
Myopia is a very common refractive error that has a 
significant impact on public health and economics around the 
world. High myopia, which is a refractive error ≤ –6 diopters 
(D), is a major cause of blindness associated with an increased 
risk of various ocular and systemic diseases, including retinal 
detachment, glaucoma, and cataracts [1]. The prevalence of 
high myopia has been reported to range from 1.0% to 9.6% 
in the general population, but it exhibits variable incidence 
in different countries, with a preponderance in Asia [2-5].

Although the cause of high myopia is unclear, family 
correlation studies and twin studies have shown that genetic 
factors play a significant role in its development [6-11], with 
a relationship between the genetic basis of eye growth and 
the development of myopia. Twin studies revealed a correla-
tion between axial length and refractive error that was much 

higher in monozygotic twins compared to dizygotic twins 
[12,13]. The pattern of inheritance in high myopia appears to 
be heterogeneous, with an autosomal dominant to autosomal 
recessive pattern [9]. Therefore, risk factors that contribute 
to the development of high myopia include genetic heteroge-
neity and axial length [14,15]. Familial linkage studies have 
attempted to identify candidate genes that might contribute 
to myopia, and significant linkages have been reported at 18 
loci, specifically MYP1 to MYP18 [16]. Many recent genome-
wide association studies (GWASs) have been conducted to 
identify genes involved in myopia or high myopia, and many 
candidate loci/genes have been reported [17-27].

The fibroblast growth factor (FGF) family of proteins 
plays important roles in the proliferation and differentiation of 
a wide variety of cells and tissues. A defect in FGF10 leads to 
the development and differentiation of several ocular tissues 
[28-30]. Sclera remodeling, which is one of the important 
mechanisms in the development of myopia, involves altera-
tions in both the degradation and synthesis of extracellular 
matrix components [31], and FGF10 can modulate extracel-
lular matrix–associated genes [32-35]. Recently, His et al. [36] 
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reported that the sclera of myopic mouse eyes have higher 
levels of FGF10 mRNA. The G allele of FGF10 polymor-
phism rs339501 was also found to be associated with higher 
FGF10 expression and the risk of extreme myopia (≤-10 D) in 
a Chinese population residing in Taiwan. Therefore, higher 
expression of FGF10 caused by the G allele of rs339501 could 
represent a risk for myopia. The aim of the present study was 
to investigate whether genetic polymorphisms in FGF10 are 
associated with extreme myopia in Japanese patients.

METHODS

Subjects: We recruited 433 unrelated Japanese individuals 
with extreme myopia (refractive error ≤ –10.00 D in at least 
one eye) and 542 unrelated healthy Japanese controls (+1.50 
to −1.50 D in both eyes) at Yokohama City University and 
Okada Eye Clinic in Japan. All participants were diagnosed 
by comprehensive ophthalmologic tests, including axial 
length, fundus examination, spherical power, and corneal 
curvature (Autorefractor; NIDEK [Gamagori, Japan] ARK-
730A, ARK-700A TOPCON [Tokyo, Japan] KP-8100P, 
BIO and PACHY Meter AL-2000; Tomey Corporation, 
Nagoya, Japan). The individuals with extreme myopia had 
no known genetic diseases associated with myopia and/or 
high myopia, including glaucoma, keratoconus, or Marfan 
syndrome. Patient age ranged from 12 to 76 years (mean 
38.1±12.0 years), and 44.4% of patients were male. The 
average spherical refractive errors were −11.9±2.20 D (range 
−6.75 to −22.75 D) in the right eye (OD) and −11.9±2.29 D 
(range −8.50 to −23.0 D) in the left eye (OS). The average 
axial length was 28.0±1.18 mm (range 26.0 to 33.1 mm) for 
OD and 28.0±1.23 mm (range 26.0 to 34.7 mm) for OS. The 
average corneal refraction was 43.8±1.46 D (range 39.5 to 
47.8 D) for OD and 43.8±1.52 D (range 39.8 to 53.0 D) for OS. 
Control individuals were healthy volunteers and not related 
to each other or the patients. The controls were sex-matched 
(47.2% male) to the patients with an age range of 24 to 75 
years (mean 40.6±12.0 years). All participants had similar 
social backgrounds and resided in the same urban area. 
Informed consent was obtained from all participants. The 
study methodology adhered to the tenets of the Declaration of 
Helsinki and was approved by the relevant ethics committees 
in each participating institute.

