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Abstract

Background: Effective and accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) is currently of significant
interest. ADHD has been associated with multiple cortical features from structural MRI data. However, most existing learning
algorithms for ADHD identification contain obvious defects, such as time-consuming training, parameters selection, etc. The
aims of this study were as follows: (1) Propose an ADHD classification model using the extreme learning machine (ELM)
algorithm for automatic, efficient and objective clinical ADHD diagnosis. (2) Assess the computational efficiency and the
effect of sample size on both ELM and support vector machine (SVM) methods and analyze which brain segments are
involved in ADHD.

Methods: High-resolution three-dimensional MR images were acquired from 55 ADHD subjects and 55 healthy controls.
Multiple brain measures (cortical thickness, etc.) were calculated using a fully automated procedure in the FreeSurfer
software package. In total, 340 cortical features were automatically extracted from 68 brain segments with 5 basic cortical
features. F-score and SFS methods were adopted to select the optimal features for ADHD classification. Both ELM and SVM
were evaluated for classification accuracy using leave-one-out cross-validation.

Results: We achieved ADHD prediction accuracies of 90.18% for ELM using eleven combined features, 84.73% for SVM-
Linear and 86.55% for SVM-RBF. Our results show that ELM has better computational efficiency and is more robust as
sample size changes than is SVM for ADHD classification. The most pronounced differences between ADHD and healthy
subjects were observed in the frontal lobe, temporal lobe, occipital lobe and insular.

Conclusion: Our ELM-based algorithm for ADHD diagnosis performs considerably better than the traditional SVM algorithm.
This result suggests that ELM may be used for the clinical diagnosis of ADHD and the investigation of different brain
diseases.

Citation: Peng X, Lin P, Zhang T, Wang J (2013) Extreme Learning Machine-Based Classification of ADHD Using Brain Structural MRI Data. PLoS ONE 8(11): e79476.
doi:10.1371/journal.pone.0079476

Editor: Dewen Hu, College of Mechatronics and Automation, National University of Defense Technology, China

Received June 6, 2013; Accepted September 25, 2013; Published November 19, 2013

Copyright: � 2013 Peng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the National Natural Science Foundation (number 81071150) (http://www.nsfc.gov.cn); Fundamental Research Funds for
the Central Universities of China and by Doctoral Fund of Ministry of Education of China (20120201120071). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: juewang1@126.com (JW); linpan@mail.xjtu.edu.cn (PL)

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the

most prevalent behavioral disorders in childhood and adolescence.

Approximately 5% of school-age children and 2–4% of adults are

diagnosed with ADHD or have ADHD-associated symptoms [1].

ADHD is typically characterized by inattention, hyperactivity,

impulsivity and impaired executive function, and its diagnosis is

normally made on the basis of these behavioral symptoms.

However, there is currently no diagnostic laboratory test for

ADHD. ADHD diagnosis may include psychological tests, such as

the ADHD Rating Scale (ADHD-RS), Conners Parent Rating

Scale and Brown Attention Deficit Disorder Scale (BADDS). The

efficiency of the diagnostic process is generally low because testing

requires a long, tedious clinical interview. In addition, traditional

ADHD diagnosis methods commonly lead to misdiagnosis. For

instance, approximately 20% of children are misdiagnosed

because they are younger than their classmates [2,3]. Therefore,

a rapid, accurate and objective diagnostic tool is needed to

improve the understanding, prevention and treatment of ADHD.

To aid the development of a new ADHD diagnostic method,

objective experimental differences between ADHD and control

subjects (CS) should be defined. To date, most studies have

explored differences in the connectivity of complex human brain

networks between ADHD and normal children [4–8]. Most of

these studies employ electroencephalographic (EEG) or magne-

toencephalographic (MEG) detection technology to record elec-

tromagnetic brain activity. However, these recordings are subject

to electromagnetic interference from the external environment,

such as 50 Hz power-line interference, or signal reductions by the

human skull [9–12]. Structural imaging tools, such as magnetic

resonance imaging (MRI) and functional MRI, have been
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extensively utilized to study the anatomical aspects of human brain

disorders and to identify the fundamental differences between

ADHD and normal subjects [13–16]. Additionally, brain imaging

technologies have also been applied to the ADHD diagnosis and

classification. In the early days, researchers use single-photon

emission computed tomography (SPECT) to compare the pattern

of regional cerebral perfusion in groups of children with ADHD

during a computerized performance test [17]. With the develop-

ment of imaging techniques, a growing number of noninvasive

imaging technologies begin to be applied in ADHD classification,

especially two particularly prominent kinds of imaging methods:

morphological information based on brain MRI data and brain

connectivity based on functional MRI [18,19].

In the past several years, numerous anatomic imaging studies

have accrued evidence for structural brain abnormalities in

ADHD. Results for children with ADHD from recent findings

showed a decrease in total cortical volume of over 7 and 8% and a

decrease in surface area of over 7% bilaterally [20]. Anatomical

abnormalities have also been observed in cortical thickness and

folding, especially in posterior brain regions and anterior brain

regions, including left/right superior temporal and parietal lobes,

temporoparietal junction, and insula [21,22]. All these abnormal-

ities in ADHD suggest that structural MRI data of human brain

should be a kind of ideal classification feature for ADHD

diagnosis.

