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Abstract
Mixture theory, which can combine continuum theories for the motion and deformation of solids
and fluids with general principles of chemistry, is well suited for modeling the complex responses
of biological tissues, including tissue growth and remodeling, tissue engineering, mechanobiology
of cells and a variety of other active processes. A comprehensive presentation of the equations of
reactive mixtures of charged solid and fluid constituents is lacking in the biomechanics literature.
This study provides the conservation laws and entropy inequality, as well as interface jump
conditions, for reactive mixtures consisting of a constrained solid mixture and multiple fluid
constituents. The constituents are intrinsically incompressible and may carry an electrical charge.
The interface jump condition on the mass flux of individual constituents is shown to define a
surface growth equation, which predicts deposition or removal of material points from the solid
matrix, complementing the description of volume growth described by the conservation of mass.
A formu-lation is proposed for the reference configuration of a body whose material point set
varies with time. State variables are defined which can account for solid matrix volume growth
and remodeling. Constitutive constraints are provided on the stresses and momentum supplies of
the various constituents, as well as the interface jump conditions for the electrochem cal potential
of the fluids. Simplifications appropriate for biological tissues are also proposed, which help
reduce the governing equations into a more practical format. It is shown that explicit mechanisms
of growth-induced residual stresses can be predicted in this framework.
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1 Introduction
The theory of mixtures has been successfully applied to the study of biological tissues and
cells for over three decades (Kenyon, 1976; Mow et al, 1980; Lai et al, 1991; Huyghe and
Janssen, 1997; Gu et al, 1998; Humphrey and Rajagopal, 2002; Klisch et al, 2003; Lemon et
al, 2006). The vast majority of these studies have focused on mechanics and transport of
non-reacting mixtures, though more recent studies have addressed problems of tissue growth
and remodeling (Baek et al, 2006; Klisch et al, 2003) and tissue engineering (Lemon et al,
2006). Growth and remodeling occur as a result of chemical reactions. Similarly, uptake of
nutrients, breakdown into waste products, binding of molecules to tissues and cells, active
transport mechanisms in cells, cytoskeletal remodeling, cell motion and taxis and a host of
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other mechano-transduction and mechanobiological events involve chemical reactions.
Mixture theory, which can combine continuum theories for the motion and deformation of
solids and fluids with general principles of chemistry, is ideally suited for modeling the
complex responses of biological tissues.

Conservation laws for heterogeneous mixtures which can undergo chemical reactions were
formulated in a rigorous framework by Truesdell and Toupin (1960). Many authors
subsequently built upon this framework (see the review by Bedford and Drumheller, 1983)
and helped establish the field of mixture theory. However, much of this classical literature
has remained in the realm of theoretical rational mechanics. The field of biomechanics and
modeling in mechanobiology is well poised today to adopt the broader formulation of the
theory of reactive mixtures and expand upon it.

Mixture theory has been used selectively in the study of biological tissues. The concepts of
reactive mixtures of charged constituents have not been applied or summarized
comprehensively in the relevant biomechanics literature. Therefore the objective of this
study is to present the comprehensive set of governing equations for such mixtures, using a
consistent notation. This opportunity is used to clarify and expand on some concepts,
particularly in relation to charged constituents and interface jump conditions in the presence
of chemical reactions.

The long-term objective is to demonstrate the widespread applicability of mixture theory to
tackle the complexities of biological tissues, including the study of biological growth and
remodeling. In particular, mixture theory presents an opportunity to identify specific
mechanism responsible for growthinduced residual stresses, as addressed in this study,
whereas the traditional literature assumes a more phenomenological approach. Other areas
of application may include the analysis of active cellular processes, such as the modeling of
membrane pumps, resting potentials and action potentials using the framework of continuum
theory.

2 Governing Equations for Reactive Mixtures
First, the conservation laws and entropy inequality for reactive mixtures are summarized,
along with corresponding interface jump conditions. Next, these equations are formulated
for intrinsically incompressible mixture constituents (Bowen, 1980; Mow et al, 1980) which
may also carry an electrical charge (Lai et al, 1991; Huyghe and Janssen, 1997), as this
representation is most relevant to biological tissues. The assumption of intrinsic
incompressibility of the fluid constituents of a mixture is based on the common modeling of
aqueous solutions as incompressible in the range of pressures encountered in biological
tissues. The assumption of intrinsic incompressibility of the solid constituents represents an
idealization which generally holds for most biological tissues. For example, the mixture of
collagen type II and proteoglycans which forms the solid matrix of articular cartilag exhibits
negligible volume change to hydrostatic pressurization in the range of experimental
measurements up to 12 MPa (Bachrach et al, 1998). Most other soft biological tissues are
assumed to be incompressible, such as cardiovascular tissues (Humphrey, 2002) and tendons
and ligaments (Weiss and Gardiner, 2001). It should be kept in perspective that the porous
solid matrix of a mixture may be compressible if fluid enters or leaves its pores.

Modeling of electrical charges on the constituents of a mixture makes it possible to analyze
phenomenasuch as Donnan potential and osmotic pressure, streaming and diffusion
potentials and electro-osmosis (Overbeek, 1956; Grimshaw et al, 1989, 1990; Gu et al, 1993,
1997, 1998). These phenomena may be relevant to processes at the tissue level as well as at
the cellular level. Unlike the more general treatment of Eringen (1998), the analysis adopted
here neglects the effects of strongly varying magnetic fields. Consequently only a subset of
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Maxwell's equations of electromagnetism are needed, which are derived from fundamental
principles of conservation of mass (and thus, conservation of charge) and momentum.

2.1 Conservation Laws
The mixtures considered in this study consist of any number of solid and fluid constituents.
The derivation of the conservation equations presented in this section was presented by
Truesdell and Toupin (1960). The underlying principle of mixture theory is that the
continuum is occupied at every point x by all the constituents of the mixture. Each
constituent has an independent motion given by the function

(1)

where Xα represent the position of constituent α in the reference configuration. At the
current configuration, the constituent material points occupying the position x generally
originated from different positions Xα. The velocity and acceleration of a material point of
constituent α are given by

(2)

In a spatial or Eulerian description, the material derivative of a function may be taken
following the motion of constituent α. For example, for a scalar function f (x, t),

(3)

The conservation of mass for constituent α is given by

(4)

where ρα (x, t) is the apparent density (mass of constituent α per volume of mixture) and ρ̂α

(x, t) is the mass supply to constituent α due to chemical reactions with, or among other
constituents. The units of ρ̂α are those of mass per unit volume per unit time. A basic
principle of the theory of mixtures is that the mean response of a heterogeneous mixture
obeys the ordinary equations ofa continuum (Truesdell and Toupin, 1960). Taking the
summation of Eq.(4) over all constituents α should thus produce

(5)

A term-by-term comparison shows that the mixture density ρ is given by1

(6)

and the mixture velocity v is the velocity of the center of mass,

1Unless specified, summations are taken over all constituents of the mixture.
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(7)

Moreover, the sum of the mass supply terms over all constituents must reduce to zero,

(8)

In the presentation below there are several instances where a mixture property f is related to
the corresponding property fα of the constituents through

(9)

The expression ρDf / Dt can be related to the corresponding expression for the individual
constituents according to

(10)

where the velocity of constituent α relative to the mean mixture velocity,

(11)

is called the diffusion velocity. Similarly it can be shown that

(12)

where a = Dv / Dt and aα = Dαvα / Dt.

