Abstract
The N,N'-diacetyllactosediamine (lacdiNAc) pathway of complex-type oligosaccharide synthesis is controlled by a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalac-tesaminyltransferase (beta 4-GalNAcT) that acts analogously to the common UDP-Gal:GlcNAc beta-R beta 1-->4-galactosyltransferase (beta 4-GalT). LacdiNAc-based chains particularly occur in invertebrates and cognate beta 4-GalNAcTs have been identified in the snail Lymnaea stagnalis, in two schistosomal species, and in several lepldopteran insect cell lines. Because of the similarity in reactions catalyzed by both enzymes, we investigated whether L. stagnalis albumen gland beta 4-GalNAcT would share with mammalian beta 4-GalT the property of interacting with alpha-lactalbumin (alpha-LA), a protein that only occurs in the lactating mammary gland, to form a complex in which the specificity of the enzyme is changed. It was found that, under conditions where beta 4-GalT forms the lactose synthase complex with alpha-LA, the snail beta 4-GalNAcT was induced by this protein to act on Glc with a > 100-fold increased efficiency, resulting in the formation of the lactose analog GalNAc beta 1-->4Glc. This forms the second example of a glycosyltransferase, the specificity of which can be altered by a modifier protein. So far, however, no protein fraction could be isolated from L. stagnalis that could likewise interact with the beta 4-GalNAcT. Neither had lysozyme c, a protein that is homologous to alpha-LA, an effect on the specificity of the enzyme. These results raise the question of how the capability to interact with alpha-LA has been conserved in the snail enzyme during evolution without any apparent selective pressure. They also suggest that snail beta 4-GalNAcT and mammalian beta 4-GalT show similarity at a molecular level and allows the identification of the beta 4-GalNAcT as a candidate member of the beta 4-GalT family.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker H., Agterberg M., Van Tetering A., Koeleman C. A., Van den Eijnden D. H., Van Die I. A Lymnaea stagnalis gene, with sequence similarity to that of mammalian beta 1-->4-galactosyltransferases, encodes a novel UDP-GlcNAc:GlcNAc beta-R beta 1-->4-N-acetylglucosaminyltransferase. J Biol Chem. 1994 Dec 2;269(48):30326–30333. [PubMed] [Google Scholar]
- Blanken W. M., Hooghwinkel G. J., Van Den Eijnden D. H. Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum beta-N-acetyl-D-glucosaminide beta 1 leads to 4 galactosyltransferase. Eur J Biochem. 1982 Oct;127(3):547–552. [PubMed] [Google Scholar]
- Blanken W. M., Van den Eijnden D. H. Biosynthesis of terminal Gal alpha 1----3Gal beta 1----4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide alpha 1----3-galactosyltransferase from calf thymus. J Biol Chem. 1985 Oct 25;260(24):12927–12934. [PubMed] [Google Scholar]
- Brew K., Vanaman T. C., Hill R. L. The role of alpha-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc Natl Acad Sci U S A. 1968 Feb;59(2):491–497. doi: 10.1073/pnas.59.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodbeck U., Denton W. L., Tanahashi N., Ebner K. E. The isolation and identification of the B protein of lactose synthetase as alpha-lactalbumin. J Biol Chem. 1967 Apr 10;242(7):1391–1397. [PubMed] [Google Scholar]
- Cheng T. C., Guida V. G., Gerhart P. L. Aminopeptidase and lysozyme activity levels and serum protein concentrations in Biomphalaria glabrata (Mollusca) challenged with bacteria. J Invertebr Pathol. 1978 Nov;32(3):297–302. doi: 10.1016/0022-2011(78)90192-1. [DOI] [PubMed] [Google Scholar]
- Dell A., Morris H. R., Easton R. L., Panico M., Patankar M., Oehniger S., Koistinen R., Koistinen H., Seppala M., Clark G. F. Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. J Biol Chem. 1995 Oct 13;270(41):24116–24126. doi: 10.1074/jbc.270.41.24116. [DOI] [PubMed] [Google Scholar]