Moreover, structural MRI has a high resolution and uses

relatively stable imaging technology. Several studies using

structural MRI have demonstrated anatomical differences be-

tween ADHD and normal children [23–25]. Anatomical MRI

showed that the maturation of cortical thickness and the surface

area developmental trajectory of the right prefrontal cortex is

delayed in ADHD children relative to typically developing

Figure 1. A flowchart for ADHD classification using human cortical feature measurements from MRI. (A) A T1-weighted anatomical
image preprocessed with nonuniformity correction and registration. (B) The upper and lower images refer to the pial vertices (outer gray surface) and
white vertices (inner gray surface), respectively, that were extracted and reconstructed in stereotaxic space from (A). (C) Five basic cortical features,
including thickness, surface area, folding index, curvature and volume, were measured from the divisional cortical surfaces, comprising a total of 340
brain features for each subject. (D) All the brain features were normalized to the range from 0 to 1. (E) The normalized data were rearranged in
accordance with the F-score in descending order. (F) The SFS method was used to further select the features that enhance the classification accuracy.
(G) The classification accuracy of both ELM and SVM learning algorithms was tested using the leave-one-out cross-validation method.
doi:10.1371/journal.pone.0079476.g001

Table 1. Information for the experimental dataset.

Feature
Number Basic Features

Index of
Segmentations

Feature 1 Cortical Thickness 1–68

Feature 2 Surface Area 69–136

Feature 3 Volume 137–204

Feature 4 Folding Index 205–272

Feature 5 Intrinsic Curvature 273–340

doi:10.1371/journal.pone.0079476.t001
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children [7]. Additionally, machine pattern recognition techniques

based on structural MRI data have been extensively applied to

diagnose many diseases. For example, brain tumor volume can be

obtained from structural MRI data using computer-aided diag-

nosis [26,27]. Outstanding Alzheimer’s disease (AD) classification

accuracy has been achieved using whole-brain anatomical MRI

with SVM, which can aid early AD diagnosis [28–31]. These

successful examples of brain disease diagnosis prompted us to

develop a method that combines brain morphological MRI with a

learning machine method, which may be used to supplement

existing cognitive batteries during diagnostic procedures.

To date, traditional machine learning techniques have been

utilized to distinguish the MRI data of two groups of subjects who

have multiple obvious defects. This involves time-consuming

training sessions for the experimental dataset, classification

inefficiency with changes in sample size and selection of one or

more parameters for the classifier [29,30]. For example, when

classifying mild cognitive impairment subtypes using a support

vector machine, Haller and colleagues had to iteratively explore

the parameter gamma from 0.01 to 0.09 [32]. In addition, the

testing accuracy is not always satisfactory enough for practical

classification applications [31].

In this study, we focused on developing an automatic, effective,

rapid and accurate ADHD diagnosis method to overcome the

deficiencies of traditional methods. We first proposed an ADHD

classification model using the extreme learning machine (ELM)

with F-score and SFS feature selection methods to provide

objective clinical diagnosis. The simple and efficient ELM method

was introduced to build a robust model for ADHD classification. It

is based on 5 basic cortical properties: thickness, surface area,

folding index, curvature and volume. Our findings demonstrate

that the ELM learning model performs better and has an

extraordinarily higher accuracy than the commonly used SVM

learning algorithm in terms of computing efficiency and the

dependence of experimental dataset size. We also found that the

surface area (SA) and volume (V) data of the human brain provide

the most salient information for discriminating between ADHD

and CS.

Materials and Methods

1. Subjects
The data used in the present study were part of the dataset from

the Peking University (Peking_1 and Peking_2) ADHD-200

Global Competition Test Dataset (http://fcon_1000.projects.

nitrc.org/indi/adhd200/). The dataset contains a total of 152

subjects including 59 ADHD and 93 healthy controls. Fifty-five of

59 ADHD subjects with were selected for the current study

according to the age range from 9 to 14 (mean age 11.8) and 4

overage subjects were excluded. Other fifty-five of 93 age matched

healthy adolescents were selected to form the control group (mean

age 11.5). Patients with a history of medication use were also

included. The inclusion criteria were as follows: 1) right-

handedness; 2) no lifetime history of head trauma with loss of

consciousness; 3) no history of neurological disease, and no

diagnosis of schizophrenia, affective disorder, pervasive develop-

ment disorder, or substance abuse and 4) full-scale Wechsler

Intelligence Scale for Chinese Children-Revised (WISCC-R) score

of greater than 80.

2. MRI
MRI data were downloaded from the ADHD-200 Global

Competition website (http://fcon_1000.projects.nitrc.org/indi/

adhd200/). A description of the Peking University ADHD-200

Global Competition data acquisition can be found in the scan

parameters item of the website. Briefly, the MRI data were

collected using a SIEMENS TRIO 3-Tesla scanner. The MRI

protocol included acquiring a high-resolution T1-weighted

MPRAGE volume (voxel size 1:3|1:0|1:3 mm
3
) using a

custom pulse sequence with the following parameters: 2530/

3.39 ms (TR/TE) and 1.33 mm (slice thickness).

3. MRI Data Processing
The FreeSurfer 5.10 software package was utilized for cortical

reconstruction and volumetric segmentation (FreeSurfer v5.10,

http://surfer.nmr.mgh.harvard.edu/fswiki). For processing, the

original MRI data were first subjected to a series of preprocessing

steps, including motion correction, T1-weighted image averaging,

registration of the volume to Talairach space and stripping the

skull with a deformable template model (Figure 1A). By encoding

the shape of the corpus callosum and pons in the Talairach space

and following the intensity gradients from the white matter to the

cerebrospinal fluid, the white surface and the pial surface were

generated for each hemisphere (Figure 1B). Once these surfaces

were known, a cortical surface-based atlas was mapped to a sphere

aligning the cortical folding patterns, which provided accurate

matching of the morphologically homologous cortical locations

across subjects. The average shortest distance between white and

pial surfaces denoted the cortical thickness at each vertex of the

cortex. Surface area was calculated by computing the area of every

triangle in a standardized spherical surface tessellation. The local

curvature was computed using the registration surface based on

the folding patterns. The folding index over the whole cortical

surface was measured using the method developed by Schaer. In

the present study, the FreeSurfer pipeline was used to automat-

ically generate the five basic cortical features. Each basic feature

was divided into 68 components based on brain segments, which

comprise a total of 340 cortical features for each subject

(Figure 1C). The indexes of 340 cortical features are briefly

presented in Table 1.