The conservation of linear momentum for constituent α is given by

(13)

where Tα is the apparent or partial Cauchy stress, bα represents external body forces acting
on constituent α (with units of force per unit mass), and p̂α is the momentum supply to
constituent α from all other constituents (with units of force per unit volume).2 The mixture
must satisfy

(14)

2Biot (1962)'s poroelasticity theory introduces additional inertia terms in the equations of conservation of linear momentum,
associated with virtual mass coefficients. These terms result from his modeling of the fluid microvelocity field within the pores, which
he assumes to differ locally from the average velocity of the interstitial fluid in the pores. The mixture approach used here adopts a
smeared model which does not account for the microstructural velocity fields in the pores, so that the microvelocity field is the same
as the average velocity. It is straightforward to show that in this case the virtual mass coefficients of Biot's theory reduce to zero.
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and the equivalence of this expression with the summation of Eq.(13) over all α requires that
the mixture stress T be given by

(15)

and the mixture body force by

(16)

Furthermore, the momentum supplies must satisfy

(17)

It is noteworthy that the mixture stress is not simply the sum of the stresses of each
constituent; the latter quantity is called the inner part of the mixture stress and is given by

(18)

The conservation of angular momentum for constituent α reduces to

(19)

where M̂α is the antisymmetrictensorwhose dualvector m ̂α is the angular momentum supply
to constituent α from all other constituents (with units of moment per unit volume). For a
non-polar mixture, the conservation of angular momentum implies that the mixture stress
must satisfy

(20)

which implies that

(21)

The conservation of energy for constituent α is given by

(22)

where εα is the internal energy of constituent α per unit mass, qα is the heat flux vector
(defined positive for heat leaving a control volume), rα is the heat supply to the mixture
from external sources, per unit mass, ε̂α is the energy supply to constituent α from all other
constituents, per unit volume, and Lα = grad vα. The corresponding relation for the mixture
is
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(23)

where the mixture internal energy is

(24)

and the heat flux and heat supply are given by

(25)

(26)

According to the principle of mixtures, the energy supply terms must satisfy

(27)

These results show that the heat flux q for the mixture is not a simple superposition of the
heat fluxes of the constituents, as it also includes terms generated by the diffusion of
constituents relative to the mixture velocity. Similarly, the heat supply r includes heat
produced by external body forces bα as a result of diffusion of the mixture constituents.
Note that it is also possible to define the inner part of the internal energy as

(28)

and the inner part of the heat flux as

(29)

The relations summarized in this section are consistent with the presentation of Bowen
(1976), with the minor difference that he introduces the term (1/ρ) Σαραbα · uα on the right-
hand-side of Eq.(23) instead of the right-hand-side of Eq.(26).

2.2 Entropy Inequality
Unlike the conservation of mass, momentum and energy, the entropy inequality is not
applied separately to each of the individual constituents because it imposes unrealistic
constraints on the mixture. Bedford and Drumheller (1983) review the history of the
formulation of the entropy inequality and the challenges addressed by various authors,
complementing the earlier review of Bowen (1976). The formulation presented below
follows that of Bowen (1976) and is reduced to the case where all constituents have the
same absolute temperature θ (x, t).
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When expressed in terms of the properties of the constituents, the entropy inequality for the
mixture is given by

(30)

where ηα (x, t) is the entropy of constituent α per unit mass. When expressed in terms of
mixture properties, the corresponding expression is given by

(31)

where the entropy of the mixture, per unit mass, is

(32)

the heat flux vector h is given by

(33)

and the heat supply s is

(34)

Note that h and s are not the same as q and r, except in the case of a non-diffusing mixture
(uα = 0).

By introducing the Helmholtz free energy per unit mass for constituent α,

(35)

and making use of the conservation of energy in Eq.(22), the inequality of Eq.(30) can be
rewritten as

(36)

This alternative form is more suitable for subsequent formulations of constitutive relations.

2.3 Interface Jump Conditions
To solve the governing partial differential equations presented in Section 2.1 we need to
specify a proper set of boundary conditions. Importantly, it is necessary to account for the
possibility of chemical reactions occurring on an interface, which may produce mass,
momentum, energy and entropy. Such an interface would represent a surface of
discontinuity (a singular surface Γ), which requires a specialized treatment and may
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necessitate the specification of additional constitutive relations. To formulate these interface
jump conditions, one has to start from the integral form of the balance equations and
properly account for discontinuities, when present (Eringen and Ingram, 1965; Mueller,
1975; Liu, 1980; Hou et al, 1989). Following this approach, the jump conditions for reactive
mixtures can be deduced for each individual constituent as well as for the mixture.

The jump condition for mass is given by3

(37)

where

(38)

vΓ is the velocity of the interface Γ, uΓ is the diffusion velocity of constituent α relative to Γ,
and n is the unit outward normal to Γ. ρ¯α is the area density of mass supply from chemical
reactions on Γ. Γ may be a boundary surface (or an imaginary surface) separating two
regions of the continuum, or it may represent a material surface such as a thin membrane or
a monolayer of cells. The jump condition for the mixture is given by

(39)

where

(40)

By summing Eq.(37) over all constituents and equating the result to Eq.(39), we deduce that
the area densities of mass supply must satisfy

(41)

For example, Γ may be a bone surface on which osteoblasts produce bony matrix (or
osteoclasts resorb it), with ρ¯bone representing the rate of bone growth or removal; or Γ may
represent a mineralization front between bone and cartilage as in growth plates and centers
of ossification; or it may represent the boundary between ice and liquid water and ρ¯ice would
represent the rate at which ice is melting (ρ¯ice < 0) or water is freezing (ρ¯ice > 0). These
examples illustrate the case where Γ is a boundary separating two constituents, with surface
growth or resorption of one constituent as a result of chemical reactions with the other. For
instance, if the ice is assumed to be stationary, vice = 0, and since ρice = 0 on the liquid water
side of the interface, Eq.(37) can be used to determine the normal component of velocity of
the growing or receding ice-water interface Γ, vΓ · n = ρ¯ice/ρice, where n is the unit outward
normal to the ice surface.4 Therefore, the evolving geometry of the solid ice in response to
chemical reactions at its surface is determined entirely by the motion of the interface Γ along
its local unit outward normal, at a rate controlled by the local value of ρ¯ice/ρice.

3[[f]] n ≡ f+n+ + f‒n‒ = (f+ ‒ f‒)n, where n is the unit outward normal to the ‘+’ side.
4Since ρ¯water = ‒ρ¯ice according to Eq.(41), applying Eq.(39) to water yields vwater · n = ρ¯ice (1/ρice ‒ 1/ρwater). Ice has a slightly
lower density than water, so the bulk liquid water has to move either away from, or toward the ice, depending on whether water is
freezing or ice is melting.
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The jump condition for linear momentum is given by

(42)

where p ¯α is the area density of momentum supply (units of force per area) representing a
discontinuity in the momentum supply to constituent α across Γ. This discontinuity may
arise from a number of different factors, including chemical processes. In formulating Eq.
(42), it was assumed that the surface of discontinuity Γ is either immaterial or has negligible
mass so that its linear momentum does not enter into the jump condition; furthermore,
surface tension has been neglected.5 The momentum jump condition for the mixture is given
by

(43)

from which it can be shown that

(44)

The corresponding relations for angular momentum are

(45)

(46)

(47)

where m ¯α is the area density of angular momentum supply on Γ. It may include, but is not
limited to, angular momentum supply imparted to constituent α from chemical reactions as
it passes throughthe interface.

The interface jump conditions for energy satisfy

(48)

(49)

(50)

where ε¯α is the area density of energy supply resulting from discontinuities across Γ, which
may include energy supply to constituent α from chemical reactions on the interface.

5See Mueller, 1975, for guidance on formulating a more general treatment.
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From the entropy inequality, the interface jump condition for the mixture is given by

(51)

or equivalently,

(52)

Unlike the area density of mass supply ρ¯α on Γ, which can be defined constitutively in a
straightforward manner, the supply terms p¯α, m ¯α and ε¯α have contributions from multiple
mechanisms which cannot be isolated until further constitutive assumptions are made, even
in the absence of chemical reactions. Since the jump conditions onthe mixture, together with
the mass jump conditions on individual constituents, are not sufficient to define a complete
set of boundary conditions, it is necessary to make additional constitutive assumptions to
help guide the formulation of appropriate jump conditions. Some common assumptions for
biological tissues are provided in Section 3.6.

