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Abstract

Background: Candidate gene prioritization aims to identify promising new genes associated with a disease or a biological
process from a larger set of candidate genes. In recent years, network-based methods – which utilize a knowledge network
derived from biological knowledge – have been utilized for gene prioritization. Biological knowledge can be encoded either
through the network’s links or nodes. Current network-based methods can only encode knowledge through links. This
paper describes a new network-based method that can encode knowledge in links as well as in nodes.

Results: We developed a new network inference algorithm called the Knowledge Network Gene Prioritization (KNGP)
algorithm which can incorporate both link and node knowledge. The performance of the KNGP algorithm was evaluated on
both synthetic networks and on networks incorporating biological knowledge. The results showed that the combination of
link knowledge and node knowledge provided a significant benefit across 19 experimental diseases over using link
knowledge alone or node knowledge alone.

Conclusions: The KNGP algorithm provides an advance over current network-based algorithms, because the algorithm can
encode both link and node knowledge. We hope the algorithm will aid researchers with gene prioritization.
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Introduction

Understanding the genetic and biological mechanisms of

diseases is an ongoing challenge. Common diseases such as

rheumatoid arthritis and breast cancer that occur relatively

frequently in the population are likely to have complex and

multifactorial underlying mechanisms. Moreover, common dis-

eases likely arise from both genetic and environmental factors as

well as from interactions among such factors. In recent years,

several high-throughput techniques that survey a large number of

genes have been developed for elucidating the genetic factors of

common diseases. Such techniques include gene expression

profiling, genotyping of single nucleotide polymorphisms, and

whole genome sequencing to name just a few. One challenge with

such techniques is that they typically produce hundreds of

candidate genes associated with the disease of interest. To address

this challenge, computational approaches have been developed for

prioritizing candidate genes to reduce the number of promising

genes that need to be examined in detail by the biomedical

researcher.

Candidate gene prioritization
Candidate gene prioritization is the process of identifying and

ranking new genes as potential candidates of being associated with

a disease or phenotype. Most candidate gene prioritization

methods rely on a set of genes that are already known to be

associated with the disease to rank the other genes. Genes that

rank higher are more likely to be associated with the disease and

more worthy of further biological investigation compared to those

genes that rank lower. Developing excellent methods for candidate

gene prioritization is important, because such methods can save

biomedical researchers a significant amount of time, effort and

resources by allowing them to focus on a relatively small set of

promising genes to be studied in depth. Thus, candidate gene

prioritization has enormous potential for accelerating progress in

translational bioinformatics and in the development of new

therapies.

The gene prioritization methods described in the literature can

be broadly classified into two groups: similarity-based and

network-based methods. Similarity-based methods attempt to

identify those candidate genes whose features are most similar to

genes that are already known to be associated with a particular

disease. Examples of such features include expression patterns

[1,2], sequence features [3] and functional annotations [4]. More

recently, network-based approaches have been developed and

applied to candidate gene prioritization. In the next section, we

describe in greater detail network-based methods, since the

algorithm that we describe and evaluate in this paper is an

example of a network-based method.
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Network-based methods
In the network-based approach to gene prioritization

[5,6,7,8,9,10,11,12], biological knowledge about genes is repre-

sented as a network. A network consists of nodes and links between

pairs of nodes where nodes represent entities and links represent a

variety of pair-wise relations that can exist among the entities. For

example, in a protein-protein interaction network (PPIN), nodes

represent proteins, and the links represent pair-wise interactions

among the proteins. In a co-expression network, nodes represent

genes whose expression levels are measured in a microarray

experiment, and the links may represent correlations between

expression levels of pairs of genes. We term a network, such as a

PPIN, that incorporates knowledge as a knowledge network.

In network-based gene prioritization, an inference algorithm is

applied to the knowledge network to rank genes (or proteins)

relative to a root set of genes; members of the root set are genes

that are known to be associated with a disease of interest. The

premise underlying this approach is that genes in the network that

are in close proximity to genes in the root set are more likely to be

associated with the disease than those that are further away.

Proximity between genes in a network can be defined and

computed using a variety of inference methods and include

methods that have been developed for social- and Web-network

analysis such as PageRank [13] and Hyperlink-Induced Topic

Search (HITS) [14].