- Do K. Y., Do S. I., Cummings R. D. Alpha-lactalbumin induces bovine milk beta 1,4-galactosyltransferase to utilize UDP-GalNAc. J Biol Chem. 1995 Aug 4;270(31):18447–18451. doi: 10.1074/jbc.270.31.18447. [DOI] [PubMed] [Google Scholar]
- Fiete D., Srivastava V., Hindsgaul O., Baenziger J. U. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991 Dec 20;67(6):1103–1110. doi: 10.1016/0092-8674(91)90287-9. [DOI] [PubMed] [Google Scholar]
- Grinnell B. W., Hermann R. B., Yan S. B. Human protein C inhibits selectin-mediated cell adhesion: role of unique fucosylated oligosaccharide. Glycobiology. 1994 Apr;4(2):221–225. doi: 10.1093/glycob/4.2.221. [DOI] [PubMed] [Google Scholar]
- Grobler J. A., Wang M., Pike A. C., Brew K. Study by mutagenesis of the roles of two aromatic clusters of alpha-lactalbumin in aspects of its action in the lactose synthase system. J Biol Chem. 1994 Feb 18;269(7):5106–5114. [PubMed] [Google Scholar]
- Harduin-Lepers A., Shaper J. H., Shaper N. L. Characterization of two cis-regulatory regions in the murine beta 1,4-galactosyltransferase gene. Evidence for a negative regulatory element that controls initiation at the proximal site. J Biol Chem. 1993 Jul 5;268(19):14348–14359. [PubMed] [Google Scholar]
- Hathaway H. J., Runyan R. B., Khounlo S., Shur B. D. Purification and characterization of avian beta 1,4 galactosyltransferase: comparison with the mammalian enzyme. Glycobiology. 1991 Mar;1(2):211–221. doi: 10.1093/glycob/1.2.211. [DOI] [PubMed] [Google Scholar]
- Hill R. L., Brew K. Lactose synthetase. Adv Enzymol Relat Areas Mol Biol. 1975;43:411–490. doi: 10.1002/9780470122884.ch5. [DOI] [PubMed] [Google Scholar]
- Hill R. L., Brew K., Vanaman T. C., Trayer I. P., Mattock P. The structure, function, and evolution of alpha-lactalbumin. Brookhaven Symp Biol. 1968 Jun;21(1):139–154. [PubMed] [Google Scholar]
- Hori H., Osawa S. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol. 1987 Sep;4(5):445–472. doi: 10.1093/oxfordjournals.molbev.a040455. [DOI] [PubMed] [Google Scholar]
- Kang S., Cummings R. D., McCall J. W. Characterization of the N-linked oligosaccharides in glycoproteins synthesized by microfilariae of Dirofilaria immitis. J Parasitol. 1993 Dec;79(6):815–828. [PubMed] [Google Scholar]
- Khoo K. H., Sarda S., Xu X., Caulfield J. P., McNeil M. R., Homans S. W., Morris H. R., Dell A. A unique multifucosylated -3GalNAc beta 1-->4GlcNAc beta 1-->3Gal alpha 1- motif constitutes the repeating unit of the complex O-glycans derived from the cercarial glycocalyx of Schistosoma mansoni. J Biol Chem. 1995 Jul 21;270(29):17114–17123. doi: 10.1074/jbc.270.29.17114. [DOI] [PubMed] [Google Scholar]
- Kubelka V., Altmann F., März L. The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj J. 1995 Feb;12(1):77–83. doi: 10.1007/BF00731872. [DOI] [PubMed] [Google Scholar]
- Kubelka V., Altmann F., Staudacher E., Tretter V., März L., Hård K., Kamerling J. P., Vliegenthart J. F. Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur J Biochem. 1993 May 1;213(3):1193–1204. doi: 10.1111/j.1432-1033.1993.tb17870.x. [DOI] [PubMed] [Google Scholar]
- Levery S. B., Weiss J. B., Salyan M. E., Roberts C. E., Hakomori S., Magnani J. L., Strand M. Characterization of a series of novel fucose-containing glycosphingolipid immunogens from eggs of Schistosoma mansoni. J Biol Chem. 1992 Mar 15;267(8):5542–5551. [PubMed] [Google Scholar]
- Makaaru C. K., Damian R. T., Smith D. F., Cummings R. D. The human blood fluke Schistosoma mansoni synthesizes a novel type of glycosphingolipid. J Biol Chem. 1992 Feb 5;267(4):2251–2257. [PubMed] [Google Scholar]
