitted in the frequency domain by the linear com-
bination of a group of basis sets, each of which is
the frequency spectrum of a certain metabolite/
macromolecule (MM), together with a baseline
to compensate MM signals that the MM basis sets
do not account for. The reliability of the measure-
ment was indicated by the Cramer-Rao lower

bounds (CRLB) and a commonly accepted CRLB criterion of 20% was cho-
sen to reject low-quality spectra. Different basis sets from simulation were
used for the MEGA-PRESS and PRESS quantifications. Both GABA and
glutamate concentrations were referenced to the unsuppressed water con-
centration. The MRS signal of water is subject to different proton densities
and T1 and T2 relaxation times in gray matter, white matter, and CSF.
Therefore, the volume fractions of different tissue types were calculated by
segmenting T1 images in SPM8. The water signal was then corrected by differ-
ent tissue fractions and sensitivity factors in gray matter (0.92), white matter
(0.81), and CSF (1.0) to account for the partial volume effect (Geramita et al.,
2011). T1 and T2 values of GABA (T1 � 1310 ms, T2 � 88 ms) (Edden et al.,
2012; Puts et al., 2013) and glutamate (T1 � 1270 ms, T2 � 181 ms) (Mlynárik
et al., 2001; Ganji et al., 2012) were used for a global relaxation correction for
absolute quantification in millimolar (mM).

Working memory task. Participants performed an n-back WM task
(Owen et al., 2005) during a 14 min block design fMRI scan. The n-back

Figure 1. MRS and fMRI experiments. a, A VOI was placed at the PCC/PCu for 1H spectroscopy. b, Regional GABA and glutamate
concentrations were assessed using MRS techniques. c, An n-back working memory task was administered to probe the default
mode network deactivation, with 0-back as the control condition (time scale is 2 s). d, Behavioral performance (dprime) during the
working memory task demonstrated a significant memory load effect. e, Individual GABA spectra. A weighting function of Lorent-
zian–Gaussian transformation (lb � �3 Hz, gb � 8 Hz) was applied, and the displayed peak intensities were normalized to
N-acetylaspartic acid.
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task presented a single letter for 500 ms, followed by an interstimulus
interval of 1500 ms under four conditions: 0-back (0b), 1-back (1b),
2-back (2b), and 3-back (3b). In the 0b vigilance condition, participants
were asked to respond with a button press to letter “D”; in the 1b condi-
tion, participants responded if the current letter was identical to the
previous one; and in the 2b/3b conditions, participants responded if the
current letter was identical to the second/third previous one (Fig. 1c).
The task scan included three runs and each run had eight blocks during
which each condition (0b, 1b, 2b, or 3b) was presented twice. There were
15 consecutive trials in each block (33% targets). The 0b block was placed
at the beginning of each run and the order of 1b, 2b, and 3b blocks was
counterbalanced. A 2 s visual instruction preceded each block to indicate
the upcoming condition. The primary behavioral measurement of task
performance at each task condition was dprime, estimated by the hit rate
penalized by the false alarm rate (Haatveit et al., 2010). All subjects prac-
ticed a brief version of the n-back WM task outside the scanner before
imaging.

fMRI data collection and preprocessing. A single-shot gradient-echo
echo-planar imaging sequence was used to acquire BOLD images during
the WM task scans. The imaging parameters were as follows: TR/TE �
2000/27 ms; FA � 78°; slice thickness � 4 mm without gap; 39 slices;
FOV � 220 � 220 mm 2 with in-plane resolution of 3.44 � 3.44 mm 2. To
facilitate spatial normalization, an anatomical scan was acquired using a
T1-weighted 3D magnetization prepared rapid gradient echo sequence
(256 � 192 � 208 matrix size; 1 � 1�1 mm 3 spatial resolution; TI/TR/
TE � 900/1900/3.51 ms; flip angle � 9°).

Preprocessing steps for fMRI data included slice-timing correction,
head motion correction, spatial smoothing with a 6 mm Gaussian kernel,
and quadratic detrending. General linear models were constructed to
obtain the task-evoked activation maps during the 1b, 2b, and 3b WM
task compared with the vigilant 0b condition; the six motion parameters
were included as covariates. The task activation maps were then normal-
ized to standard Talairach and Tournoux space with a resampling reso-
lution of 3 � 3�3 mm 3 using nonlinear registration (Geng et al., 2009)
to facilitate group analysis.