Several investigators have examined network-based methods for

gene prioritization. One of the earliest application of network-

based gene prioritization was to rank each protein in the Online

Predicted Human Interaction Database (OPHID) according to the

protein’s association with Alzheimer’s disease [7]. Any gene which

directly interacted with a known gene on the PPIN was considered

to be a candidate gene – this is known as a ‘‘nearest neighbor’’

based approach. Even such a simple gene prioritization approach

was shown to be effective. For example, a beta-catenin was

predicted to be associated with Alzheimer’s disease which had not

been previously implicated in the disease. Since then, more

sophisticated network algorithms have been applied. Kohler et al.

[9] applied random walk and diffusion kernel network algorithms

and Chen et al. [5] applied Web and social network algorithms to

PPINs to prioritize candidate genes. Madi et al. developed a novel

measure of node importance and used it to investigate antigen

dependency networks computed from matrices of antigen–antigen

correlations [15]. Furthermore, Madi et al. developed methods for

identifying network components and their most informative

interactions and applied them to networks of autoantibody

reactivities in healthy mothers and their newborn babies [16].

Investigators have also integrated multiple knowledge sources to

improve network-based gene prioritization. Frank et al. [17]

constructed a classifier to predict interactions from a number of

different data sources and used the classifier’s output in the

network. Chen et al. [18] combined different data sources

including protein-protein interactions, gene expression data, and

pathway data and showed that networks that used multiple data

sources performed better than networks that used a single data

source. A recent review provides a comprehensive overview of

algorithms and tools including network-based methods used in

gene prioritization [19]. Another recent review describes the

application of network theory for the analysis and understanding

of multi-level complex systems and discusses challenges for

network-based science [20].

One limitation of current network-based inference algorithms is

that they utilize link weights but not node weights. However,

knowledge about entities can also be represented as node weights

in a knowledge network. We conjectured that an inference

algorithm that utilized both link and node weights would perform

better than an algorithm that only utilized link weights. Since there

are no existing network-based inference algorithms that can utilize

node knowledge, we developed a new network-based method

called the Knowledge Network Gene Prioritization (KNGP)

algorithm that utilizes link and node knowledge. As an illustrative

example, consider the small knowledge network shown in Figure 1

where a link is annotated with a number that represents the link

weight and a node is annotated with a number that represents the

node weight. A typical network algorithm like PageRank when

applied to this network to rank nodes A, B and C with respect to

node D will rank A, B and C in that order because A’s link to D

has a higher link weight than B’s link to D and C is only indirectly

connected to D through B. A network algorithm that also

considers the node weights may rank the nodes as B, A and C in

that order because B’s combination of node and link weights may

be superior to A’s combination of node and link weights.

Knowledge Network Gene Prioritization (KNGP)
algorithm

This section describes the KNGP algorithm in detail. KNGP

creates a knowledge network from biological knowledge related to

genes (or proteins). The biological knowledge is represented in two

ways: 1) knowledge related to a gene is represented as a weight

associated with the corresponding node (e.g., the number of gene

ontology terms associated with a gene), and 2) knowledge related

to a pair of genes is represented as a weight associated with the link

that connects the corresponding nodes (e.g., whether the products

of a pair of genes interact). For brevity, we call these node and link

weights respectively. The algorithm outputs a ranking for the

nodes relative to a set of genes already known to be associated with

a disease of interest which is called the root node set. More

specifically, the algorithm computes the posterior node importance

for each gene in a set of genes called the candidate node set.
The posterior node importance of a node is a measure of how

likely the corresponding gene is to be associated with the disease of

interest. The KNGP algorithm was motivated by the PageRank

and the PageRank with Priors algorithms that are commonly used

to rank nodes in a network.

PageRank and the PageRank with Priors algorithms were

originally developed for networks with directed links, but have

recently been applied to undirected networks. For application to

an undirected network such as a PPIN, the network is converted

into a directed network where an undirected link between two

nodes is represented as two directed links. When PageRank is

applied to an undirected network, the posterior node importance

of a node is simply proportional to its degree (the number of

neighboring nodes to which it is linked where the links are

unweighted or the sum of the weights on the links where the links

Figure 1. A small knowledge network.
doi:10.1371/journal.pone.0079564.g001
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are weighted) [21,22]. However, in PageRank with Priors or in

personalized PageRank, the posterior node importance is not

simply proportional to its degree and is computed using an

iterative algorithm [21].