4. Feature Selection
After normalizing all the brain features data to the range from 0

to 1 (Figure 1D), we utilized the F-score method (Figure 1E) and

the sequential forward selection (SFS) method (Figure 1F) for

feature optimization selection of the 340 cortical features to

achieve a high classification accuracy. We then set the selected

features as the experimental dataset for ADHD classification. The

basic principles of these two feature selection methods are briefly

described below.
4.1. F-Score. F-score (Fisher score) is a simple and efficient

feature selection criterion obtained by measuring the discrimina-

tion between two sets of real numbers [33]. Given training vectors

xi, i~1, . . . ,l, the F-score of the jth feature is defined as

F jð Þ~

�xxj
zð Þ{�xxj

� �2
z �xxj

{ð Þ{�xxj

� �2

1
nz{1

Pnz

i~1

xi,j
zð Þ{�xxj

zð Þ� �2
z 1

n{{1

Pn{

i~1

xi,j
{ð Þ{�xxj

{ð Þ� �2
, ð1Þ

where nz and n{ are the number of positive and negative

instances, respectively, xi,j
zð Þ and xi,j

{ð Þ are the jth feature of the

positive and negative instances, respectively, and �xxj , �xxj
zð Þ and

�xxj
{ð Þ are the averages of the whole, positive and negative datasets,

respectively. A larger F-score indicates that the feature is more

significant because the numerator refers to the variance between
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two classes and the denominator denotes the variance within each

class.

4.2. SFS. Sequential forward selection (SFS) is a simple

efficient feature selection approach [34]. A subset was defined by

iteratively adding one feature at a time to an empty set to achieve

the maximum intermediate criterion value. Then, the subset of d
features was generated using the SFS method:

Xd~ADDd 1ð Þ: ð2Þ

5. Classification
As shown in Figure 1G, both the SVM and ELM classifiers were

used for the experimental dataset of 110 subjects to perform the

leave-one-out cross-validation. Validation involves using features

of a single subject from the whole experimental dataset for testing

and using the remaining subjects to train the classifier. This

processing is repeated for all the subjects. We then evaluated the

ADHD classification efficiency of both learning algorithms by

comparing their average testing accuracy and classification time.

The descriptions of these two learning algorithms are shown

below.

5.1. SVM learning algorithm. Support vector machines

(SVM) are popular machine learning methods for classification

and regression that are based on the learning theory originally

developed by Vapnik and his colleagues in 1995 [35]. In SVM, an

n-class problem is converted into n two-class problems. For each

two-class problem, the original m-dimensional input vector x is

mapped into the l-dimensional (l§m) dot product space (feature

space) using a nonlinear vector function to enhance linear

separability. In this high-dimensional feature space, the optimal

separating hyperplane that has the maximal margin to the nearest

training datum needs to be found. Once processing is completed,

the testing data can also be mapped into the feature space, and

then a class is assigned to the testing data.

In the present study, the LIBSVM software package was applied

to implement the SVM algorithm, and simple efficient linear

function and radial basis function (RBF) were respectively selected

as the kernel functions. LIBSVM, an integrated software package

that is extensively used for regression and classification in machine

learning, was developed by Dr. Chih-Jen Lin and his colleagues

(LIBSVM v3.12 available at http://www.csie.ntu.edu.tw/,cjlin/

libsvm/).

5.2. ELM learning algorithm. Extreme learning machine

(ELM) is an extremely fast learning algorithm with good

generalization performance that was developed by Huang and

his research group [36]. Traditional single hidden-layer feedfor-

ward neural networks (SLFNs), such as the back propagation (BP)

learning algorithm, have been extensively used for research in

many fields. These methods may require a search for the specific

input weights and hidden layer biases to minimize the cost

function, which usually makes it difficult to keep the computing

speed and classification accuracy within an acceptable range.

According to Theorem 1 and Theorem 2 shown in the Appendix

S1, the input weight wi and the hidden layer biases bi of SLFNs for

ELM can be randomly assigned if the activation functions in the

hidden layer are infinitely differentiable [37,38]. Therefore,

training an SLFN is equivalent to finding a least squares solution

b̂b of the linear system Hb~T:

H w1, . . . ,w ~NN ,b1, . . . ,b ~NN

� �
b̂b{T

���
���~

min
b

H w1, . . . ,w ~NN ,b1, . . . ,b ~NN

� �
b{T

�� ��:
ð3Þ

However, for most cases the number of hidden nodes is far less

than the number of distinct training samples ~NN%N
� �

, which

means H is not a square matrix, and there may not exist

wi,bi,bi i~1, . . . , ~NN
� �

such that Hb~T. According to Theo-

rem 3, the smallest norm least squares solution of the linear system

Figure 2. Comparison of the testing accuracy of ELM, SVM-Linear and SVM-RBF in ADHD classification based on F-score feature
selection.
doi:10.1371/journal.pone.0079476.g002
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Table 2. Comparison of the training and testing accuracy of ELM and SVM in ADHD classification.