2.4 Incompressibility and Electroneutrality Constraints
The approach described in this section for enforcing constraints on a mixture is a
generalization of that presented by several authors (Bowen, 1980; Lai et al, 1991; Huyghe
and Janssen, 1997) to the case of reacting mixtures. We now consider the case where each of
the mixture components is intrinsically incompressible, with constant and homogeneous true

density  (which implies ). The true density of constituent α is the ratio of
mass to volume of the constituent. It is thus related to the apparent density via

(53)

where φα is the volume fraction of constituent α in the mixture, 0 ≤ φα ≤ 1. Substituting this
relationinto the conservation of mass for each constituent, Eq.(4), taking the summation over
all constituents and making use of the saturation condition6

(54)

produces an alternative expression for the mixture conservation of mass,

(55)

This expression, which can also be rearranged as

(56)

6The saturation condition implies that there can be no vacuum in the mixture.
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represents a constraint on the mixture.

If a mixture conducts electricity, it satisfies the electroneutrality condition,

(57)

where zα is the valence and Mα is the molecular weight of constituent α. In this treatment,
we consider that that the net effect of all simultaneous chemical reactions which occur in a
mixture is to preserve electroneutrality; thus, negative and positive charges are produced or
removed at equal rates such that

(58)

This relation places a constraint on the supply terms ρ̂α, which complements that of Eq.(8).
Differentiating Eq.(57) with respect to time and using the conservation of mass for each
mixture constituent, Eq.(4), along with Eq.(58) produces

(59)

Noting that

(60)

is the electrical current density, where Fc is Faraday's constant, we find from Eq.(59) that the
current density is divergence free in the presence of chemical reactions which preserve
electroneutrality,

(61)

consistent with the equation of conservation of charge derived from Maxwell's equations.
Multiplying the jump condition on the mass, Eq.(37), with Fczα/Mα, taking the sum of the
resulting relation over all constituents, assuming that chemical reactions on an interface Γ
preserve electroneutrality,

(62)

and making use of Eqs.(57) and (60), produces a jump condition on the current density,

(63)

Taking the dot product of the gradient of Eq.(57) with the mean velocity v and subtracting
the result from Eq. (59) yields the constraint equation
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(64)

The incompressibility constraint of Eq.(56) and the above electroneutrality constraint canbe
introduced into the entropy inequality of Eq.(36) using Lagrange multipliers. As shown in
previous studies (Bowen, 1980; Huyghe and Janssen, 1997), the multiplier for the
incompressibility constraint represents a pressure p, while that for the electroneutrality
constraint is Fcψ, where ψ is an electric potential,

(65)

Had the mixture not been assumed to satisfy electroneutrality, it would carry a net electrical
charge density ρe ≠ 0 whose time-rate-of-change would enter into the equation of
conservation of charge, Eq.(61), consistent with Maxwell's equations of electromagnetism.
The mixture would also be subjected to a net body force in the presence of electromagnetic
fields.

In this treatment it is assumed that externally applied and self-induced magnetic fields
exhibit negligible temporal and spatial variations, which precludes the need for Maxwell's
equations which involve the magnetic field (the absence of magnetic monopoles, and
Faraday's law of induction). The remaining equation, Gauss's law, states that the electric
displacement vector, which is the sum of the electric field and polarization vectors, is
divergence-free in an electroneutral mixture. Ionic polarization arises from the relative
displacement of ions carrying opposite charges (Dugdale, 1993), and the resulting
polarization vector is not divergence-free; therefore neither is the electric field grad ψ, so
that ∇2ψ ≠ 0 in general.

3 Constitutive Restrictions
In this section a constitutive relation is formulated for the Helmholtz free energy of a
reactive mixture. Some early work on this topic was presented by Bowen (1968) and
reviewed by Truesdell (1984), which addressed mixtures of non-diffusing constituents (no
relative motion among constituents). In a subsequent study Bowen (1969) formulated a
framework for reacting and diffusing mixtures where no explicit distinction was made
between the solids and fluids in the constitutive formulation of the Helmholtz free energy
function. In that treatment, no particular consideration was given to growth and remodeling
of the solid constituents. Conversely, a number of classical studies have explored growth
and remodeling of tissues modeledas solids (Skalaketal, 1982; Cowin, 1983; Rodriguez et al,
1994), with no explicit reference to chemical reactions. More recently, studies have
combined mixture analysis with chemical reactions (Humphrey and Rajagopal, 2002; Klisch
et al, 2003; Garikipati et al, 2004), though they have been applied in narrower contexts than
presented here.

In addition, a constitutive relation is formulated for the momentum supply among the
diffusing constituents of a mixture, in the presence of chemical reactions.
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3.1 Mixture of Solid and Fluid Constituents
Consider that the mixture consists of m solid and n fluid constituents. With only limited loss
of generality, assume that there is no relative motion among the solid constituents, so that
their individual velocities vσ (σ = 1 to m) are equal at all times, and representedby vs.7 There
is a benefit to modeling the solid matrix of biological tissues as a constrained heterogeneous
mixture of solid constituents (Humphrey and Rajagopal, 2002), such as collagen, elastin,
proteoglycans, etc.8 To maintain consistency with the equations of conservation of mass, it
follows that the density ρs, volume fraction φs and mass supply terms ρ̂s of the mixture of
solid constituents are given by

(66)

Note that unlike the true density of its individual constituents, the true density of the solid
mixture,

(67)

is not constant in the presence of chemical reactions since the proportion φσ/φs of each
constituent of the solid matrix may vary over time and at various locations. Since the
conservation of mass for the whole solid mixture is not needed in any analysis (only that for
each solid constituent), there is no adverse consequence to this observation. However, this is
an insightful observation because classical porous media studies of intrinsically
incompressible constituents which include only one solid constituent constrain the analyst to
assume that the solid is homogeneous in order not to violate the intrinsic incompressibility
assumption. The above result shows that modeling the solid matrix as a mixture does not
impose this constraint, even while the individual solid constituents have a constant and
homogeneous true density.

3.2 Surface growth and volume growth
There are two kinds of growth processes which can be described in continuum theory:
Surface (orappositional) growth, and volume (or interstitial) growth. Surface growth of the
solid matrix occurs when ρ¯s ≠ 0 on an interface Γ, whereas volume growth occurs when ρ̂s ≠
0 in the body. Surface growth redefines the boundary of the solid matrix as addressed in
Section 2.3, whereas volume growth may change the local apparent density ρs of the solid.

Given that , volume growth implies primarily that φs may be changing; in other
words, the pore volume of the solid matrix increases or decreases during volume growth. As

described in the previous section however,  may also change with chemical reactions
when the solid matrix consists of a mixture of more than one solid constituent.

When ρ̂s < 0, it is possible through volume resorption to reduce the solid matrix apparent
density to zero at locations inside the body, ρs = 0, potentially creating internal cavities and
altering the body's topology. We can refer to the opening of a cavity inside the volume as

7Perhaps a notable exception to this assumption is the modeling of myofibrils, where one may choose to consider actin and myosin
filaments as two solid constituents sliding relative to each other. For such problems the treatment should proceed from the preceding
section.
8In tissue engineering analyses, one of the solid constituents may represent the scaffold while others represent the synthesized tissue
matrix components.
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cavitation. Importantly, cavitation does not imply the appearance of a region of vacuum
inside the mixture; it simply means that the mixture in a cavity consists only of fluids, as the
solid volume fraction reduces to zero, φs → 0.9 Conversely, we can refer to the process of
solid volume growth in a neighborhood initially occupied only by fluid constituents as
nucleation.