Figure 2 shows the components, inputs, and output of the

KNGP algorithm and Figure 3 provides the pseudocode for the

algorithm. The functions of the four components are to 1) create

the knowledge network, 2) compute the prior node importance, 3)

search for the optimal value of the parameter f, and 4) perform

inference. The inputs include link weights, node weights, the set of

root nodes R and the set of candidate nodes C. The output is the

posterior node importance for each candidate node. We now

describe the components of the KNGP algorithm in detail.

Create the knowledge network
Two matrices are associated with the knowledge network: the

link knowledge matrix and the transition probability matrix. The
link knowledge matrix is a n*n matrix where n is the number of

nodes in the knowledge network, and an entry in it represents the

link weight between the nodes specified by the row number and

column number. The transition probability matrix is a n*n

matrix and is derived from the link knowledge matrix. An entry in

this matrix denotes the transition probability of going to one node

(represented by the row number) from another node (represented

by the column number) in the network. The transition probability

of going to node v from node u is given by:

p v ujð Þ~ lw u,vð ÞPneighbors uð Þ
i~1 lw i,vð Þ

ð1Þ

where lw(u, v) is the link weight between node u and v obtained

from the link knowledge matrix, and neighbors(u) is the set of

neighboring nodes to which node u has a weighted link. If node u

has no neighbors, then p(v | u) is set to 0, and by symmetry p(u | v)

is also 0. This transition probability term encodes link knowledge.

Compute the prior node importance
The prior node importance represents how likely – a priori – a

given gene is associated with the disease of interest. The prior node

importance is defined by two vectors: the node knowledge vector

and the prior probability vector. The node knowledge vector is

a n dimensional vector where n is the number of nodes in the

knowledge network, and an entry in it represents the node weight

associated with the corresponding node. The prior probability
vector Pr is derived by normalizing the node knowledge vector.

The prior probability Prv of node v is defined as:

Prv~
fwvP

v[R

fwvz
P
v=[R

wv

for v [ R

Prv~
wvP

v[R

fwvz
P
v=[R

wv

for v 6[ R

, ð2Þ

where R is the set of root nodes, wv is the weight associated with

node v that is obtained from the node knowledge vector, and f is a

parameter that takes a value between 0 and positive infinity. The f

scales the node weights for members of the root set compared to

the non-root set. The next section describes how the optimal value

of f is obtained. In summary, the prior probability term encodes

both node knowledge and root node knowledge.

Search for the optimal value of the parameter f
For a specific value of f, the KNGP algorithm performs

inference to evaluate how highly the root nodes are ranked using

leave-one-out cross-validation (described in the Methods section).

Specifically, the performance associated with a value of f is

measured using the area under the ROC curve (AUC).

The pseudocode for the search is given in the find_best_f

procedure in Figure 3. The find_best_f procedure has three inputs:

a network with link and node weights, R which is the set of root

nodes, and F which is a set of f values defined by the user in the

range 0 to positive infinity. As shown in the pseudocode, the outer

loop iterates through f values in F, and the inner loop performs

leave-one-out cross-validation to compute the AUC. The output of

find_best_f procedure is the optimal value of f in F which is defined

as the value that maximizes the AUC. The optimal f value

depends on the relative distribution of the link and node weights

between the root node and candidate node sets; hence, for a given

knowledge network and disease of interest, the optimal f value can

change.

Perform inference
Given a network with a transitional probability matrix Q that

encodes link knowledge, and a prior probability vector Pr that

encodes both node knowledge with root node knowledge,

inference on the network produces a posterior probability vector

Po which is a n dimensional vector where n is the number of nodes

in the network. KNGP’s inference is based on a random walk

model where a walker’s probability of jumping from one node to

another is proportional to the weight of the link that connects the

two nodes. In addition, the probability of jumping from one node

to another is modified by a ‘‘back probability’’ which determines

how often the walker jumps back to the set of root nodes. The

sequence of nodes visited during a random walk is represented by

a Markov chain model. The relative number of visits to a node is

obtained by computing the stationary probability of the Markov

chain. The stationary probability distribution denotes the fraction

of time that the walker spends at any one node during a random

walk and is interpreted as the importance of the node relative to

Figure 2. The components, inputs and output of KNGP
algorithm.
doi:10.1371/journal.pone.0079564.g002
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the other nodes in the network. The stationary probability

distribution represents the posterior probability vector and is

computed using the following iterative equation:

Po iz1ð Þ~ 1{bð Þ| Q|Po ið Þ
� �

zb|Pr, ð3Þ

where Pr is the prior probability vector, Q is the transitional

probability matrix, Po is the posterior probability vector and ß is

the back probability value inclusive between 0 and 1. Po is

initialized to a vector of 0 s at the start of inference. At iteration

i+1, Po is updated by multiplying Po at iteration i with the matrix

Q. The stationary distribution is reached when the difference in

the elements of Po at (i+1) and Po at i falls below a small constant

delta.

The posterior probability vector includes a probability for every

node in the network. After the stationary posterior probability

vector is obtained, the KNGP algorithm ranks the candidate nodes

and outputs them along with their posterior probabilities. Often

times, the candidate nodes will consist of all nodes in the network

that are not in the root node set.

PageRank with Priors algorithm
The network-based algorithm which is most similar to KNGP is

PageRank with Priors (PRP). PRP first takes as input a network

and a root node set. The algorithm then computes a relative

importance score for each of the remaining nodes in the network.

The PRP algorithm was originally applied to assign importance to

webpages on the World Wide Web in relation to a specified set of

webpages [23]. In PRP, the prior probability Prv of node v is

defined as:

Prv~
1

Rj j for v [ R

Prv~0 for v 6[ R

, ð4Þ

where |R| is the number of nodes in the root set. It is important to

note that (4) does not have a term to introduce node knowledge.

Rather, only root node knowledge is incorporated into the prior

probabilities. Similar to the KNGP algorithm, PRP uses equation

3 to perform inference. The main difference between the two

algorithms lies in the prior probabilities.

Chen et al. [5] applied PRP to candidate gene prioritization and

showed that network-based methods which previously had been

used to study primarily social and web networks are also applicable

to gene prioritization. As described earlier, PageRank with Priors

is applied to an undirected network by converting the undirected

link to two directed links.

Methods

This section provides details of the datasets and the experi-

mental setup to evaluate the KNGP algorithm.

Synthetic networks
We created several synthetic networks with the goal of

investigating how the node weights interacted with the link

weights to influence the AUC at different f values in the KGNP

algorithm.

The synthetic datasets were created as follows. Each dataset

contained 1000 nodes of which nodes 1 to 100 are designated as

root nodes and the remaining nodes are designated as candidate

nodes (or non-root nodes). To assign node weights and link

weights, the 1000 nodes were partitioned into the following 5

groups:

N Group 1 consisted of root nodes 1 through 50

N Group 2 consisted of root nodes 51 through 10

N Group 3 consisted of candidate nodes 101 through 150

N Group 4 consisted of candidate nodes 151 through 200

N Group 5 consisted of candidate nodes 201 through 1000

Four datasets were generated in the following manner:

N In dataset 1, each of the 1000 nodes was assigned a random

node weight between 0 and 1. Thus, root nodes and candidate

nodes had similar node weights. The links among the root

nodes (i.e., node groups 1 and 2) were assigned a random

weight between 0.5 and 1 and the links among the candidate

nodes and among the root nodes and the candidate nodes were

assigned a random weight between 0 and 0.5. Thus, links

among root nodes had higher weights than other links.

N In dataset 2, the root nodes (i.e., groups 1 and 2) were assigned

a random node weight between 0.5 and 1, and the candidate

nodes (i.e., groups 3, 4 and 5) were assigned a random node

weight between 0 and 0.5. Thus, root nodes had higher node

weights than all of the candidate nodes. All links were assigned

a random link weight between 0 and 1. Thus, links among root

nodes, links among candidate nodes and links among root

nodes and candidate nodes had similar weights.