Statistical analyses. WM load effects on behavior performance
(dprime) were assessed by repeated-measures ANOVA. The relationship
between glutamate and GABA concentrations in the PCC/PCu and rela-
tionships of the two neurotransmitters with gender and age were exam-
ined by bivariate correlation analyses.

Whole brain voxelwise fMRI activation/deactivation patterns at the
group level were evaluated by ANOVA. Specifically, contrast maps of 1b,
2b, and 3b versus 0b estimated from the first level analysis were modeled
as three levels of the WM load. A threshold for significance was set to p �
0.01 corrected for whole brain multiple comparisons based on Monte
Carlo simulations, which corresponds to uncorrected p � 0.001 and a
minimum cluster size of 594 mm 3. To examine brain deactivation in
more detail, a region of interest (ROI) was defined in the PCC/PCu based
on the main effect of WM task revealed from the whole brain voxelwise
ANOVA analysis. A post hoc test on BOLD signal changes across differ-
ent WM loads was performed. In addition, to explore the functional
relevance of the PCC/PCu deactivation, correlation between the BOLD
signal change in the PCC/PCu and the task performance (dprime) was
examined.

To assess how neurotransmitters exert influence on brain response to
the WM task at different cognitive loads, a hierarchical regression proce-
dure was performed to regress the PCC/PCu deactivation (BOLD signal
change relative to 0b) on age, fraction of gray matter (GM), and gluta-
mate and GABA concentrations, under conditions of 1b, 2b, and 3b
separately. Age was included in the model because of its significant influ-
ence on the DMN deactivation (Grady et al., 2006; Spreng and Schacter,
2012). GM fraction was included because of its potential influence on the
relationship between neurotransmitters and BOLD signal change. At the
first step of regression (model 1), the PCC/PCu deactivation was pre-
dicted by a constant term, GM and age. At the second step (model 2), the
PCC/PCu GABA and glutamate concentrations were added in. For a
negative control purpose, the same regression procedures were per-
formed by replacing GABA and glutamate concentrations from the PCC/
PCu with that from the visual primary cortex. Glutamine or Glx (the

combination of glutamate and glutamine) was used to replace gluta-
mate in the model 2 to construct two contrast models, which could be
used to determine the unique excitatory profile of glutamate.

A previous study (Kapogiannis et al., 2013) suggested that glutamate
and GABA measured from posterior medial cortex predict the resting
state functional connectivity within the entire DMN. It would therefore
be interesting to determine whether glutamate and GABA measured from
the PCC/PCu region associate with the entire DMN deactivation. For this
purpose, we did a complementary analysis. The DMN was defined as deac-
tivated regions in the working memory task, mainly including mPFC, PCC/
PCu, and bilateral parahippocampus. The same regression models used to
examine the relationship between PCC/PCu deactivation and neurotrans-
mitters were performed to examine the relationship between the entire
DMN deactivation and neurotransmitters.

Results
Behavior
WM load was found to modulate task performance as measured
by dprime (Fig. 1d; F(3,69) � 30.78, p � 0.0005). Post hoc t tests
using Bonferroni correction for multiple comparisons deter-
mined that dprime was significantly different between each pair
of the two conditions (p � 0.04).

Glutamate and GABA levels in the PCC/PCu
Individual GABA spectra are shown in Figure 1e. The full-width
at half-maximum of the MEGA-PRESS and the 30 ms PRESS
metabolite spectra measured by LCModel were 5.3 � 1.5 and
5.2 � 1.2 Hz, respectively. The fitting quality, which was quanti-
fied as the ratio of the maximum in the spectrum-minus-baseline
to twice of the root mean square of the fitting residuals, of the
MEGA-PRESS spectra was 45 � 8 and that of 30 ms PRESS was
51 � 5. The average CRLB of GABA was 9% (SD 1%, range
7–11%), that of glutamate was 5% (SD %1, range 4 – 6%). No
subject was excluded by the criterion of CRLB. Glutamate and
GABA concentrations in the PCC/PCu were 7.46 � 0.56 and
1.82 � 0.20 mM, respectively. Age was negatively correlated with
glutamate (r � �0.43, p � 0.04), but not GABA (p � 0.18). No
gender effect was found on glutamate or GABA concentration
(p 	 0.65). No correlation was found between glutamate and
GABA concentrations (p � 0.84). In the MRS VOI, the fractional
tissue composition was 56 � 5% for gray matter, 33 � 4% for
white matter, and 11 � 3% for CSF.