In general, despite suggestions from earlier studies, neither surface growth nor volume
growth is fully amenable to a description using a deformation gradient or growth tensor. In
the case of surface growth, the evolving solid boundary may recruit new material point or
release others. Thus, in the intuitive example of freezing water, molecules of ice are gained
from liquid water as the solid-liquid boundary evolves. In other words, new solid regions
may be formed which do not correspond to previously existing solid material points.
Therefore, a one-to-one spatial mapping of material points from a reference time to the
current time is not possible over the entire solid matrix, nullifying the usefulness of a growth
tensor. In the case of volume growth, one-to-one mapping is possible only if there is no
cavitation or nucleation; otherwise, the connectivity of the solid matrix may change,
rendering the mapping non-invertible and meaningless. Since the applicability of a growth
tensor is limited, a framework which does not rely upon it is preferable.

3.3 Reference Configuration
For the fluid constituents the reference configuration is taken to be the current configuration.
In classical solid mechanics, in the absence of chemical reactions which can produce or
remove mass from the solid constituent, it is common to define the reference state of the
solid as a traction-free or stress-free state at the time origin. In the more general treatment of
growth and remodeling, more subtle descriptions of the reference configuration have been
proposed. Since the early work of Hsu (1968), Cowin and Hegedus (1976) and Skalak et al
(1982), considerable advances have been made in the field of growth and remodeling of
biological tissues. Some of the recent developments address various challenges in the
identification of natural reference configurations for the tissue, whether modeled as a single
solid constituent (Rodriguez et al, 1994; Chen and Hoger, 2000; Guillou and Ogden, 2006),
a mixture of solid constituents (Humphrey and Rajagopal, 2002, 2003), or a mixture of solid
and fluid constituents (Klisch et al, 2003).

The present treatment of the reference configuration will deviate somewhat from these prior
studies for two principal reasons. First, since the use of a one-to-one mapping for tracking
growth is considered either too restrictive or inappropriate for some applications, as
reviewed in the previous section, the concomitant assumption that the deformation gradient
Fs = ∂x/∂Xs canbeconstructed from the convolution of an elastic deformation and a growth
deformation relative to a reference configuration suffers from the same limitations. Second,
in the alternative approach which considers that the natural configuration κn (t) of the solid
matrix evolves with time so that Fs may be evaluated via ∂x/∂xκn, the governing equations
to solve for the evolving reference configuration have not been made explicit.

Based on these concerns this study adopts a more conventional approach, with an extension
to account for mass deposition and removal. The basic premise is that the reference
configuration of a material point is immutable; there cannot be any evolution in this
configuration. What evolves is the set of material points describing the body, since material
points may be added or removed as a result of growth. This immutability is necessary so that

9In fluid mechanics cavitation refers to a region where a fluid undergoes a phase transformation from its liquid to its gaseous phase as
a result of a reduction of the fluid pressure below its vapor pressure. This process can be easily represented in the framework of
compressible mixture constituents undergoing chemical reactions (phase transformation in this case), whereby the volume fraction of
liquid reduces to zero and that of the gas increases to one in the cavitation region.
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the place Xs of a material point in the reference configuration remains constant, or else the
kinematics of the continuum can no longer be described by the standard approach. This
approach does not preclude tissue remodeling, which can be described by an evolution of the
material texture as presented below. However, changes in material texture at a material point
do not alter its reference place Xs. The reference configuration of a material point is defined
at the time it is deposited. In practice, if the initial time of material deposition is not known,
the reference configuration may be selected as the (typically traction-free) state of the body
at some arbitrary time t0, representing the time origin for the purposes ofthat analysis.

The general analysis presented in this paper applies to surface growth and volume growth.
Surface growth implies the deposition of new material points onto an existing body.

Therefore the reference configuration of these new material points must be defined at the
time of surface growth. Volume growth implies changes in the apparent density at an
existing material point, whose reference configuration was already determined at an earlier
time (when it was deposited by surface growth). Thus, exceptforthe case of nucleation, only
surface growth requires an explicit definition of the reference configuration.

The capture and release of solid material points by surface growth is determinedby Eq.(37),
specialized to the case of solid constituents. Since the normal component of solid velocity is
continuous at an interface Γ,10

(68)

the specialization of Eq.(37) to the solid matrix yields

(69)

where it is understood from Eqs.(37) and (68) that [[ρs]] = 0 implies ρ¯s = 0 and (vΓ - vs) ⋅ n =
0, or equivalently, ξs = 0. When ξs > 0, the region whose outward normal is n is gaining
solid material points; when ξs < 0, solid material points are being lost. The relation of Eq.
(69) applies even when there is solid matrix only on one side of the interface Γ, in which
case [[ρs]] = ρs.

Let ℬ represent the set of solid material points Xs in the body. Since material points may be
added or removed from the body at different time points, the point set ℬ is not fixed, unlike
the conventional approach of solid mechanics. Therefore, let ℬt represent the material point
set at time t. In general, due to growth, ℬt ≠ ℬτ when t ≠ τ. Similarly, let Γt represent a
surface growth boundary on ℬt (Figure 1).

Let a material point which is on Γt-dt be denoted by . At a subsequent time t, as a

result of surface growth,  is no longer on the boundary; however a new material point

 has been added to the body ℬt whose position in the current configuration is
deduced from Eq.(69),

(70)

10Except at a contact interface where contacting bodies are about to separate.
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This relation indicates that in the absence of surface growth, ξs = 0, the material point  is

the same as , and the above relation would simply summarize the motion of that
material point arising from the solid matrix velocity. If ξs < 0 the body is in fact losing the

material point , and  actually represents a material point already in the body ℬt−dt
but not on its boundary Γt−dt, now being exposed on Γt. These are semantic distinctions
between deposition and removal, but the mathematical analysis remains the same.

For a smooth boundary there is a one-to-one relation between Γt-dt and Γt and thus a one-to-

one relation between the material points  and , which is represented by Eq.(70).
This one-to-one relation persists over sequential generations of material point deposition or
resorption, unless Γt collapses on itself (complete resorption of the solid body), self-
intersects (separation of the body into multiple regions), or intersects with the boundary of
another body (merging of two regions). Therefore, in-between such special events, Eq.(70)
can be generalized to

(71)

where t0 represents some initial time for the analysis of interest. In this relation 
represents a family of material points either deposited onto or exposed on the surface, over
the period t0 ≤ τ ≤ t.

The process of nucleation, which is initiated by volume growth at a point initially containing
only fluid constituents, deposits a solid material point Xs at some time t, which initiates the
definition of the point set ℬ.11 Subsequently, the boundary of this nucleating region may
expand by surface growth (not by volume growth, which only implies that the apparent
density ρs of the solid material points Xs inside ℬ evolves over time). Thus the above
analysis applies for surface growth emanating from a site of nucleation.

This presentation demonstrates that the current configuration of the boundary of a solid
matrix undergoing surface growth is uniquely defined by Eq.(71). This equation accounts
for the conditions prevailing at the interface Γt via the constitutive dependence of ξs on these
conditions. However, absent from this relation is information about the reference
configuration of material points deposited into ℬt, as addressed next.

The reference configuration of a material point  deposited on Γt at time t depends on
modeling assumptions. Since the current configuration is known, it is more convenient to

define the deformation gradient Fs ( , t), and then determine the place  of the material

point  in the reference configuration by inversion of the relation

(72)

to yield the reference place of  relative to that of the preceding point  in the

genealogy. Since Fs ( , t) is proposed by modeling assumptions, let's consider the three
most representative cases:

11In biological applications, nucleation of a solid matrix from a fluid mixture may occur if one of the fluid constituents in the solu-
tion consists of cells.
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(a) Inherited Strain—Fs ( , t) is inherited from the nearest ancestor  via

(73)

where dx is given in Eq.(72), and ∂F/∂t and grad F are evaluated at ( , t − dt).
According to this relation, Fs is a continuous function across Γt−dt. This modeling
assumption applies to problems where surface growth occurs without producing additional

residual stresses upon unloading. It also applies to surface resorption, when  is a material
point originally inside the body, which now is exposed on its boundary Γt.