The composition of ED (EDn~½Fn{1�zFn) Train Acc. (%) ± SD Test Acc. (%)

ED No Fn{1½ � Fn: [Index, Property, Region] ELM SVM Linear SVM RBF ELM SVM Linear SVM RBF

1 – F1 : [271, FI, R-Transversetemporal] 73.0860.70 55.4660.46 58.8660.71 54.55 55.45 58.18

2 F1½ � F2 : [114, SA, R-Lingual] 80.3362.61 60.0861.00 60.0861.00 59.09 56.36 56.36

3 F1,F2½ � F3 : [80, SA, L-Lingual] 79.1061.68 59.9361.10 59.8761.73 49.09 54.55 56.36

4 F1, . . . ,F3½ � F4 : [225, FI, L-Postcentral] 80.9262.66 61.5761.13 60.3061.15 58.18 56.36 57.27

5 F1, . . . ,F4½ � F5 : [106, SA, R-Cuneus] 82.3361.79 65.0261.62 68.6861.38 60.91 64.55 64.55

6 F1, . . . ,F5½ � F6 : [209, FI, L-Entorhinal] 81.6361.62 65.6861.37 70.0860.75 61.82 63.64 63.64

7 F1, . . . ,F6½ � F7 : [72, SA, L-Cuneus] 81.8261.84 65.4961.37 96.1660.48 60.91 60.91 62.73

8 F1, . . . ,F7½ � F8 : [224, FI, L-Pericalcarine] 81.0662.48 65.7661.24 98.2060.17 59.09 62.73 66.36

9 F1, . . . ,F8½ � F9 : [220, FI, L-Paracentral] 81.3162.08 67.1161.19 96.3560.37 61.82 60.91 62.73

10 F1, . . . ,F9½ � F10 : [265, FI, R-Superiorfrontal] 81.9262.22 66.4661.05 97.2860.21 60.00 59.09 62.73

11 F1, . . . ,F10½ � F11 : [227, FI, L-Precentral] 82.6062.07 68.5761.62 97.2960.19 63.64 60.91 65.45

12 F1, . . . ,F11½ � F12 : [272, FI, R-Insula] 81.6761.94 67.0761.15 68.6461.27 64.55 60.91 61.82

13 F1, . . . ,F12½ � F13 : [252, FI, R-Middletemporal] 82.2162.21 69.2060.99 69.5660.78 65.45 64.55 65.45

14 F1, . . . ,F13½ � F14 : [81, SA, L-Medialorbitofrontal] 85.3761.72 70.1961.83 73.9961.20 65.45 60.91 64.55

15 F1, . . . ,F14½ � F15 : [148, V, L-Lingual] 85.0861.83 70.1561.77 74.0661.11 66.36 60.91 62.73

16 F1, . . . ,F15½ � F16 : [122, SA, R-Pericalcarine] 86.1861.80 70.3961.72 75.3660.54 66.36 59.09 64.55

17 F1, . . . ,F16½ � F17 : [182, V, R-Lingual] 86.2262.21 70.0361.55 76.1660.56 65.45 59.09 63.64

18 F1, . . . ,F17½ � F18 : [69, SA, L-Bankssts] 86.9262.08 71.7461.27 71.7061.31 65.45 59.09 59.09

19 F1, . . . ,F18½ � F19 : [174, V, R-Cuneus] 87.5161.85 71.8361.26 71.8061.15 67.27 60.91 60.00

20 F1, . . . ,F19½ � F20 : [88, SA, L-Pericalcarine] 86.1861.80 70.2161.25 70.2361.28 64.55 60.00 61.82

21 F1, . . . ,F20½ � F21 : [210, FI, L-Fusiform] 87.0362.10 71.2761.24 73.6061.30 64.55 57.27 59.09

22 F1, . . . ,F21½ � F22 : [207, FI, L-Caudalmiddlefrontal] 87.0061.98 71.1160.89 71.3860.93 66.36 62.73 62.73

23 F1, . . . ,F22½ � F23 : [87, SA, L-Parstriangularis] 86.1962.48 74.3061.20 73.8661.03 67.27 63.64 62.73

24 F1, . . . ,F23½ � F24 : [204, V, R-Insula] 85.9862.27 74.6661.02 73.8561.00 65.45 65.45 63.64

25 F1, . . . ,F24½ � F25 : [208, FI, L-Cuneus] 85.4762.39 72.8561.23 73.5161.15 66.36 63.64 63.64

26 F1, . . . ,F25½ � F26 : [256, FI, R-Parsorbitalis] 85.1162.57 73.0361.17 73.1761.11 66.36 63.64 63.64

27 F1, . . . ,F26½ � F27 :[240,FI,R-Caudalanteriorcingulate] 85.3362.46 72.8960.82 73.3460.73 69.09 67.27 66.36

28 F1, . . . ,F27½ � F28 : [264, FI, R-Rostralmiddlefrontal] 84.6762.27 72.9560.82 73.3760.80 66.36 67.27 66.36

29 F1, . . . ,F28½ � F29 : [140, V, L-Cuneus] 85.4362.69 72.9460.81 73.3860.81 66.36 67.27 66.36

30 F1, . . . ,F29½ � F30 : [249, FI, R-Lateralorbitofrontal] 85.1762.44 75.8460.81 75.8360.92 67.27 66.36 64.55

31 F1, . . . ,F30½ � F31 : [255, FI, R-Parsopercularis] 84.9762.39 75.7960.88 75.9460.91 65.45 64.55 63.64

32 F1, . . . ,F31½ � F32 : [89, SA, L-Postcentral] 85.0162.89 75.0660.90 78.1761.14 67.27 60.00 64.55

33 F1, . . . ,F32½ � F33 : [218, FI, L-Middletemporal] 85.7462.39 73.7360.86 77.7061.06 67.27 63.64 65.45

34 F1, . . . ,F33½ � F34 : [119, SA, R-Parsopercularis] 85.6962.49 73.8660.91 77.4760.99 65.45 62.73 62.73

35 F1, . . . ,F34½ � F35 : [232, FI, L-Superiorparietal] 84.7662.66 73.8061.01 77.5161.07 66.36 61.82 62.73

36 F1, . . . ,F35½ � F36 : [101, SA, L-Transversetemporal] 84.3862.95 73.5260.98 77.1261.01 64.55 60.00 60.91

37 F1, . . . ,F36½ � F37 : [136, SA, R-Insula] 84.5262.75 73.6960.97 76.7661.07 66.36 57.27 61.82

38 F1, . . . ,F37½ � F38 : [84, SA, L-Paracentral] 86.2863.45 74.7060.93 79.2860.96 68.18 60.91 63.64

39 F1, . . . ,F38½ � F39 : [169, V, L-Transversetemporal] 85.6763.38 74.8060.97 79.1361.10 67.27 61.82 64.55

40 F1, . . . ,F39½ � F40 : [130, SA, R-Superiorparietal] 85.2263.14 77.4861.19 78.2161.37 67.27 61.82 64.55