Brain activation/deactivation during the WM task
Significant main effect of the WM task was shown in a number of
brain regions. To illustrate activation and deactivation induced
by the task, brain activities at the contrast of 3b-0b within these
areas are displayed in Figure 2a. The task-induced positive acti-
vation regions included bilateral superior and inferior parietal
lobules, middle and inferior frontal gyri, anterior insula, anterior
cingulate cortex extending to supplementary motor area, thala-
mus, and precuneus. The task-induced deactivation regions were
well overlapped with the DMN, including the PCC/PCu, mPFC,
hippocampus, parahippocampal gyrus, superior temporal gyrus,
and transverse temporal gyrus.

To elaborate on brain deactivation to the WM task, an ROI in
the PCC/PCu was selected based on the main effect of the WM
task at the significance level of p � 0.01 (corrected for multiple
comparisons), resulting in a volume of 12528 mm 3 (Fig. 2a, ar-
rows). A post hoc analysis revealed that the PCC/PCu deactiva-
tion was stronger under condition 2b and 3b than under
condition 1b, but did not differ between condition 2b and 3b
(Fig. 2b). The PCC/PCu deactivation was significantly correlated
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with WM task performance as measured by dprime at condition
3b (r � �0.42, p � 0.04; Fig. 2c), but not at conditions 1b and 2b.

Glutamate and GABA levels modulate brain deactivation
Hierarchical regression showed that the PCC/PCu deactivation at
low level of WM load could be predicted well by age (model 1).
The prediction power, however, decreased when WM load in-
creased. In contrast, after adding glutamate and GABA to the
model (model 2), PCC/PCu deactivation could be predicted
significantly at all levels of WM load (Fig. 3, Table 1). In
addition, as revealed by coefficients of the regression models
(Table 2), age demonstrated stable positive correlation with
PCC/PCu deactivation at all cognitive loads when controlling
for glutamate and GABA ( p � 0.002). The contribution of
GABA increased considerably at higher cognitive load condi-
tions. Furthermore, a follow-up analysis showed that GABA
concentration correlated with the change in PCC/PCu deacti-
vation from lower (1b) to high (3b) cognitive load conditions
(r � �0.39, one-tailed p � 0.03). Glutamate (5.44 � 0.72 mM)
and GABA (1.98 � 0.22 mM) concentrations in the control
region did not show associations with the PCC/PCu deactiva-
tion at any level of cognitive load in model 2 (coefficients signifi-
cance, p 	 0.45). In the PCC/PCu VOI, Glx significantly correlated
with both glutamate (r � 0.696, p � 0.0002) and glutamine (r �
0.595, p � 0.002), but there was no correlation between glutamate
and glutamine (r � �0.16, p � 0.45). When glutamine was used
to replace glutamate in model 2, its regression coefficients were
not significant (1b: t � �1.084, p � 0.29; 2b: t � �1.18, p � 0.25;
3b: t � �0.26, p � 0.80). When Glx was used to replace glutamate
in model 2, its regression coefficients were not significant at 1b and
2b (1b: t � 1.56, p � 0.13; 2b: t � 1.55, p � 0.14) but was significant
at 3b (t � 2.62, p � 0.017).

Regressions on the entire DMN BOLD signal change demon-
strated that the models including glutamate and GABA signifi-

cantly explained more variations in the
entire DMN BOLD signal change at all
cognitive levels (1b: p � 0.046; 2b: p �
0.04; 3b: p � 0.014) compared with the
models only including age and GM as pre-
dictors. The entire DMN deactivations were
positively associated with glutamate (1b: t �
2.48, p � 0.023; 2b: t � 2.10, p � 0.049; 3b:
t � 2.06, p � 0.054) and negatively with
GABA (1b: t � �1.66, p � 0.113; 2b: t �
�2.27, p � 0.035; 3b: t ��3.00, p � 0.008).
All of the DMN BOLD signal changes were
also positively associated with age at all cog-
nitive levels (p � 0.001). Therefore, their
association patterns were consistent with
those in the PCC/PCu regression models
(Fig. 3), with relatively smaller contribu-
tions of neurotransmitters but larger contri-
bution of age.