(b) Stress-Free Growth—Fs ( , t) is prescribed to be equal to I, on the basis that the
new material region Γt−Γt−dt being deposited on Γt−dt is in a stress-free state. Then,

according to Eq.(72), the reference place of  is given by

(74)

This case applies to analyses where the newly-growing region is unaffected by the prior
state of strain on Γt−dt (no inheritance). Therefore, this case generally implies that there will
be a jump in Fs across Γt−dt (unless Γt−dt happened to be in a stress-free state at the time of
new material deposition). It also implies that, generally, the traction-free configuration of ℬt
will be residually stressed.

(c) Adhesion of Pre-Formed Material—Fs ( , t) is prescribed such that it will
conform the newly deposited material region Γt − Γt−dt from a known stress-free
configuration to the shape of Γt−dt in the current configuration. This case applies to problems
where surface growth occurs by adhesion of a pre-formed material region to the body under
consideration. For example, a layer of tissue-engineered skin, originally in a stress-free state,
is stretched to conform to a graft region, onto which it is adhered. This problem can be
viewed as a surface growth of the graft region. In this case as well, there will be a jump in Fs

across Γt−dt.

Depending on the mode of surface growth and the evolution of growth and resorption, the
above presentation implies that discontinuities in the spatial distribution of the reference
place Xs of material points in the body may occur, even though the motion χs (Xs, t) is
always continuous. Consequently, the deformation gradient Fs = ∂χs/∂Xs and the
corresponding right Cauchy-Green tensor Cs = (Fs)T Fs may be only piecewise-continuous;
however there is no adverse consequence to this outcome, which is common in classical
elasticity, such as at the interface of two dissimilar solids.

As usual, the reference configuration may be hypothetical in the sense that the material may
never pass through that state in a given history. In all cases, the place Xs of a material point
Xs is defined at the time of deposition and remains constant. Thus, in this framework, the
reference configuration does not evolve with time. Since Xs for each material point is
constant, the conventional kinematic analysis of a continuum can be applied.

The deformation gradient of the solid matrix, Fs, and the corresponding right Cauchy-Green
tensor Cs are measures of deformation relative to the reference configuration. To help
distinguish between changes in density from growth and deformation at a point, it is
convenient to define the solid density in the reference configuration, , where
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(75)

This approach was adopted by Bowen (1969) in his study of reactive mixtures and by
several authors subsequently (Klisch et al, 2003; Guillou and Ogden, 2006).12 Using Eqs.(4)
and (75), it can be shown that

(76)

where

(77)

It follows from these relations that the solid matrix density can be represented as ρs = ρs (Cs,
) and that

In the limiting case of an inert solid matrix (ρ̂s = 0),  is constant and ρs = ρs (Cs).

By the definitions of Eqs.(53) and (75), it is evident that

(78)

The lower bound of zero implies that solid matrix is not present at that location and time (φs

= 0), whereas the upper bound of  implies that the mixture consists entirely of solid matrix
(φs = 1). The relations of Eqs.(75)-(78) are equally applicable to the individual solid
constituents σ of the solid matrix. A practical implication of this presentation is that the
spatial distribution of solid matrix content (and thus, the evolution of the solid matrix
geometry) can be deduced from the scalar function . Because of the presence of fluid
constituents, this framework can conceivably describe a continuum which grows a solid
matrix from an initial state with no solid content (nucleation), or equally, one where the
solid content reduces to zero (cavitation).

It is evident that the density of the solid matrix constituents changes in response to two
driving factors: deformation and growth. Deformation can be factored out by using 
instead of ρs, leaving the rate of growth to be described by  which is simply the material
derivative of . Clearly, the function  would need to be provided by a constitutive relation
(Bowen, 1969).

By a similar analogy, it is possible to describe the material texture of the solid matrix as
being dependent on the same two factors. For example, if a specific material texture were
described by the texture tensor As = as ⊗ as, where as is a unit vector along a preferred
material direction in the current configuration, the corresponding material texture in the

12Note that Js ≠ 1 in general, even though the solid matrix is assumed to be intrinsically incompressible. The reason is that the solid
matrix is porous and the pore volume may change with deformation.
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reference configuration would be given by , where . The
evolution of  as a result of chemical reactions, which represents remodeling (Guillou and

Ogden, 2006), could thus be given by the function , which should be
provided by a constitutive relation.

3.4 State Variables
We are now ready to propose a set of state variables for the constitutive relations needed in

this analysis. For ψα, ηα, Tα, qα,p̂α, ρ̂α, , ρ¯α, p¯α, and ε¯α represented generically by fα, we
have

(79)

Here, g = grad θ, Gs = grad Cs (a third-order tensor),  and dγ = grad ργ. This type
of constitutive relation represents materials devoid of memory (Truesdell and Noll, 1992),
able to describe thermoelasticity and viscoelasticity of the Voigt type (Bowen, 1968). While
this list of dependent variables seems daunting, it is justified by our effort to consider both
solid and fluid constituents (hence the need for Cs,  and  for the solid, and ργ for the
fluids), and the fact that the entropy inequality of Eq.(65) involves the gradient of the
densities (hence the need for Gs and  for the solid, and dγ for the fluids) as well as Lβ and
uβ.

Taking the material derivative of ψα and substituting the result into Eq.(65), as shown in the
Appendix, it is found that the entropy inequality is satisfied if and only if

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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where

(87)

is the Helmholtz free energy density of constituent α,

(88)

is the inner part of the mixture Helmholtz free energy density,

(89)

is the chemical potential and

(90)

is the electrochemical potential of constituent α.  are stresses which may represent
dissipative mechanisms such as viscous stresses; similarly,  are dissipative momentum
supply terms which represent frictional drag acting on constituent α due to all other
constituents.  are generally dependent on the state variables outlined in Eq.(80).
Based on the above relations it is found that the inner part of the mixture Helmholtz free
energy density is given by

(91)

We also note that the inner part of the total stress is given by

(92)

and the momentum supplies satisfy

(93)

where we have made use of the mixture saturation and electroneutrality conditions. The
form of Eq.(92) can be further simplified by following the approach advocated by Biot
(1972) and adopted by Bowen (1980), whereby the Helmholtz free energy density is

expressed relative to the volume of the mixture in the reference configuration, , where

(94)

and the fluid densities are similarly evaluated in the reference configuration,
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(95)

It can be shown that

(96)

so that

(97)

In this standard form, the inner part of the total mixture stress reduces to the sum of a
hydrostatic fluid pressure term, a hyperelastic solid stress, and stresses which may include
viscous effects. With this representation, the chemical potential of the fluid constituents is
given by

(98)

The residual entropy inequality of Eq.(86) summarizes the irreversible mechanisms that may
arise in the class of mixtures considered here, which include dissipative stresses, frictional
drag between constituents, heat flow, and chemical reactions involving mass supply and
solid matrix remodeling. This inequality serves as the basis for formulating acceptable
constitutive relations for , and qα. It also expresses the conditions which must prevail
in order for a chemical reaction to proceed. For example, standard biology and physical
biochemistry textbooks (Tinoco Jr. et al, 1995; van Holde et al, 1998; Alberts et al, 2002)
state that a chemical reaction can proceed spontaneously at constant temperature and
pressure only if the net change in the Gibbs free energy G of a system is negative (ΔG < 0);
the reaction is in equilibrium when ΔG = 0. The Gibbs free energy density is the sum of the
chemical potentials of all the constituents, weighted by their density (Σα ρα μα). This
statement rests on a number of assumptions (sometimes implicit) which we can clarify in the
context of Eq.(86). First, in the elementary textbook treatment, it is assumed that isothermal
conditions prevail in most biological reactions (g = 0); second, it is implicitly assumed that

all reactants and products are fluids or behave as such (∂ΨI/∂Cs = 0,  ,and

); third, energy dissipation from viscous effects or diffusive drag is neglected
(  and ); finally, the quadratic diffusive term (uα · uα/2) is generally
ignored (it is usually negligible for biological systems). Under these assumptions, Eq.(86)

states that a chemical reaction can proceed if and only if . This expression
represents the continuum version of the classical textbook treatment. It is more general in
the sense that it is expressed in local form, valid at any instant in time and space. It is also

not limited to constant pressure processes since μα incorporates the term  as seen in Eq.
(89).
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3.5 Constitutive Relation for the Momentum Supply
Substituting the expression for the fluid stresses from Eq.(83) and the momentum supply
from Eq.(85) into the conservation of linear momentum for the fluid constituents, Eq.(13),
yields