Single-nucleotide polymorphism genotyping of the FGF10 
gene region: Genomic DNA was extracted from peripheral 
blood samples using the QIAamp DNA Blood Mini Kit 
(Qiagen, Hilden, Germany). Procedures were performed 
under standardized conditions to prevent variation in DNA 
quality. Seven tagging single nucleotide polymorphisms 
(SNPs) covering the FGF10 region including 10 kb upstream 

and downstream from the gene were selected from HapMap 
Japanese data (minor allele frequency ≥5%, pairwise r2 ≥0.8; 
Table 1; NCBI). Genotyping was performed using the TaqMan 
5′ exonuclease assay with validated TaqMan primer-probe 
sets supplied by Applied Biosystems (Foster City, CA). PCR 
was performed using a reaction mixture with a total volume 
of 10 μl containing 1X TaqMan Universal PCR Master Mix 
(Applied Biosystems), 24 nm of each primer-probe set, and 3 
ng genomic DNA. The PCR conditions were as follows: 95 °C 
for 10 min, followed by 40 cycles of denaturation at 92 °C for 
15 s and annealing/ extension at 60 °C for 1 min. The probe’s 
fluorescence signal was detected using the StepOnePlus Real-
Time PCR System (Applied Biosystems).

Imputation analysis of the FGF10 gene region: We performed 
an imputation analysis to evaluate the potential association 
of ungenotyped SNPs in the FGF10 region, including 10 kb 
upstream and downstream from the gene. The genotypes of 
433 cases and 542 controls were imputed using MACH v1.0 
[37,38]. For the reference panel, we used Japanese data from 
HapMap phase 3. For quality control, we excluded SNPs from 
the reference panel if they had a call rate <95%, leaving 34 
SNPs for the imputation. As none of the SNPs had a squared 
correlation between imputed and true genotypes <0.3, the 
34 imputed SNPs were included in the association analysis 
(Table 1).

Statistical analysis: Allele frequencies, Hardy–Weinberg 
equilibrium, and linkage disequilibrium (LD) were assessed 
using Haploview 4.1 software [39]. Differences in allele haplo-
type frequencies between cases and controls were assessed by 
χ2. The obtained p values were corrected for multiple testing 
using a permutation test (10,000 iterations) in Haploview. 
A corrected p (Pc) value <0.05 was considered significant. 
Conditional logistic regression analysis was performed to 
assess the effect of each SNP on disease susceptibility using 
PLINK [40].

RESULTS

The genotype frequencies of all seven tagging and 34 
imputed SNPs were in Hardy–Weinberg equilibrium among 
both cases and controls. Figure 1 and Table 2 show the results 
of the association analysis of 41 SNPs in FGF10. Of the seven 
tagging SNPs, rs339501 exhibited a strong association with 
extreme myopia (p=3.9 × 10−4, Pc=0.0030), and the frequency 
of the A allele of rs339501 was increased in cases compared 
to controls (90.0% versus 84.5%, odds ratio [OR]=1.64), 
which is the opposite of that reported in the previous 
Chinese population. In other tagging SNPs, the frequencies 
of the A allele of rs2330545 and A allele of rs1384449 were 
also increased in cases compared to controls (p=0.047 and 
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Table 1. The 41 FGF10 SNPs in the present study.

SNP Position on chromosome five (Build 37.1) Gene location
rs1448044 44,296,986 3′-UTR
rs10072476 44,299,400 3′-UTR
rs9292903 44,299,998 3′-UTR
rs1979079 44,300,650 3′-UTR
rs1374961 44,303,760 3′-UTR
rs6451758 44,305,515 Intron 2

rs10462070 44,305,749 Intron 2
rs10473352 44,308,252 Intron 2
rs1374962 44,311,070 Intron 1

rs16873956 44,312,489 Intron 1
rs10060796 44,313,151 Intron 1
rs1839090 44,313,282 Intron 1
rs980510 44,318,532 Intron 1

rs13436788 44,318,624 Intron 1
rs10057630 44,327,864 Intron 1
rs4866891 44,328,270 Intron 1
rs987642 44,331,905 Intron 1
rs1011814 44,335,820 Intron 1

rs10512844 44,338,759 Intron 1
rs2330544 44,339,764 Intron 1
rs2330545 44,339,810 Intron 1
rs7708529 44,347,131 Intron 1
rs1482689 44,359,428 Intron 1
rs12517396 44,359,526 Intron 1
rs339509 44,360,892 Intron 1

rs17234079 44,362,204 Intron 1
rs1482672 44,362,769 Intron 1
rs339502 44,364,007 Intron 1
rs2121875 44,365,545 Intron 1
rs339501 44,365,633 Intron 1

rs11750845 44,373,060 Intron 1
rs1384449 44,377,060 Intron 1
rs16901816 44,381,698 Intron 1
rs2973644 44,384,183 Intron 1
rs1482679 44,385,415 Intron 1
rs2973646 44,387,537 Intron 1
rs2973649 44,391,161 5′-UTR
rs1482680 44,392,142 5′-UTR
rs723166 44,396,015 5′-UTR

rs10473354 44,396,353 5′-UTR
rs10941665 44,398,696 5′-UTR

Genotyped SNPs are indicated in bold.
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p=0.019, respectively), although this increase did not reach 
significance after correcting for multiple testing (Pc >0.05).