41 F1, . . . ,F40½ � F41 : [131, SA, R-Superiortemporal] 84.4563.35 77.4461.09 79.4761.13 68.18 61.82 62.73

42 F1, . . . ,F41½ � F42 : [190, V, R-Pericalcarine] 85.7263.31 77.7161.35 79.2261.51 69.09 60.91 61.82

43 F1, . . . ,F42½ � F43 : [238, FI, L-Insula] 84.4263.32 77.6261.39 78.7761.02 68.18 61.82 62.73

44 F1, . . . ,F43½ � F44 : [74, SA, L-Fusiform] 85.2263.33 76.4361.35 74.3661.17 69.09 58.18 61.82

45 F1, . . . ,F44½ � F45 : [262, FI, R-Precuneus] 85.5363.18 70.0561.02 74.5661.07 67.27 58.18 60.91

46 F1, . . . ,F45½ � F46 : [258, FI, R-Pericalcarine] 84.8763.10 76.1360.98 74.5260.96 70.00 58.18 60.91

47 F1, . . . ,F46½ � F47 : [102, SA, L-Insula] 84.8963.02 78.6961.10 74.7361.01 68.18 56.36 60.91

48 F1, . . . ,F47½ � F48 : [73, SA, L-Entorhinal] 84.9263.32 80.2360.87 80.6961.14 67.27 57.27 61.82

ADHD Classification Using Extreme Learning Machine
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is

b̂b~H{T, ð4Þ

where H{ is the Moore-Penrose generalized inverse of matrix H.

With the completion of the model of the ELM algorithm, the

testing data could be efficiently classified.

6. Selection of Classification Algorithm Parameters
Our extreme learning machine (ELM) training and classifica-

tion computing program was compiled using MATLAB based on

the relative research theories of Dr. Huang. In this study, we

selected a simple sigmoidal kernel function g xð Þ~1= 1zð
exp {xð ÞÞ and set the number of hidden nodes to 20. The

SVM classification simulations were carried out using the

MATLAB interface to the C-coded LIBSVM package developed

by Dr. Lin’s team. In our experiments, two kernel parameters C
and c for radial basis function (RBF) SVM and one kernel

parameter C for linear SVM needed to be determined according

to the LIBSVM user guidelines. Because the SVM algorithm

performs particularly poor on the experimental dataset when the

default parameters setting is selected, we used the grid-search

method on C and c to obtain suitable parameters for the SVM

algorithm before the training. A practical method of identifying

good parameters involves attempting exponentially growing

sequences of C and c. The pair of C,cð Þ values with the best

cross-validation accuracy is selected as the best setting. In the

present study, the search scales of these two parameters were set to

C~ 2{5,2{4, . . . ,28
� �

and c~ 2{4,2{3, . . . ,212
� �

. In addition, it

is worth noting that, although the grid-search method may

improve the classification accuracy of the SVM algorithm, it also

significantly increases the total training time of SVM. This will be

discussed below in the computational efficiency section.

Additionally, as the threshold for each decision function of the

binary method may affect the performance of classification a lot, it

should be determined according to the receiver operating

characteristics (ROC) curves. In the current study, thresholds of

all three algorithms were set to the default 0 since the

discrimination showed balance performance between true positive

rate and false positive rate then.

7. Permutation Tests
The permutation tests have been adapted to assess statistical

significance of the classifier and its performance in many research

fields [39,40]. A brief description of permutation tests processing

steps is as follows: choosing the statistic of classifier, randomly

permuting the class label of the training data before training,

performing cross-validation on permuted training set and repeat-

ing the procedures as many times as needed. In this study, the

generation rate was selected as the statistic and the times of

repetition were set to 10000. We hypothesized that the classifier

could not learn the relationship between data and labels reliably.

The P-value P̂P GRELMð Þ represents the probability of observing a

prediction rate no less than GRELM obtained by classifier trained

on real labeled data. If the generation rate GRELM exceeded the

95% confidence interval of training on randomly relabeled data,

the null hypothesis was rejected and the classifier learned the

relationship with a probability of being wrong of at most

P̂P GRELMð Þ.