N In dataset 3, the root nodes were assigned a random weight

between 0.9 and 1.0, and the candidate nodes were assigned a

random weight between 0.5 and 1.0. Thus, the root nodes, on

average, had higher node weights than the candidate nodes,

but some of the candidate nodes could have had greater node

weights. The link weights between the root nodes were

assigned a value between 0.55 and 1.0, and the link weights

between the candidate nodes were assigned a value between

0.5 and 1.0. Thus, the links between the root nodes were, on

average, higher than the link weights between the candidate

nodes, but some of the candidate node link weights could have

been higher.

N In dataset 4, the root nodes were assigned a random node

weight between 0.95 and 1.0, and the candidate nodes were

assigned a random node weight between 0 and 1.0. Thus, the

root nodes, on average, had higher node weights than the

candidate nodes, but some of the candidate nodes could have

had greater node weights. The link weights between the root

nodes were assigned a value between 0.1 and 1.0, and the link

weights between the candidate nodes were assigned a value

between 0 and 1.0. Thus, the links between the root nodes

were, on average, higher than the link weights between the

candidate nodes, but some of the candidate node link weights

could have been higher.

The KNGP algorithm was run on each of the synthetic

networks using the evaluation protocol (described in Methods

section) for a range of f parameter values that included the

following: 0, 1, 15, 100, 10,000 and 1010. At one extreme, f = 0,

the prior probabilities of the root nodes became 0, and the prior

probabilities of the candidate nodes were proportional to the node

Figure 3. Pseudocode for the KNGP algorithm.
doi:10.1371/journal.pone.0079564.g003
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weights. At the other extreme, f = 1010, the prior probabilities of

the root nodes approached infinity, and the prior probabilities of

the candidate nodes approached 0 due to normalization. Table 1

shows the link weights that were used for each dataset. Table 2 and

Table 3 show the link weights that were used for each individual

group and between the groups respectively. In creating synthetic

networks, we did not include complex topologies that may arise

from grouping nodes into groups or modules. Such grouping may

be useful in the analysis of PPINs where groups of proteins may

represent metabolic pathways or functional modules.

Biological networks
We created several networks from biological knowledge. One

set of networks encoded link knowledge derived from protein-

protein interactions and from the Gene Ontology (GO) annota-

tions. Another network encoded node knowledge that was derived

from the GO annotations. And a final network encoded both link

knowledge and node knowledge. All the networks had the same set

of links where the presence of a link indicated a protein-protein

interaction. Our goal was to evaluate the additional benefit of

encoding node knowledge for gene prioritization using the KGNP

algorithm.

Protein-Protein Interaction+GO link weight

networks. The nodes in these networks represented genes

(proteins), and a link was present between two genes if there was a

protein-protein interaction (PPI) between the corresponding

proteins. We obtained PPIs from the Interologous Interaction

Database (IID) [24,25] and the human protein-protein interaction

(HPPI) database [26,27]. In total, the networks contained 126,668

interactions between 11,259 proteins. The weight for a link was

obtained from the Gene Ontology (GO) and is described next.

The GO [28] is a set of controlled vocabularies which describes

the functions of proteins within the cell. The GO is divided into

three separate ontologies that describe molecular function,

biological process, and cellular component. Given a specific GO

ontology such as GO molecular function, we calculated the

similarity between a pair of genes using the algorithm described in

Wang et al. [29]. This algorithm measures the functional similarity

of two genes based on the semantic similarities among the GO

terms annotating these genes. It encodes a GO term’s semantics

into a numeric value by aggregating the semantic contributions of

their ancestor terms in the GO graph and uses this numeric value

to measure the semantic similarity of two GO terms.

We created three networks with link weights corresponding to

the three GO ontologies that are labeled as the PPI+GOM (with

weights derived from the GO molecular function ontology), the

PPI+GOB (with weights derived from the GO biological process

ontology) and PPI+GOC (with weights derived from the GO

cellular component ontology).

GO node weight network. This network was obtained by

augmenting the PPI network with node weights. The PPI network

was constructed as described above for the link weight networks. A

node’s weight represented the number of GO terms associated

with the corresponding gene. To obtain the node weight for a

gene, we totaled the number of terms obtained from all three gene

ontologies including the cellular, molecular and functional

ontologies.

Combined link and node weight network. This network

was obtained by combining the PPI+GOC link weight network

with the GO node weight network. The link weights in this

network were the same as those used in the PPI+GOC network,

and the node weights were the same as those used in the GO

network.