- Mengeling B. J., Manzella S. M., Baenziger J. U. A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):502–506. doi: 10.1073/pnas.92.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messer M., Nicholas K. R. Biosynthesis of marsupial milk oligosaccharides: characterization and developmental changes of two galactosyltransferases in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim Biophys Acta. 1991 Mar 8;1077(1):79–85. doi: 10.1016/0167-4838(91)90528-8. [DOI] [PubMed] [Google Scholar]
- Mulder H., Spronk B. A., Schachter H., Neeleman A. P., van den Eijnden D. H., De Jong-Brink M., Kamerling J. P., Vliegenthart J. F. Identification of a novel UDP-GalNAc:GlcNAc beta-R beta 1-4 N-acetylgalactosaminyltransferase from the albumen gland and connective tissue of the snail Lymnaea stagnalis. Eur J Biochem. 1995 Jan 15;227(1-2):175–185. doi: 10.1111/j.1432-1033.1995.tb20374.x. [DOI] [PubMed] [Google Scholar]
- Neeleman A. P., van der Knaap W. P., van den Eijnden D. H. Identification and characterization of a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalactosaminyltransferase from cercariae of the schistosome Trichobilharzia ocellata. Catalysis of a key step in the synthesis of N,N'-diacetyllactosediamino (lacdiNAc)-type glycans. Glycobiology. 1994 Oct;4(5):641–651. doi: 10.1093/glycob/4.5.641. [DOI] [PubMed] [Google Scholar]
- Nemansky M., Van den Eijnden D. H. Bovine colostrum CMP-NeuAc:Gal beta(1-->4)GlcNAc-R alpha(2-->6)-sialyltransferase is involved in the synthesis of the terminal NeuAc alpha(2-->6)GalNAc beta(1-->4)GlcNAc sequence occurring on N-linked glycans of bovine milk glycoproteins. Biochem J. 1992 Oct 1;287(Pt 1):311–316. doi: 10.1042/bj2870311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemansky M., van den Eijnden D. H. Enzymatic characterization of CMP-NeuAc:Gal beta 1-4GlcNAc-R alpha(2-3)-sialyltransferase from human placenta. Glycoconj J. 1993 Feb;10(1):99–108. doi: 10.1007/BF00731193. [DOI] [PubMed] [Google Scholar]
- Nitta K., Sugai S. The evolution of lysozyme and alpha-lactalbumin. Eur J Biochem. 1989 Jun 1;182(1):111–118. doi: 10.1111/j.1432-1033.1989.tb14806.x. [DOI] [PubMed] [Google Scholar]
- Ohta M., Matsuura F., Kobayashi Y., Shigeta S., Ono K., Oka S. Further characterization of allergenically active oligosaccharitols isolated from a sea squirt H-antigen. Arch Biochem Biophys. 1991 Nov 1;290(2):474–483. doi: 10.1016/0003-9861(91)90569-5. [DOI] [PubMed] [Google Scholar]
- Palcic M. M., Hindsgaul O. Flexibility in the donor substrate specificity of beta 1,4-galactosyltransferase: application in the synthesis of complex carbohydrates. Glycobiology. 1991 Mar;1(2):205–209. doi: 10.1093/glycob/1.2.205. [DOI] [PubMed] [Google Scholar]
- Powell J. T., Brew K. Glycosyltransferases in the Golgi membranes of onion stem. Biochem J. 1974 Aug;142(2):203–209. doi: 10.1042/bj1420203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reason A. J., Ellis L. A., Appleton J. A., Wisnewski N., Grieve R. B., McNeil M., Wassom D. L., Morris H. R., Dell A. Novel tyvelose-containing tri- and tetra-antennary N-glycans in the immunodominant antigens of the intracellular parasite Trichinella spiralis. Glycobiology. 1994 Oct;4(5):593–603. doi: 10.1093/glycob/4.5.593. [DOI] [PubMed] [Google Scholar]
- Rivera-Marrero C. A., Cummings R. D. Schistosoma mansoni contains a galactosyltransferase activity distinct from that typically found in mammalian cells. Mol Biochem Parasitol. 1990 Nov;43(1):59–67. doi: 10.1016/0166-6851(90)90130-e. [DOI] [PubMed] [Google Scholar]
- Savage A. V., Koppen P. L., Schiphorst W. E., Trippelvitz L. A., Van Halbeek H., Vliegenthart J. F., Van den Eijnden D. H. Porcine submaxillary mucin contains alpha 2----3- and alpha 2----6-linked N-acetyl- and N-glycolylneuraminic acid. Eur J Biochem. 1986 Oct 1;160(1):123–129. doi: 10.1111/j.1432-1033.1986.tb09948.x. [DOI] [PubMed] [Google Scholar]
- Schanbacher F. L., Ebner K. E. Galactosyltransferase acceptor specificity of the lactose synthetase A protein. J Biol Chem. 1970 Oct 10;245(19):5057–5061. [PubMed] [Google Scholar]