Results

1. Performance of ELM, SVM-Linear and SVM-RBF in
ADHD Classification based on F-score Feature Selection

The F-score feature ranking method was used to arrange the

340 features of ADHD and CS in descending order according to

the F-score value. We combined each feature with all preceding

feature rows as an experimental dataset. For example, the seventh

feature (F7) would be combined with the previous six feature

(F1,F2, . . . ,F6) rows to build an experimental dataset defined as

the seventh experimental dataset (ED7). This process was repeated

for all the features in sequential order to generate 340

experimental datasets (ED1,ED2, . . . ,ED340). Next, leave-one-out

cross-validation was applied to compare the performance of both

methods in ADHD classification. The results are shown in

Figure 2.

The overall testing accuracy of the ELM algorithm in ADHD

classification was significantly higher than that of the both SVM

algorithms. Because the high accuracy of these methods depended

mainly on previous experimental datasets, we list the detailed

results of the first 50 experimental datasets in Table 2. The ELM

learning algorithm achieved a maximum classification accuracy of

70% at the forty-sixth experimental dataset (ED46). The SVM-

Linear and SVM-RBF algorithms respectively reached maximum

of 67.27% at the twenty-seventh experimental dataset (ED27) and

66.36% at the eighth experimental dataset (ED8). Thus, we

concluded that ELM has a better accuracy in ADHD classification

than both SVM algorithms.

For the SVM algorithm, we considered the grid-search time

separately from the SVM training time because it is much longer

than the normal training time (more than 1000 times longer). Both

ratio of SVM grid-search time to ELM training time for the first

50 experimental datasets increased rapidly with increasing

experimental dataset size (Figure 3). This means that the ELM

algorithm is much faster at ADHD classification than the SVM

algorithm, especially when the experimental dataset is very large.

2. ADHD Classification Accuracy Enhancement by SFS
The results of ADHD classification show that all three

classification algorithms achieve the maximum before the forty-

sixth experimental dataset. To further enhance the classification

accuracy, the sequential forward selection (SFS) method was

Table 2. Cont.

The composition of ED (EDn~½Fn{1�zFn) Train Acc. (%) ± SD Test Acc. (%)

ED No Fn{1½ � Fn: [Index, Property, Region] ELM SVM Linear SVM RBF ELM SVM Linear SVM RBF

49 F1, . . . ,F48½ � F49 : [105, SA, R-Caudalmiddlefrontal] 85.5063.57 79.0061.00 83.2960.81 66.36 60.91 63.64

50 F1, . . . ,F49½ � F50 : [133, SA, R-Frontalpole] 85.4363.27 79.1960.97 83.3861.10 67.27 60.00 61.82

ED: Experimental Dataset; SA: Surface Area; V: Volume; FI: Folding Index; L: Left; R: Right.
doi:10.1371/journal.pone.0079476.t002
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executed on the first 46 features of the F-score method and the

results are shown in Figure 4.

The testing accuracy of all three methods in ADHD classifica-

tion were improved as is detailed in Table 3. The ELM algorithm

achieved a maximum testing accuracy of 90.18% at the eleventh

experimental dataset (ED11), while SVM-Linear and SVM-RBF

algorithms respectively reached maximum of 84.73% at the

fifteenth experimental dataset (ED15) and 86.55% at the

nineteenth experimental dataset (ED19). Compared with the

traditional SVM classification method, the ELM algorithm

performs significantly better than SVM-Linear (paired t{test,
pv0:001) and SVM-RBF (paired t{test, pv0:001).

To further compare the three methods, the receiver operating

characteristics (ROC) curves were generated by varying a

threshold applied to the continuous prediction score that each of

the algorithms generated (Figure 5). The area under the ROC

Figure 3. The ratio of SVM grid-search time to ELM training time. (A) The ratio of SVM-RBF grid-search time to ELM training time. (B) The ratio
of SVM-Linear grid-search time to ELM training time.
doi:10.1371/journal.pone.0079476.g003

Figure 4. Comparison of the testing accuracy of ELM, SVM-Linear and SVM-RBF in ADHD classification based on SFS feature
selection.
doi:10.1371/journal.pone.0079476.g004
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curve (AUC) for ELM is 0.8757, for SVM-Linear is 0.7792, and

for SVM-RBF is 0.8258. Therefore, ELM performs the best for

discriminating ADHD patients from healthy controls.

3. Permutation Tests for ELM
The permutation distribution of the estimate using the ELM

classifier is shown in Figure 6. With the generalization rate as the

statistic, cross-validation was performed on the 11 most discrim-

inating features and the permutation test was repeated for 10000

times. This figure indicate that the ELM classifier learned the

relationship between the data and the labels with a probability of

being wrong of v0:0001.

Discussion

In this study, we established an automatic and efficient ADHD

classification method using the ELM learning algorithm on

structural MRI data to provide accurate, objective clinical

diagnosis. In this study, we achieved two main findings. First,

our results indicate that it is possible to classify ADHD and control

subjects with a high degree of accuracy using an automatic

procedure that combines structure with ELM. Our results from

ADHD and control classification achieved an excellent prediction

accuracy of 90.18%. This high testing accuracy will improve the

actual auxiliary diagnostic accuracy. Second, we demonstrated

that the ELM method is much faster (more than 1000 times faster)

than other prediction models, such as SVM, making the ELM

algorithm a high efficiency method for ADHD diagnosis.

1. Efficient Brain Structure Features in ADHD
Classification

The cortex can be divided into five major segments according to

the anatomical structure and function of the human brain,

including the frontal lobe, the occipital lobe, the parietal lobe, the

temporal lobe and the cingulate. To further understand the

relationship between different brain segments and the etiology of

ADHD, we pick off the most discriminative 11 brain structure

features from the classification results and categorize them in

major lobes shown in Table 4.