Root nodes. The root nodes consisted of genes known to be

associated with the disease of interest. We selected 19 diseases (see

Table 4) and obtained the genes known to be associated with each

disease from the Genetic Association Database (GAD) [30]. The

GAD contains both positive and negative gene-disease associa-

tions. A positive association asserts that the gene is associated with

the disease of interest, and a negative association asserts that the

gene is not associated with the disease of interest. We included a

Table 1. Specification of node weights for each group in the
synthetic networks.

Dataset Node Weights

Group 1 Group 2 Group 3 Group 4 Group 5

1 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1)

2 rand(0.5,1) rand(0.5,1) rand(0,0.5) rand(0,0.5) rand(0,0.5)

3 rand(0.9,1) rand(0.9,1) rand(0.5,1) rand(0.5,1) rand(0.5,1)

4 rand(0.95,1) rand(0.95,1) rand(0,1) rand(0,1) rand(0,1)

doi:10.1371/journal.pone.0079564.t001

Table 2. Specification of link weights for each group in the
synthetic networks.

Dataset Link Weights

Group 1 Group 2 Group 3 Group 4 Group 5

1 rand(0.5,1) rand(0.5,1) rand(0,0.5) rand(0,0.5) rand(0,0.5)

2 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1)

3 rand(0.55,1) rand(0.55,1) rand(0.5,1) rand(0.5,1) rand(0.5,1)

4 rand(0.1,1) rand(0.1,1) rand(0,1) rand(0,1) rand(0,1)

doi:10.1371/journal.pone.0079564.t002

Table 3. Specification of link weights between groups in the synthetic networks.

Dataset Link Weights

Group 1–2 Group 1–3 Group 1–4 Group 1–5 Group 2–3 Group 2–4 Group 2–5 Group 3–4 Group 3–5 Group 4–5

1 rand(0.50,1) rand(0,0.50) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5) rand(0,0.5)

2 rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1)

3 rand(0.55,1) rand(0.50,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1) rand(0.5,1)

4 rand(0.10,1) rand(0.10,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1) rand(0,1)

doi:10.1371/journal.pone.0079564.t003
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gene in the root set for a disease if the gene had two more positive

associations than negative associations in the GAD. A list of the

known proteins associated with each disease that we used in our

experiments is given in Appendix S1.

Evaluation
We used a leave-one-out cross-validation scheme where each

root node was ‘‘left-out’’ - in turn - from the root node set. The

KNGP algorithm was then applied to the network to determine

how highly the left-out root node was ranked. The higher the left-

out root node was ranked; the better was the performance of the

KNGP algorithm.

The leave-one-out evaluation protocol is shown in Figure 4.

The protocol generates a total of m*10 (where m is the size of the

root node set) rank ordered lists of 100 nodes each with a left-out

root node that is embedded in 99 non-root nodes. A threshold

rank (for example, the 5th rank) for such a list separates those

nodes that are ranked above it from those that are ranked below it.

For a given threshold rank, sensitivity is defined as the percentage

of lists where the left-out node was ranked above the threshold and

specificity as the percentage of lists where the left-out node was

ranked below the threshold. Varying the threshold rank produced

a series of sensitivity and specificity values from which a ROC

curve was constructed, and the corresponding AUC was

calculated.

We applied the KNGP algorithm to each of the synthetic

networks and the biological networks using the evaluation

protocol.

Results

This section provides the results that we obtained for the

synthetic and biological networks.

Table 4. Number of genes known to associated with each of
the 19 experimental diseases.

Disease Number of genes

Rheumatoid Arthritis 24

Parkinson’s Disease 21

Celiac Disease 16

Esophageal Cancer 8

Hepatitis C 8

Crohn’s Disease 17

Breast Cancer 27

Asthma 29

Alzheimer’s Disease 21

Ulcerative Colitis 24

Endometriosis 5

Lymphoma 7

Osteoarthritis 8

Epilepsy 6

Atherosclerosis 43

Pancreatitis 6

Cirrhosis 7

Myocardial Infarction 32

Tuberculosis 12

doi:10.1371/journal.pone.0079564.t004

Figure 4. Evaluation protocol.
doi:10.1371/journal.pone.0079564.g004

Table 5. AUCs for various values of f for the four synthetic
datasets.