- Sheares B. T., Carlson D. M. Two distinct UDP-galactose: 2-acetamido-2-deoxy-D-glucose 4 beta-galactosyltransferases in porcine trachea. J Biol Chem. 1984 Jul 10;259(13):8045–8047. [PubMed] [Google Scholar]
- Shewale J. G., Sinha S. K., Brew K. Evolution of alpha-lactalbumins. The complete amino acid sequence of the alpha-lactalbumin from a marsupial (Macropus rufogriseus) and corrections to regions of sequence in bovine and goat alpha-lactalbumins. J Biol Chem. 1984 Apr 25;259(8):4947–4956. [PubMed] [Google Scholar]
- Smith P. L., Baenziger J. U. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):329–333. doi: 10.1073/pnas.89.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivatsan J., Smith D. F., Cummings R. D. Demonstration of a novel UDPGalNAc:GlcNAc beta 1-4 N-acetylgalactosaminyltransferase in extracts of Schistosoma mansoni. J Parasitol. 1994 Dec;80(6):884–890. [PubMed] [Google Scholar]
- Srivatsan J., Smith D. F., Cummings R. D. Schistosoma mansoni synthesizes novel biantennary Asn-linked oligosaccharides containing terminal beta-linked N-acetylgalactosamine. Glycobiology. 1992 Oct;2(5):445–452. doi: 10.1093/glycob/2.5.445. [DOI] [PubMed] [Google Scholar]
- Stinnakre M. G., Vilotte J. L., Soulier S., Mercier J. C. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6544–6548. doi: 10.1073/pnas.91.14.6544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugita M., Iwasaki Y., Hori T. Studies on glycosphingolipids of larvae of the green-bottle fly, Lucilia caesar. II. Isolation and structural studies of three glycosphingolipids with novel sugar sequences. J Biochem. 1982 Sep;92(3):881–887. doi: 10.1093/oxfordjournals.jbchem.a134002. [DOI] [PubMed] [Google Scholar]
- Ulrich J. T., Schenck J. R., Rittenhouse H. G., Shaper N. L., Shaper J. H. Monoclonal antibodies to bovine UDP-galactosyltransferase. Characterization, cross-reactivity, and utilization as structural probes. J Biol Chem. 1986 Jun 15;261(17):7975–7981. [PubMed] [Google Scholar]
- Van Kuik J. A., Sijbesma R. P., Kamerling J. P., Vliegenthart J. F., Wood E. J. Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis. 3-O-methyl-D-galactose and N-acetyl-D-galactosamine as constituents of xylose-containing N-linked oligosaccharides in an animal glycoprotein. Eur J Biochem. 1987 Dec 1;169(2):399–411. doi: 10.1111/j.1432-1033.1987.tb13626.x. [DOI] [PubMed] [Google Scholar]
- Van den Eijnden D. H., Neeleman A. P., Van der Knaap W. P., Bakker H., Agterberg M., Van Die I. Control and function of complex-type oligosaccharide synthesis. Novel variants of the lacNAc pathway. Adv Exp Med Biol. 1995;376:47–52. doi: 10.1007/978-1-4615-1885-3_5. [DOI] [PubMed] [Google Scholar]
- Van den Eijnden D. H., Neeleman A. P., Van der Knaap W. P., Bakker H., Agterberg M., Van Die I. Novel glycosylation routes for glycoproteins: the lacdiNAc pathway. Biochem Soc Trans. 1995 Feb;23(1):175–179. doi: 10.1042/bst0230175. [DOI] [PubMed] [Google Scholar]
- Yadav S. P., Brew K. Structure and function in galactosyltransferase. Sequence locations of alpha-lactalbumin binding site, thiol groups, and disulfide bond. J Biol Chem. 1991 Jan 15;266(2):698–703. [PubMed] [Google Scholar]
- Yamamoto F., Clausen H., White T., Marken J., Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990 May 17;345(6272):229–233. doi: 10.1038/345229a0. [DOI] [PubMed] [Google Scholar]
- Yamamoto F., Hakomori S. Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem. 1990 Nov 5;265(31):19257–19262. [PubMed] [Google Scholar]
- van Die I., van Tetering A., Bakker H., van den Eijnden D. H., Joziasse D. H. Glycosylation in lepidopteran insect cells: identification of a beta 1-->4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. Glycobiology. 1996 Mar;6(2):157–164. doi: 10.1093/glycob/6.2.157. [DOI] [PubMed] [Google Scholar]