Discussion
Task load modulation and functional
relevance of the DMN
Consistent with previous studies (Esposito et
al., 2006; Tomasi et al., 2006), we found
significant modulation of cognitive load
on deactivation in the PCC/PCu in pres-
ent study. The deactivation of the DMN
was interpreted as the suppression of on-
going brain activities related to internal

thoughts (Raichle et al., 2001; Raichle and Snyder, 2007) when
reallocating attentional resources from internal processes to goal-
directed external stimuli (McKiernan et al., 2003). Behaviorally,
task difficulty increased with the memory load, as reflected by
reduced performance outcome at higher loads (Fig. 1d). Mean-
while, higher cognitive loads exerted stronger suppression of
DMN (Fig. 2b). The DMN deactivation was found to be corre-
lated with behavioral performance (Fig. 2c,d), suggesting a
functional relevance to the DMN deactivation. The modula-
tion of DMN deactivation by cognitive load may reflect the
flexibility of dynamic neural resource configuration according
to task demands.

Gender and age effects
We did not find an effect of gender on neurotransmitter concen-
trations in the present study, but previous reports on gender
difference in GABA concentration were inconsistent (O’Gorman
et al., 2011; Aufhaus et al., 2013). Because of this discrepancy, one
may suspect that gender could confound the relationships be-
tween neurotransmitters and brain deactivation. To address
this issue, we conducted another hierarchical regression add-
ing gender as an independent variable. Our results indicated
that gender did not contribute to the PCC/PCu deactivation
significantly in any of the models ( p 	 0.26). Including gender
also did not alter the relationships between neurotransmitters
and PCC/PCu deactivation.

In the present study we found that age was negatively corre-
lated with DMN activity, which is consistent with previous stud-
ies (Lustig et al., 2003; Grady et al., 2006; Sambataro et al., 2010;
Spreng and Schacter, 2012). An interesting observation in the
present study is that the bivariate correlation between age and the
DMN deactivation only holds at low cognitive load (1b), not at
high load (2b and 3b). However, their relationship becomes sta-

Figure 2. Brain activity during the working memory task. a, Brain areas showing main effect of the working memory task
revealed by voxelwise ANOVA (corrected p � 0.01). To illustrate task-induced activation and deactivation, brain activities within
these areas at the 3-back level are shown. b, Cognitive load modulated deactivation in the PCC/PCu region. (c) The PCC/PCu
deactivation was significantly correlated with 3-back working memory task performance.
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ble when controlling for glutamate and GABA concentrations. A
plausible explanation is that glutamate and GABA may change
with age and these changes may in turn result in changes in DMN
activity. Conversely, the presence of the significant coefficients
for age and neurotransmitters indicates their independent con-
tributions to the variance of the task-induced deactivation. Ide-
ally, age-related cognitive changes should be studied in an age
range in which profound changes in cognition are expected.
Whether the observed relationships in this study would hold in
an aged population and how they link to age-related cognitive
changes are interesting topics that warrant further investigation.

GABA/glutamate levels and neural activity
Our results are consistent with previous studies examining the
effects of glutamate or GABA separately on BOLD signal change.
The negative correlation between GABA concentration and
DMN deactivation agrees with its profile as the major postsynap-

Table 2. Coefficients in regression models

Model Beta (SE) Beta� t p

1b
1

Age 0.013 (0.004) 0.574 2.844 0.010
GM 0.344 (0.857) 0.081 0.402 0.692

2
Age 0.018 (0.004) 0.815 4.612 0.0002
GM �0.918 (0.775) �0.216 �1.185 0.251
Glutamate 0.261 (0.076) 0.640 3.446 0.003
GABA �0.121 (0.060) �0.321 �2.003 0.060

2b
1

Age 0.009 (0.005) 0.382 1.704 0.103
GM 0.237 (1.004) 0.053 0.236 0.816

2
Age 0.016 (0.004) 0.674 3.583 0.002
GM �1.262 (0.870) �0.282 �1.451 0.163
Glutamate 0.297 (0.085) 0.690 3.489 0.002
GABA �0.190 (0.068) �0.480 �2.812 0.011

3b
1

Age 0.007 (0.005) 0.337 1.473 0.156
GM 0.735 (0.905) 0.186 0.812 0.426

2
Age 0.014 (0.004) 0.670 3.947 0.001
GM �0.702 (0.694) �0.178 �1.012 0.324
Glutamate 0.275 (0.068) 0.724 4.053 0.0007
GABA �0.216 (0.054) �0.617 �4.004 0.0008

Dependent variable: PCC/PCu deactivation during WM task; model 1 predictors: (constant), age, GM; model 2
predictors: (constant), age, GM, glutamate, GABA.