(99)

This form of the linear momentum equation (Bowen, 1982) is often more convenient to use
for mixture problems in biological tissues (Lai et al, 1991). To formulate a constitutive
relation for , the inequality constraint of Eq.(86) must be satisfied. Furthermore,
substituting the relation of Eq.(93) into Eq.(17), we find that  must additionally satisfy

(100)

Extending the approach of previous authors to the case of reactive mixtures, a proposition
for a constitutive relation for  which satisfies the constraints of Eqs.(86) and (100) is
given by

(101)

where fαβ and fβα are second-order tensors (diffusive drag coefficients) which must be
positive semi-definite and satisfy

(102)

These coefficients depend on the same variables as provided in Eq.(80). The term

 in Eq.(101) represents the frictional interactions (diffusive drag) of
constituent β with constituent α, with the components of the tensor fαβ representing the
frictional coefficients; generally, this represents a dissipative term (irreversible mechanism)
in the response of mixtures. For the term −(ρα / ρ) Σβρ̂βuβ, the summation represents the
momentum supply generated by mass production from all the constituents. The factor ρα / ρ
indicates that this resulting body force is imparted on constituent α in proportion to its mass
fraction. Unlike the diffusive drag, this term represents a conservative mechanism because,
when substituted into the entropy inequality of Eq.(86), the resulting expression reduces to
zero.

Substituting Eq.(101) into Eq.(99) and making use of Eq.(8), it can be shown that

(103)

where
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(104)

3.6 Interface Jump Condition on the Electrochemical Potential
This section extends some of the concepts of Mueller (1975) and Liu (1980) in an effort to
better formulate the jump condition on μ̃α across an interface Γ in the presence of chemical
reactions. The basic constitutive assumption needed to formulate this jump condition is to let

(105)

The assumption that temperature does not suffer a jump at an interface is common in many
applications, including in heat transfer analyses (Incropera and DeWitt, 1981). Using this
relation, let the jump condition of Eq. (51) be equivalently formulated for each constituent α
as

(106)

Where η¯α is the area density of entropy supply of constituent α on Γ, which satisfies

(107)

on a dissipative interface. Adding the expression of Eq.(106) to Eq. (48) yields

(108)

where

(109)

is the area density of Helmholtz free energy supply, which satisfies

(110)

and

(111)

has been called the chemical potential tensor by Bowen (1976), though in the current context
it may be more aptly called the electrochemical potential tensor. Indeed, using the
expression for the fluid stress tensor from Eq.(83), we find that
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(112)

and in the case when viscous stresses are negligible, Kγ = μ̃γI.

Equation (108) represents the jump condition on the electrochemical potential Kα of any
constituent (fluid or solid), in the presence of chemical reactions, on an interface Γ which
may be dissipative. The free energy supply Ψ̄α can represent a variety of phenomena. For
example, if Γ represents a membrane, Ψ̄α may represent the loss of free energy in constituent
α due to frictional diffusive drag resulting from the flow through the membrane. Another
possibility is that Ψ̄α represents free energy supply on the membrane due to chemical
reactions (which may not necessarily involve constituent α). An important example includes
membrane pumps in cells, such as the sodium-potassium pump (Na+/K+– ATPase), where
the hydrolysis of ATP produces free energy which drives the mechanical work of
translocating ions across the membrane. Perhaps a more familiar example illustrating free
energy supply on an interface Γ would be a voltaic cell, where the chemical reaction
between a metal electrode and an acid bath produces free energy in the form of an electric
potential. In general, Eq.(108) needs to be combined with the jump condition on the mass,
Eq.(37), along with a suitable constitutive assumption on Ψ̄α, to yield the jump condition on
the electrochemical potential in the presence of chemical reactions.

In the case of fluid constituents γ ≠ s, in the absence of chemical reactions producing free
energy or dissipative mechanisms consuming free energy on Γ, we may let Ψ̄γ = 0, in which
case Eq.(108) leads to

(113)

Neglecting viscous stresses and recognizing that  in the absence of chemical

reactions involving constituent γ on Γ according to Eq.(37), while  under
general conditions, this expression reduces to

(114)

which further reduces to [[μ̃γ]] = 0 when neglecting the quadratic diffusive term. This is the
familiar relation of classical physical chemistry which states that the electrochemical
potential of a fluid is continuous across an interface which is permeable to it (Katzir-
Katchalsky and Curran, 1965). The present analysis clarifies the special circumstances under
which this relation holds (Ψ̄γ = 0, ρ¯γ = 0).

There is one more remark to be made regarding kinematic jump conditions on Γ, which is
not directly related to the electrochemical potential jump but complements the conditions
needed for a well-posed problem. If the viscous stresses in fluids are not neglected, it is
necessary to provide additional constitutive kinematic assumptions regarding the jump in the
components of the velocity of each constituent tangential to Γ, called pseudo-no-slip
conditions (Hou et al, 1989), which generalize the well-known no-slip condition of classical
fluid mechanics to the case of solid and fluid mixtures.

Ateshian Page 24

Biomech Model Mechanobiol. Author manuscript; available in PMC 2013 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4 Common Assumptions for Biological Tissues
The aim of this section is to make simplifications appropriate for biological tissues and help
reduce the governing equations into a practical and familiar format.

4.1 Concentration
In studies of chemical reactions and transport in fluid solutions, it is more common to use
concentrations instead of densities to describe the amount of various constituents in moles
per unit volume. For solid-fluid mixtures, it becomes necessary to distinguish between
mixture volume-based measures and solution volume-based measures of concentration, and
to clarify which of the two measures is being used. In the current treatment, we adopt a
solution volume-based measure. Thus, the concentration of constituent α in the mixture is
given by

(115)

which represents the number of moles of constituent α per volume of solution.13 The
concentration in the reference configuration is given by

(116)

where  according to Eqs.(95) and (135) below. The mass supplies
may be similarly replaced with the molar supplies

(117)

4.2 Angular Momentum Supply, Dissipative Stresses, Dilute Solutions, Diffusion and
Permeation, Inertia Terms

This presentation extends the approach of Lai et al (1991) and Ateshian et al (2006) to the
case of reactive mixtures. Depending on the intended application of the general equations
presented above, it is possible to make a number of simplifying assumptions which are
relevant to biological tissues. In most biological applications, diffusion velocities uα are
sufficiently small so that quadratic terms uα · uα and uα ⊗ uα are negligible compared to
other terms involving these expressions; then T ≈ TI, ε ≈ εI, q ≈ qI. Similarly, in the
expressions for the jump conditions on the momentum, energy, and chemical potential,
terms involving , uΓ · uΓ and uΓ ⊗ uΓ may also be neglected.

Though the governing equations of mixture theory allow for non-symmetric constituent
stresses even while the mixture stress is symmetric, it is commonly assumed that the angular
momentum supply term is negligible, m ̂α = 0, implying from Eq.(19) that (Tα)T = Tα. When
dissipative stresses are neglected in the solid and fluid constituents, then

13The mixture volume-based concentration would be given be ρα / Mα.