Dataset f = 0 f = 1 f = 15 f = 100 f = 10,000 f = 1010

1 0.602 0.651 0.991 1.000 1.000 1.000

2 1.000 0.999 0.996 0.877 0.467 0.461

3 0.898 0.901 0.941 0.977 0.924 0.922

4 0.974 0.978 0.991 0.975 0.897 0.895

doi:10.1371/journal.pone.0079564.t005

Table 6. AUCs for biological networks that contain weighted
links.

Disease PPI+GOM PPI+GOB PPI+GOC

Rheumatoid Arthritis 0.750 0.830 0.798

Parkinson’s Disease 0.652 0.668 0.668

Celiac Disease 0.744 0.814 0.795

Esophageal Cancer 0.840 0.871 0.858

Hepatitis C 0.502 0.764 0.759

Crohn’s Disease 0.850 0.862 0.846

Breast Cancer 0.866 0.872 0.865

Asthma 0.797 0.856 0.825

Alzheimer’s Disease 0.807 0.843 0.828

Ulcerative Colitis 0.740 0.706 0.738

Endometriosis 0.747 0.953 0.944

Lymphoma 0.770 0.875 0.872

Osteoarthritis 0.840 0.778 0.837

Epilepsy 0.579 0.622 0.612

Atherosclerosis 0.880 0.840 0.827

Pancreatitis 0.852 0.715 0.865

Cirrhosis 0.525 0.689 0.683

Myocardial Infarction 0.884 0.892 0.880

Tuberculosis 0.800 0.887 0.876

Average 0.757 0.807 0.809

doi:10.1371/journal.pone.0079564.t006
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Synthetic networks
As Table 5 shows, the optimal f value (i.e., the f value that

achieved the highest AUC) depends on the degree to which the

link and node weights are biased towards the root nodes versus the

non-root nodes. In this context, the bias indicated how much

greater the node or link weights were for the root nodes versus the

non-root nodes. If the link weights were considerably more biased

towards the root nodes than the non-root nodes – as in dataset 1 –

than the highest AUC was obtained at the largest f value.

Conversely, if the node weights were considerably more biased

towards the root nodes than the non-root nodes – as in dataset 2 –

than the highest AUC was obtained at the smallest f value. When

the bias towards the root nodes was more balanced between the

node weights and link weights – as in datasets 3 and 4 – than the

highest AUC was obtained at a f value between the two extremes.

These results provide some intuition for the f parameter in the

KGNP algorithm. The f parameter represents the tradeoff in

importance between the link weights and the node weights in

determining the ranking of the nodes. If the optimal f value is high,

then it implies that the link weights dominate over the node

weights in determining the ranking. Conversely, if the optimal f

value is low, then it implies that the node weights dominate over

the link weights in determining the ranking. These results imply

that when the optimal f value occurs between the two extremes,

both node and link weights are used to determine the ranking

equally. Conversely, at the extremes, either the node weight or the

links weights are used almost exclusively.

Biological networks
Table 6 provides the AUCs values for each of 19 diseases

obtained by applying KNGP to the three link weight networks. Of

the three GO link weight networks, PPI-GOC performed the best

and we used this network for creating the combined link and node

weight network. Table 7 provides the AUCs values for each of 19

diseases obtained by applying KNGP to PPI-GOC link weight

network, GO node weight network and a network that combines

PPI-GOC link weights with GO node weights. The last row in the

last column in Table 6 gives the p-values obtained from the two-

tailed Wilcoxon paired-samples signed-rank test comparing the

combined network with the link weight network and the node

weight network. The combined network has significantly better

performance at the 0.05 significance level than either the link

weight network or the node weight network.

Application to Asthma
Table 8 gives the top 5 ranked candidate genes for asthma that

were obtained by applying the KNGP algorithm to the combined

PPI-GOC and GO network. The two proteins – IL9R and IL12B

– that are shown in bold font in Table 8 were ranked far lower by

the other two networks. We obtained evidence from the literature

that both these proteins have an association with asthma.

Table 7. AUCs for biological networks with link weights only, node weights only and combined link and node weights.