Beta (SE), unstandardized coefficient (SE); and beta�, standardized coefficient.

Figure 3. Partial regression plots. PCC/PCu deactivation can be predicted by age and regional glutamate and GABA concentrations assessed by MRS at resting state.

Table 1. Models to regress PCC/PCu BOLD signal on age, GM, glutamate, and GABA

Model R 2 Adjusted R 2 
R 2 
F p

1b
1 0.297 0.230 0.297 4.428 0.025
2 0.585 0.498 0.289 6.611 0.007

2b
1 0.132 0.049 0.132 1.593 0.227
2 0.530 0.431 0.398 8.055 0.003

3b
1 0.095 0.009 0.095 1.107 0.349
2 0.617 0.536 0.521 12.922 0.0003

Model 1 predictors: (constant), age, GM; model 2 predictors: (constant), age, GM, glutamate, GABA; dependent
variable: PCC/PCu BOLD signal change.
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tic inhibitory neurotransmitter. The relationship between GABA
and BOLD signal is highly accordant across different studies
(Northoff et al., 2007; Muthukumaraswamy et al., 2009; Sumner
et al., 2010). In addition to its association with the magnitude of
BOLD signal, the GABA concentration was found to correlate
with the latency and width of the stimulus-evoked HRF curve
(Muthukumaraswamy et al., 2012), as well as electroencephalo-
gram measures (Muthukumaraswamy et al., 2009; Rowland et al.,
2013). In contrast to the suppression effect of GABA, the gluta-
mate concentration has been found to be positively correlated
with BOLD signal change. For example, when only controlling
for age, regional glutamate concentration in perigenual anterior
cingulate cortex (a part of DMN) was found to be positively
correlated with task-induced deactivation (Enzi et al., 2012) and
task-induced activation in supragenual anterior cingulate cortex
(Duncan et al., 2011). Similarly, resting-state glutamate concen-
tration in the dorsal anterior cingulate cortex (dACC) could pre-
dict the strength of the BOLD response to a task requiring
cognitive control, not just in the dACC but also in other distinct
brain regions including the retrosplenial cortex and inferior pa-
rietal lobule (both are considered as parts of DMN; Falkenberg et
al., 2012). These results showed convincing evidence for the di-
rect relevance between neurotransmitters and BOLD contrast. In
the present study, we revealed significant coordinative effects of
glutamate and GABA on task-induced BOLD signal change in
PCC/PCu. We further demonstrated significant associations be-
tween PCC/PCu neurotransmitters and the entire DMN deacti-
vation, suggesting that regional neurotransmitter profile in the
hub of a network may significantly affect the activity of the whole
network, possibly through functional connectivity (Kapogiannis
et al., 2013).

The system-level coordinative effects of glutamate and GABA
concentrations on the DMN deactivation may involve complex
cellular processes. It might be reasonable to assume that high
regional GABA concentrations could facilitate inhibition of local
neural activities through GABAergic interneurons, resulting in
stronger brain deactivation. Similarly, high regional glutamate
concentrations could promote excitation of local glutamatergic
neurons. In the resting state, glutamatergic and GABAergic activ-
ities in the DMN may reach equilibrium to facilitate endogenous
processes. When turning from the resting to a task state, the
DMN suppression might be achieved by enhancing GABAergic
activities to regulate glutamatergic activities. Therefore, individ-
uals with a higher GABA/glutamate ratio tend to suppress ongo-
ing neural activities more efficiently. Furthermore, because the
inhibition of glutamatergic neurons might also decrease the
probability of excitation of their downstream neurons, the inhib-
itory associations with GABA would be enhanced in these indi-
viduals.