Ateshian Page 25

Biomech Model Mechanobiol. Author manuscript; available in PMC 2013 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(118)

When the mixture of fluid constituents is assumed to be a dilute aqueous solution, where the
solvent is denoted by α = w, the mixture saturation condition simplifies to

(119)

which signifies that only the solid matrix and the solvent occupy significant volume
fractions (φα≪ 1,α≠s,w). Then, assuming that the true densities of the constituents are all
on the same order of magnitude, the mass fractions of the solutes may also be assumed to
satisfy

(120)

As shown below, the friction coefficients fαβ are related to the diffusivities of solutes in the
mixture and the permeability of the solvent in the porous solid matrix. For most applications
to biological tissues, an order of magnitude analysis on the coefficients of the relative
velocities in Eq.(103) demonstrates that

(121)

implying that the mass supply terms contribute negligibly to the momentum exchange
among constituents. The friction coefficients may be assumed to be isotropic, as a first-order
approximation,14

(122)

Since the solutions are assumed dilute, the friction between various solutes may be
considered negligible compared to that between solutes and solvent, or solutes and solid,
thus

(123)

We may also assume that isothermal conditions prevail in most biological tissue
applications, grad θ = 0, and that inertia forces can be neglected in the momentum equations.
Incorporating these simplifying assumptions into Eq.(103) yields

(124)

14This assumption implies that the diffusion tensor and permeability tensor are isotropic.
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(125)

As shown previously (Lai et al, 1991; Meerveld et al, 2003; Ateshian et al, 2006), the
friction coefficients can be related to solute diffusivities according to

(126)

where Dα is the diffusion coefficient of solute α in the mixture,  is its diffusion
coefficient in free solution, and R is the universal gas constant. Furthermore, the friction
between the solvent and solid is related to the hydraulic permeability of the solid matrix to
the solvent,

(127)

The system of equations in Eqs.(124)-(125) can be solved for the relative velocities and
rearranged to produce the volume flux of solvent relative to the solid, w, and the molar flux
of solute relative to the solid, jα,

(128)

(129)

where

(130)

is the hydraulic permeability of the solid matrix to the solution. These equations are
complemented by the conservation of linear momentum for the mixture, Eq.(14),

(131)

where inertia forces, and the quadratic diffusive term in the mixture stress, Eq.(15), have
been neglected.

Additional equations are the conservation of mass equations for the mixture, Eq.(55), the
solid constituents and the solutes, Eq.(4),

(132)
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(133)

(134)

where  is the molar volume of solute α (which is constant for intrinsically
incompressible materials); the conservation of mass for the solid mixture,

(135)

where the lower bound on Js is ;15 the electro neutrality condition, Eq.(57),

(136)

where it is assumed that the solvent does not carry charge (zw = 0); and the conservation of
charge, Eqs.(60)-(61),

(137)

Equations (128)-(137), along with an appropriate constitutive relation for  requisite
boundary conditions as described in Sections 2.3 and 3.6, and equations of reaction kinetics,
are needed to solve problems of reactive mixtures.

4.3 Constitutive Relation for the Chemical Potential of Fluids
For ideal fluids, classical physical chemistry proposes that

(138)

where xα is the mole fraction of constituent α in the solution;  and p0 are the chemical
potential and pressure, respectively, at the standard state xα = 1.16 Given that xα may be
represented in terms of the concentrations of the fluid constituents of the solution as

(139)

15Once the pores have closed or collapsed (φs = 1), the solid matrix is no longer compressible since its skeleton consists of an
intrinsically incompressible material. Whether due to transport or chemical kinetics, it will take an infinite amount of time for pores to
close completely (Holmes and Mow, 1990), therefore this limiting case may be considered hypothetical and there is no compelling
need to reformulate the constitutive relation of the solid for a putative post-pore closure situation.
16In physical chemistry textbooks, the chemical potential is usually expressed in units of energy per mole, whereas the current
treatment uses units of energy per mass. The expressions for μα in the two approaches differ by a constant factor of Mα.
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it may be noted, based on Eqs.(98) and (116), that the relation of Eq.(138) can be derived
from the constitutive assumption

(140)

where Wr is a generic strain energy density function which remains to be specified when we
consider a constitutive relation for the elastic stress in the solid matrix. Note that since Wr is
not a function of the fluid densities, and since the solution is ideal, we can also refer to the
mixture as being ideal.17

Experimentally, ideal behavior is generally expected only for very dilute solutions in a
single solvent. For non-ideal solutions, the constitutive relation of Eq.(138) is generalized to

(141)

where aα = γαxα is called the activity of constituent α and γα is called the activity
coefficient, which satisfies

(142)

It follows that γα = 1 for ideal solutions. In principle, γα may be a function of all of the state

variables listed in Eq.(80). Therefore, a closed-form expression for  of the form given in
Eq.(140) is usually not available for real solutions.

For most biological applications, fluid solutions may be considered dilute, with xι << 1, ι ≠
s,w, where w denotes the solvent and ι denotes solutes. The standard state for the solvent is
defined as above (aw = 1); however, since the mole fraction of solutes never approaches
unity, the solute standard state is defined at a standard concentration  (usually, )
(Tinoco Jr. et al, 1995).18 Under these conditions, the chemical potential of the solvent and
solutes may be approximated by

(143)

(144)

where Φ is called the osmotic coefficient, given by

17It also follows from Eqs.(138) and (140) that  in ideal solutions.
18In practice, since 1 M is not sufficiently dilute to produce ideal behavior, the standard state is measured at a much lower
concentration and extrapolated to 1 M assuming ideal behavior (Tinoco Jr. et al, 1995).
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(145)

From this relation it may be noted that Φ = 1 for ideal solutions.

4.4 Rule of Mixture for the Solid Matrix
While it has been assumed that all the solid constituents share the same motion, they may
not share the same constitutive relation. As the proportion of each solid constituent in the
solid matrix evolves due to chemical reactions, the stresses resulting from the deformation
may evolve accordingly. Humphrey and Rajagopal (2002) proposed to use a simple rule of
mixtures for evaluating the stress resulting from the matrix deformation. To apply their
approach to the hyperelastic stress term in Eq.(97), it may be postulated that

(146)

where  is the strain energy density of solid constituent σ and the summation is taken over
all solid constituents.

4.5 Chemical Reactions
Chemical reactions are characterized by their stoichiometry, order and mechanism (Tinoco
Jr. et al, 1995). Stoichiometry enforces conservation of mass in each individual chemical
reaction. Let N represent the number of independent reactions and let  be the
stoichiometric coefficient of constituent α in reaction ν (ν = 1 to N). The conservation of
mass in reaction ν is given by

(147)

where Mα is the molecular weight of constituent α (Mueller, 1975). The molar supply  to
constituent α is the resultant of all simultaneous chemical reactions occurring at any given
time,

(148)

where  is the molar supply to constituent α in the ν—th reaction.

The order of a reaction is determined experimentally based on a constitutive relation for .
For example, for many reactions a constitutive relation for the rate law is given by

149

where  are often, but not always, integers (Tinoco Jr. et al, 1995). The product is taken
over all constituents in the mixture; if a particular constituent β is not involved in the

reaction ν, or if it only serves as a catalyst, its corresponding power is . The order of
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the reaction is then given by . Thus, a reaction of order zero exhibits a mass supply
equal to kν. kν is known as the rate coefficient (or rate ’constant’) of the reaction; in
principle it can be a function of any of the state variables listed in Eq.(80). In particular, in
problems of growth and remodeling, it may be dependent on the state of strain in the solid
matrix.

The mechanism of a reaction pertains to how molecules react to form a product; it describes
these elementary reactions consistent with the stoichiometric reaction (Tinoco Jr. et al,
1995). Knowledge of the mechanism may help determine the rate law of a reaction.
However, even without a precise knowledge of the mechanism, the rate law may be
determined experimentally.

5 Discussion
The objective of this study is to present the comprehensive set of governing equations for
reactive mixtures of charged constituents, for the purpose of investigating active processes
in biological tissues. This presentation extends the existing literature by providing explicit
equations for a growing solid matrix, and a common framework for analyzing surface and
volume growth. By using a mixture framework, the mechanisms of growth must explicitly
satisfy the conservation of mass of fluid and solid constituents; thus, growth of a constituent
must be accompanied by resorption of others. This approach makes it possible to analyze
solid matrix growth starting from only a fluid mixture; no starting solid matrix geometry is
needed to initiate an analysis.