The cuneus and lingual are portions of the human brain in the

occipital lobe. Both of them are linked to receiving and processing

the visual information, especially related to letters. The disorder of

these portions of brain can lead to a confusion of visual

information which may further cause inattention. Additionally,

insular cortex is a portion of the cerebral cortex folded deep within

the lateral sulcus separating the temporal lobe from frontal lobes.

Numerous studies have established that frontal lobe, temporal lobe

and insular are mainly associated with attention, motivation,

sensory, emotions and memory, which are likely to be involved in

ADHD behavioral symptoms, such as inattention, hyperactivity,

impulsivity and impaired executive function. In addition, since the

ELM classification relied heavily on the anatomical MRI data of

these regions, these findings could indicate that these cortical

regions mentioned above have the most ADHD-related structural

changes in the human brain.

2. Computational Efficiency of ADHD Classification
The computational efficiency of a pattern recognition method

directly influences the performance of ADHD diagnosis in

Table 3. Comparison of the training and testing accuracy of ELM and SVM in ADHD classification.

The composition of ED (EDn~½Fn{1�zFn) Train Acc. ± SD (%) Test Acc. (%)

ED No Fn{1½ � Fn: [Index, Property, Region] ELM SVM Linear SVM RBF ELM SVM Linear SVM RBF

1 – F1 : [72, SA, L-Cuneus] 79.6561.08 74.2761.24 76.4360.68 72.91 70.18 71.09

2 F1½ � F2 : [271, FI, R-Transversetemporal] 90.6261.48 75.4261.15 91.2760.74 76.55 69.27 80.18

3 F1,F2½ � F3 : [238, FI, L-Insula] 95.5361.57 74.4960.89 96.1860.55 82.91 65.64 82.91

4 F1, . . . ,F3½ � F4 : [140, V, L-Cuneus] 93.3661.56 74.2261.01 95.3060.32 84.73 66.55 79.27

5 F1, . . . ,F4½ � F5 : [119, SA, R-Parsopercularis] 91.9861.32 75.4361.01 95.3060.86 82.91 69.27 81.09

6 F1, . . . ,F5½ � F6 : [84, SA, L-Paracentral] 94.9060.78 81.4660.84 98.9460.17 82.00 74.73 79.27

7 F1, . . . ,F6½ � F7 : [227, FI, L-Precentral] 96.3661.28 85.4360.96 88.5760.87 85.64 78.36 82.91

8 F1, . . . ,F7½ � F8 : [272, FI, R-Insula] 96.1861.00 85.1360.50 88.8460.79 88.36 81.09 82.91

9 F1, . . . ,F8½ � F9 : [148, V, L-Lingual] 95.6461.23 84.8360.84 89.4560.99 88.36 79.27 81.09

10 F1, . . . ,F9½ � F10 : [218, FI, L-Middletemporal] 97.5161.83 89.3561.00 98.9460.89 87.45 80.18 85.64

11 F1, . . . ,F10½ � F11 : [101, SA, L-Transversetemporal] 97.4961.03 87.8761.46 96.1860.82 90.18 78.36 83.82

12 F1, . . . ,F11½ � F12 : [264, FI, R-Rostralmiddlefrontal] 96.6660.83 88.7461.36 97.5460.99 88.36 80.18 82.00

13 F1, . . . ,F12½ � F13 : [225, FI, L-Postcentral] 96.4261.21 88.4561.05 95.3460.81 87.45 79.27 80.18

14 F1, . . . ,F13½ � F14 : [265, FI, R-Superiorfrontal] 96.3161.17 88.8160.87 92.2361.01 87.45 81.09 82.00

15 F1, . . . ,F14½ � F15 : [131, SA, R-Superiortemporal] 96.4661.05 91.6560.75 92.1560.87 88.36 84.73 83.82

16 F1, . . . ,F15½ � F16 : [252, FI, R-Middletemporal] 97.0460.88 92.5861.13 94.5860.97 86.55 83.82 83.82

17 F1, . . . ,F16½ � F17 : [80, SA, L-Lingual] 97.2660.99 92.0661.22 94.4760.84 87.45 84.73 85.64

18 F1, . . . ,F17½ � F18 : [122, SA, R-Pericalcarine] 97.8660.82 92.7761.00 95.2260.82 87.45 84.73 85.64

19 F1, . . . ,F18½ � F19 : [204, V, R-Insula] 98.3060.94 92.9660.99 98.4660.62 88.36 83.82 86.55

ED: Experimental Dataset; SA: Surface Area; V: Volume; FI: Folding Index; L: Left; R: Right.
doi:10.1371/journal.pone.0079476.t003
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Figure 5. The receiver operating characteristics (ROC) curve for three classifiers discriminating between ADHD patients and healthy
controls.
doi:10.1371/journal.pone.0079476.g005

Figure 6. The permutation distribution of the estimate using the ELM classifier. X-label and y-label respectively represent the
generalization rate and occurrence number. GRELM refers to the generation rate obtained by training on the real class labels.
doi:10.1371/journal.pone.0079476.g006
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practice. An ideal ADHD machine classification method should

achieve both high discrimination accuracy and fast classification

speed. In the data presented in Figure 3, the ADHD classification

time of the ELM was significant lower than both SVM algorithms.

This may be due to that the SVM algorithm requires several user

decisions, including the choice of the kernel parameters C and c,

which usually take plenty of extra training time. In contrast, the

ELM learning algorithm chooses hidden nodes randomly and

determines the output weights of the feedforward neural networks

analytically by calculating the Moore-Penrose generalized inverse

H{ of the hidden layer output matrix H. This has important

implications. In particular, it indicates that there is no need for the

ELM algorithm to spend extra training time on parameter

searches and nearly unaffected by changing of experimental

dataset size. Another major contribution to our ADHD classifier

came from the relatively high classification accuracy (achieved a

maximum prediction accuracy of 90.18%). All of these suggest that

ELM achieves higher computing efficiency than SVM and make it

possible for the ELM learning algorithm to be efficiently applied to

ADHD classification. It is also worth noting that, although ELM

algorithm performs better in generalization compared with

conventional learning methods, too much hidden layer nodes

chosen may lead to overfitting and impact the performance in

practical application. Therefore, it is essential to determine the

optimal number of nodes before training to avoid overfitting.