Implications of abnormal DMN deactivation and
neurotransmitters in mental disease
The associations between neurotransmitters and the DMN deac-
tivation found in the present study may have important implica-
tions for neuropsychiatric disease. The DMN is suggested to be a
fundamental brain network underlying normal and abnormal
brain functions (Buckner et al., 2008; Anticevic et al., 2012). In
contrast to the DMN deactivation patterns seen in healthy sub-
jects, insufficient DMN deactivation has been observed in several
psychiatric disorders. These studies suggest that the DMN abnor-
malities observed in fMRI studies may be closely associated with
neuropsychiatric disorders. Meanwhile, abnormal neurotrans-
mitter function has been reported in disease populations, espe-

cially in schizophrenia (Marsman et al., 2013). Our results
indicate that coordination of glutamate and GABA is associated
with task-induced DMN deactivation. Abnormal DMN deactiva-
tion in neuropsychiatric disorders may be associated with an
imbalance of glutamate and GABA neurotransmitters. Further
assessment of the relationships among clinical observations, ac-
tivity, and neurotransmitter function of the DMN in such patient
populations may provide useful insights into these diseases.

Limitations
We observed associations of local glutamate and GABA concen-
trations at resting state with task-induced BOLD signal change in
the same region. However, as a distributed system, activity of one
brain region is influenced by many other regions. Specifically,
release of neurotransmitters could depend on remote afferent
projections, which cannot be determined in the present study.
Consideration of both remote afferent projections and local neu-
rotransmitters would produce better models to predict BOLD
signal change.

Technically, measurements of GABA and glutamate are chal-
lenging. The MM coediting is an important issue for the GABA
detection using editing sequences, and the degree of MM signal
contamination varies with sequences and parameters (Henry et
al., 2001; Terpstra et al., 2002; Near et al., 2011). Nevertheless,
previous studies (Hofmann et al., 2001; Mader et al., 2002) sug-
gested that the MM concentrations in cortical regions of healthy
adults are very stable with respect to age and gender. Therefore,
individual differences in the contaminated GABA levels may re-
flect primarily the differences in the GABA itself (Donahue et al.,
2010). In addition, the degree to which glutamate and glutamine
can be separated at 3T is arguable. In the present study, the
CRLBs of glutamate and glutamine fitting from LCModel were
5 � 1% and 14 � 2%, respectively, suggesting that both are
quantifiable. Another limitation of glutamate measurement with
1H-MRS is its inability to distinguish signals between metabolic
and neurotransmitter pools. However, the relationship between
neuronal glucose oxidation and glutamate/glutamine cycling is
suggested to be linear (de Graaf et al., 2004), which supports the
assumption that the total glutamate level measured by 1H-MRS
could be a reasonable metric of glutamate involve in glutamater-
gic neurotransmission.

In the present study, fMRI and MRS data were collected sep-
arately. It would be interesting to assess the association between
neurotransmitter levels and brain activity at the same functional
states. In addition, the influence of the menstrual cycle on the
cerebral GABA and glutamate levels could be region specific (Ep-
person et al., 2002; Batra et al., 2008; Harada et al., 2011). How-
ever, as far as we know, there have been no reports about GABA
or glutamate level changes in PCC/PCu across the menstrual cy-
cle. This is a factor that we did not control for in the present study.

Summary
In conclusion, the present study demonstrates significant associ-
ation between neurotransmitters and the DMN deactivation
probed by a WM task. The major excitatory neurotransmitter,
glutamate, prevents BOLD signal from deactivation, whereas
GABA, the major inhibitory neurotransmitter, exerts the oppo-
site effects. These neurochemical characteristics of DMN deacti-
vation may provide novel insights into the function of DMN in
healthy individuals and its dysfunction in brain disorders.

Notes
Supplemental material for this article is available at http://irp.drugabuse.
gov/PDFs/supp/supHu08282013.pdf. This supplemental material docu-

Hu et al. • Glutamate and GABA Predict PCC/PCu Deactivation J. Neurosci., November 20, 2013 • 33(47):18566 –18573 • 18571

http://irp.drugabuse.gov/PDFs/supp/supHu08282013.pdf
http://irp.drugabuse.gov/PDFs/supp/supHu08282013.pdf


ment includes: (1) individual GABA spectra, (2) an estimation of GABA-
macromolecule contamination and glutamate-glutamine separation,
and (3) relationships between the entire DMN deactivation and neu-
rotransmitters. This material has not been peer reviewed.
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