The approach advocated here places considerable emphasis on the definition of the reference
configuration for material points of the solid matrix. Based on the formulation of the
governing equations, the mechanisms of surface growth and volume growth are associated
with the area density of mass supply  and volume density of mass supply , respectively.
Since  involves the deposition of new material points onto the body, whereas  alters the
apparent density  (Xs, t) of existing material points Xs in the body, it follows that the
definition of a reference configuration only occurs during surface growth. Furthermore, this
framework is built on the foundation that the reference configuration of a material point is
immutable, so that the standard definition of the deformation gradient may be applied. Once
a material point Xs has been deposited, its place Xs in the reference configuration does not
change with time, even if volume growth (altering of the apparent density ) and
remodeling (altering of the texture tensor ) occur at this material point over time.

This framework differs in a number of important details from that adopted by previous
investigators (Rodriguez et al, 1994; Chen and Hoger, 2000; Klisch et al, 2003; Humphrey
and Rajagopal, 2002; Guillou and Ogden, 2006). Some of these earlier descriptions have
been explicitly limited to volume growth, to ensure a one-to-one mapping between the
reference and current configurations, thereby allowing a decomposition of the motion into a
contribution from growth and a contribution from loading. Others refer explicitly to
evolving natural configurations, which the current approach precludes. In the study of
Skalak et al (1982), specific attention is given to surface growth, though their approach
differs from the one followed here. In particular, these authors define a vector growth rate on
an interface between two solids, rather than the scalar area density of mass supply appearing
in the current analysis.

The framework of mixture theory provides opportunities to explore growth mechanisms in
more subtle ways than the analysis of a single solid constituent, by suggesting a specific
pathway for the development of residual stresses. By allowing the inclusion of fluid
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constituents, including charged or neutral solutes in an interstitial fluid solution, it is
possible to account for residual stresses arising from osmotic effects. In the cartilage
literature, significant consideration has been given to the concept of swelling stress in the
cartilage matrix arising from Donnan osmotic pressure in the interstitial fluid (Maroudas,
1976; Eisenberg and Grodzinsky, 1987; Mow and Lai, 1990; Lai etal, 1991; Settonetal,
1998; Basser et al, 1998; Narmoneva et al, 1999; Chahine et al, 2004). This pressure
difference with the ambient bathing environment occurs primarily because of the negatively
charged proteoglycan molecules trapped within the collagen matrix, which attract anions
and cations in different concentrations to maintain electroneutrality. The resulting imbalance
in the concentration of mobile ions with the external bath must be compensated by an
increased pressure to maintain balance in the chemical potential of the interstitial water. This
increased pressure places the traction-free solid matrix in a state of tensile stress. Since the
proteoglycan distribution is inhomogeneous through the thickness of the articular layer, the
resulting inhomogeneity in osmotic pressure manifests itself as a residual stress. To a
significant extent, the osmotic pressure may be alleviated by placing the tissue in a
hypertonic bath. For example, Setton et al (1998) have demonstrated that curling of an
explanted cartilage strip can be altered by the tonicity of the bathing solution, an observation
which confirms the presence of osmotically-induced residual stresses. This type of response
can be predicted using the mixture theory framework presented here and in the earlier
literature (Lai et al, 1991).

While the mechanism of osmotic pressurization in articular cartilage has been widely
recognized, only limited attention has been paid to it in other biological soft tissues
(Grodzinsky, 1983). In particular, it is well known that the arterial wall contains a significant
amount of proteoglycans and that these are inhomogeneously distributed across the arterial
wall (Wight and Ross, 1975; Yao et al, 1994). Less well-known is that they carry a
significant amount of negative charge (Porterfield et al, 1968). It is entirely plausible that
this inhomogeneous fixed charge distribution plays a significant role in regulating the well-
recognized residual stresses across the arterial wall (Fung, 1990; Humphrey, 2002),
particularly since the synthesis of proteoglycans by arterial smooth muscle cells is known to
be regulated by their strain environment (Lee etal, 2001).

In the framework presented in this study, the growth and evolution of such residual stresses
can be entirely accounted for by the deposition and removal of charged proteoglycans,
modeled as one of the constituents of the solid matrix. Since the fixed charge density of a
tissue may evolve over time, either due to synthesis or degradation of charged molecules
which are bound to, or trapped in the solid matrix, the resulting residual matrix stresses may
also change. The osmotic pressure can be predicted from the concentrations ρα of the
various constituents in the matrix, which depend on  and Js (Lai et al, 1991; Ateshian et al,
2004). Experimentally, it may be possible to assess the significance of these residual stresses
by osmotic unloading (balancing the inner and outer concentrations of solutes) while
keeping the tissue intact, if a tissue exhibits low cellularity. Alternatively, enzymatic
digestion of the charged species may induce changes in tissue swelling and mechanical
properties which may be attributed to alterations in the residual stresses. This approach is
also applicable to uncharged mixtures, where the imbalance in solute concentration may
arise from the selective partitioning of solutes between the tissue and its external bathing
environment, and between intracellular and extracellular compartments.19

Another mechanism available to account for residual stresses in this framework relates to
surface growth, as explained in Section 3.3. For example, surface growth of a stress-free

19This presentation implies that for mixtures of solids and fluids, the concept of a traction-free reference state should be expanded to
also specify the osmotic environment.
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material region upon a stressed substrate will produce residual stresses upon unloading.
Adhesion of pre-stressed, pre-formed material regions onto a stress-free or stressed substrate
will also result in residual stresses under traction-free conditions. Explicit expressions for
determining the reference configuration of newly-deposited material regions have been
provided.

The above examples indicate that the framework presented here can provide explicit
mechanisms for the development of growth-induced residual stresses from volume growth
or surface growth, whereas the majority of earlier studies have adopted a more
phenomenological approach for the prediction of such stresses. In the case of volume
growth, the proposed mechanism of osmotically-induced residual stresses is particularly
enhanced by the charged nature of biological mixtures, which emphasizes the benefits of
including such effects in a modeling framework. More detailed presentations of these
concepts will be covered in future theoretical and experimental studies.
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Appendix
The material derivative of ψα with respect to the α—constituent, which is needed for the
entropy inequality, is obtained using the chain rule of differentiation,

(A1)

where … denotes the triple dot product of third-order tensors.20 It can be shown that

(A2)

(A3)

(A4)

20For third-order tensors S and T,S…T= SijkTijk.
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(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

In Eq.(A3), the tensor dyadic product ⊗ of second order tensors A and B is the fourth-order
tensor (A ⊗ B)ijkl = AikBjl (Curnier et al, 1995), and the double-dot product of a fourth-order
tensor V with a third-order tensor W is the third-order tensor (V:W)ijk = VijlmWlmk. In
anticipation of substituting these relations into Eq.(A1), it can be shown that

(A11)

(A12)

(A13)

(A14)

(A15)
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(A16)

(A17)

(A18)

(A19)

where Ψα = ραψα is the Helmholtz free energy density of constituent α and ΨI = Σα Ψα is
the inner part of the mixture Helmholtz free energy density.

Substituting these relations into Eq.(A1) and the resulting expression into Eq.(65) yields
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(A20)

Terms with a common factor of: Ls are grouped together and denoted by , whereas terms

with a common factor of: Lγ (γ ≠ s) are grouped together and denoted by . Similarly,
terms with a common factor of us are grouped into  and those with a common factor of uγ

(γ ≠ s) are grouped into .In order for this inequality to be satisfied for arbitrary changes in
Dαθ/Dt, Dαg/Dt, grad Ls, grad Lγ, grad aα and a – a, the relations of Eqs.(80)-(81) must
hold.
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Figure 1.
Point sets defining the body ℬ at consecutive time points t − dt and t. Due to surface growth
or resorption, ℬt − dt and ℬt do not contain the same material points.
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