3. Influence of Subject Sample Sizes
For traditional pattern recognition methods, a large training

sample is usually necessary to ensure classification accuracy

because most common pattern recognition algorithms are

probabilistic and use statistical inference to determine the best

label for a given instance [41–44]. For example, several recent

reports have demonstrated good performance in AD classification

using different modalities of features. One of the common

practices in these previous studies is the utilization of hundreds

of training samples to achieve better classification accuracy [44–

47]. The dependency of a classifier on training sample size is also

an important criterion for evaluating the performance of a

classifier. To further compare the ADHD classification perfor-

mance of ELM and SVM for different experimental dataset sizes,

we randomly extracted and combined data from all 110 subjects

preprocessed MRI datasets into eleven new experimental datasets

respectively containing 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and

110 subjects. Each new experimental dataset consists of half

ADHD subjects and half healthy controls. All three algorithms

were used to evaluate the eleven ADHD experimental datasets.

The results are shown in Figure 7.

The average training and testing rates of three methods are all

influenced to a certain extent by the experimental dataset size,

while the overall ADHD classification accuracy of ELM is

significantly higher than that of both SVM algorithms during

the whole experiment process. In contrast to SVM, the ELM

algorithm performs more smoothly in ADHD discrimination with

the changing of experimental dataset size (Figure 7B). This

suggests that ELM algorithm has a higher robustness and

adaptability on different experimental dataset size. Together with

advanced feature selection methods, ELM is likely to be a powerful

imaging-based pattern recognition method for ADHD diagnosis.

4. Effect of Medication
In our study, thirty of 55 adolescents with ADHD received

medical treatment. For ADHD medication, stimulant medications

are the most frequently choice of pharmaceutical treatment. There

are a number of non-stimulant medications, such as atomoxetine,

that may be used as alternatives [48]. Some research show that

patients with attention deficit hyperactivity disorder (ADHD) and

a medication history present abnormal brain activation in

prefrontal and striatal brain regions during cognitive challenge.

Atomoxetine improved inhibitory control and increased activation

in the right inferior frontal gyrus [49,50]. This may caused by

atomoxetine increased extracellular (EX) concentrations of nor-

epinephrine and dopamine in prefrontal cortex [51]. However, to

the best of our knowledge, there is a lack of evidence on

medication effects on changing the brain structure of the ADHD

patients. Additionally, psychostimulant medications were withheld

at least 48 hours prior to scanning in our study. Therefore, we

ignored the influence of drugs on brain structure changing in the

current study. More work and investigations will be needed to

understand the influence of ADHD medication in the future study.

5. Limitations
The current study only considers structural MRI data from the

subjects in the ADHD-200 Global Competition. Several resting

state functional connectivity studies suggest that ADHD is

associated with large-scale brain sub-networks dysfunction

[52,53]. In the future, we will use additional modalities (i.e.,

fMRI, PET and DTI) with our current classification method to

further improve ADHD classification performance. Moreover,

since classification accuracy was directly impacted by the selected

features, an efficient feature selection method may greatly improve

the performance of a learning algorithm. In our current study,

conventional feature selection methods, F-Score and SFS, were

combined to obtain the optimizing classification features. This

method, as simply based on geometry theory, can effectively select

the optimizing features. However, it cannot consider the

interrelationships among different patterns of data when classify-

ing using multiple modalities data. Sparse representation, one of

the latest feature selection methods, has been recently demon-

strated to be an efficient feature selection method in pattern

recognition of structural MRI scans [54]. It has become popularity

since its ability to contrast high dimensional data with compressed

samples especially in multivariate pattern analysis. Therefore, we

will utilize the advanced sparse representation method combining

with multiple modal data and efficient learning methods for

ADHD classification in the future.

Table 4. Most discriminative brain structure features for
ADHD classification.

Lobe Segmentation Feature

Frontal R- Pars Opercularis SA

L- Paracentral SA,FI

Temporal L- & R- Transverse
Temporal

SA,FI

L- Middle Temporal FI

Occipital L- & R- Cuneus SA,V

L- Lingual V

Insular L- & R- Insular FI

doi:10.1371/journal.pone.0079476.t004
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Conclusion

To our knowledge, this is the first study to propose an ADHD

classification model using the extreme learning machine (ELM)

with F-score and SFS feature selection methods to perform

objective diagnosis. Our results show that the ELM algorithm has

considerably good performance and an extremely high efficiency

in discriminating ADHD subjects from healthy controls. Com-

pared with traditional ADHD diagnosis methods, ELM has the

following advantages: 1. extremely fast discrimination speed and

satisfactory high classification accuracy; 2. ADHD discrimination

using objective MRI data; 3. excellent ADHD classification

performance with small training sample sizes and robustness with

changes in sample size and 4. does not need to select the training

parameters because the hidden nodes are randomly chosen.

Moreover, we observed that the frontal lobe, temporal lobe,

occipital lobe and insular are potentially involved in ADHD-

related structural changes in the human brain. These findings

suggest that our ADHD classification method using the ELM

learning algorithm is not only a promising method for ADHD

aided diagnosis and the study of disease etiology but can also

identify which features of the brain are involved in different

diseases.
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