Disease PPI+GOC link weight network GO node weight network PPI+GOC and GO combined network

Rheumatoid Arthritis 0.798 0.770 0.835

Parkinson’s Disease 0.668 0.724 0.734

Celiac Disease 0.795 0.775 0.807

Esophageal Cancer 0.858 0.876 0.853

Hepatitis C 0.759 0.774 0.756

Crohn’s Disease 0.846 0.808 0.847

Breast Cancer 0.865 0.855 0.867

Asthma 0.825 0.794 0.845

Alzheimer’s Disease 0.828 0.868 0.863

Ulcerative Colitis 0.738 0.701 0.740

Endometriosis 0.944 0.758 0.986

Lymphoma 0.872 0.910 0.918

Osteoarthritis 0.837 0.803 0.858

Epilepsy 0.612 0.710 0.718

Atherosclerosis 0.827 0.885 0.896

Pancreatitis 0.865 0.755 0.878

Cirrhosis 0.683 0.579 0.666

Myocardial Infarction 0.880 0.885 0.907

Tuberculosis 0.876 0.833 0.943

Average 0.809 0.793 0.838

p-value 0.02/0.02

doi:10.1371/journal.pone.0079564.t007

Table 8. Top five ranked candidate proteins for asthma.

Q01113 (IL9R)

Q13224 (GRIN2B)

P24394 (IL4R)

P29460 (IL12B)

P48357 (LEPR)

doi:10.1371/journal.pone.0079564.t008
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Kauppi et al. [31] genotyped several alleles from the IL9R gene

and compared results between a large cohort of patients with

asthma and healthy-control samples. The results were studied

using linkage analysis, transmission disequilibrium, and homozy-

gosity analyses. The authors showed that a IL9R allele – sDF2*10

– was more likely to be transmitted among patients with asthma

and was found homozygotic among asthma patients more often

than expected. Furthermore, a specific X chromosome haplotype

was found to be more associated for patients with asthma. In order

to test the hypothesis that the IL12B gene contains polymorphisms

associated with asthma, Randolph et al. [32] performed a

genotype analysis for polymorphisms in the IL12B gene between

patients with asthma and their parents. In the results, the authors

showed that one of the alleles of the IL12B gene was under-

transmitted to children with asthma. Furthermore, the authors

showed that a polymorphism of the IL2B gene may be significantly

associated with asthma severity in whites.

Appendix S2 provides the top 10 ranked candidate proteins for

each of the 19 experimental diseases obtained by applying the

KNGP algorithm to the combined PPI+GOC and GO network.

Discussion

Developing effective computational methods for candidate gene

prioritization is an important problem in bioinformatics. In this

paper, we presented and evaluated a new network-based method

called the KNGP algorithm. The advantage of the KNGP

algorithm is that it can encode node knowledge in addition to

link knowledge into the network-based gene prioritization process

and thus represents an advance over current network-based gene

prioritization algorithms. On 19 diseases, we showed that the

incorporation of link and node knowledge can add a significant

benefit to the network-based gene prioritization process. We

applied the new network-based method that we have introduced to

PPINs; however, we anticipate that it is applicable to a range of

other molecular and biological networks such as gene networks,

metabolic networks and neural networks. Beyond biological

networks, this algorithm will likely be useful in the analysis of

Web and citation networks and other social and financial

networks.

A main limitation of the current paper is that the KNGP

algorithm searches over only a limited number of fixed values for

the f parameter. We restricted the search to a few values to

decrease the running time of the algorithm. A more advanced

searching algorithm may lead to more optimal performance, but

our experience indicated that the difference would not be too

significant since the search space is highly convex.

In this paper, we explored only protein-protein interactions and

GO annotations for link weights and GO annotations for node

weights as the knowledge sources. Exploring alternative types of

knowledge sources for the node and link weights may lead to better

performance and is a possible extension for further research.

Another extension is to combine the rankings from various

networks derived from different knowledge sources. In the future,

we plan on exploring these different research avenues.

Conclusions

We presented a new network-based algorithm that is able to

incorporate different types of biological knowledge in nodes and in

links called the KNGP algorithm. Our results indicate that

encoding both node and link knowledge can improve performance

over using only link knowledge in network-based gene prioritiza-

tion. We hope that researchers will find our new network-based

approach useful for candidate gene prioritization and that future

extensions will yield additional improvements.
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