Of 34 imputed SNPs, rs12517396 showed the strongest 
significance, equivalent to rs339501, and the C allele was 
associated with a risk of extreme myopia (p=3.9 × 10−4, 
Pc=0.0030, OR=1.64). The A allele of rs10462070 was also 

strongly associated with a risk of extreme myopia (p=6.5 × 
10−4, Pc=0.0059, OR=1.62). Another 20 imputed SNPs showed 
moderate association (p<0.05) with the disease but this did 
not reach significance after correction (Pc >0.05).

Figure 1 shows the overall LD patterns for the 41 SNPs 
in 975 individuals. Strong LD was observed throughout 

Figure 1. In-depth single-nucleotide polymorphism analysis of the FGF10 region. The upper panel shows the distribution of association 
results of single-nucleotide polymorphisms (SNPs) across FGF10. Genotyped SNPs are indicated by a red circle, and imputed SNPs are indi-
cated by a blue circle. The lower panel shows the linkage disequilibrium structure in FGF10. Higher D’ values are indicated by a brighter red.
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the FGF10 gene region and 40 SNPs from rs1448044 to 
rs10473354 were located in one haplotype block (Block 1). The 
three SNPs with the strongest signal, rs339501—rs12517396, 
and rs10462070—were in complete LD in Block 1 (D’ ≥0.99, 
r2 ≥0.96). Twenty-two SNPs with moderate association 
were also in Block 1. To elucidate the effect of rs339501, 
rs12517396, and rs10462070 on disease susceptibility, we 
performed conditional logistic regression analysis. However, 
we could not determine which variant was the causal SNP 
for the observed associations in this study because of the 
complete LD among the three SNPs.

DISCUSSION

Myopia is a complex disease that involves both environmental 
factors and multiple interacting genetic factors. In particular, 
determination of the role of genetic factors in high myopia has 
been influenced by its high prevalence, genetic heterogeneity, 
and potentially modulating environmental factors. In the past 
few years, previous GWASs have reported many genomic loci/
genes that confer susceptibility to myopia [17-27]. Although 
Hsi et al. recently reported that FGF10 rs339501 is associated 
with extreme myopia (refractive error ≤ –10.00 D) but not 
high myopia (≤ –6.00 D) in a Chinese population using a 
candidate gene approach [36], the GWASs have not identified 
FGF10 as a myopia susceptibility gene. At least two possible 
explanations exist for this difference. First, the GWAS plat-
forms may not have included the significant SNP rs339501 
and other SNPs in strong LD with rs339501 that would lead 
to the detection of an association between the FGF10 region 
and myopia. Second, none of the GWASs focused on extreme 
myopia; they used high myopia, pathological myopia (axial 
length ≥28 mm), axial length, or refraction error.

The A allele frequency of rs339501 was found to have 
a role in the risk of extreme myopia in our Japanese popu-
lation. This finding differs from the previous study of a 
Chinese population [36] in which extreme myopia cases had 
a significantly higher frequency of the G allele compared to 
controls. We also found that two other SNPs, rs12517396 and 
rs10462070, in complete LD with rs339501 were strongly 
associated with extreme myopia, but these SNPs were not 
included in the previous study. These three SNPs are intronic 
variants that can significantly affect gene expression levels 
and contribute to the development of human diseases [41-43]. 
Hsi et al. reported that the G allele of rs339501 significantly 
increases the expression of FGF10, suggesting that the 
increased FGF10 expression caused by the G allele increases 
the risk for myopia. However, because our results showed that 
the A allele of rs339501 is associated with a risk of extreme 
myopia in our Japanese population, it suggests that the G 

allele is not a risk factor for the susceptibility of extreme 
myopia in all populations.

Drastic differences in the allelic distribution of disease 
risk–associated SNPs among different ethnic populations 
have been reported in exfoliation syndrome (XFS). XFS is 
strongly associated with certain SNPs, including rs1048661, 
rs2165241, and rs3825942 of the lysyl oxidase-like 1 (LOXL1) 
gene, in many different ethnic groups [44-46], suggesting that 
LOXL1 is the major susceptibility gene for the development 
of XFS. However, the allelic distributions of rs1048661 and 
rs2165241 were different between East Asian populations, 
including Japanese, Chinese, and Korean, and other ethnic 
populations such as Caucasian, Middle Eastern, and black 
South African; the risk alleles of rs1048661 and rs2165241 
for XFS in East Asians were the opposite of those reported 
for other ethnic populations [44-46]. On the other hand, the 
risk allele of rs3825942 for XFS was different between black 
South Africans and all other reported ethnicities, including 
East Asians and Caucasians [44-46]. Although the reasons for 
discrepancies in the allelic distributions of the LOXL1 SNPs 
among XFS patients with different ethnicities are unclear, it 
has been suggested that these SNPs are not the true causal 
variants of XFS, and that unidentified genetic variants in 
strong LD with these SNPs may play important roles in the 
development of XFS.

In this study, we found that the risk allele of FGF10 
rs339501 for extreme myopia in the Japanese population is 
different from that reported in the Chinese population residing 
in Taiwan. The disparity between our results and those of 
the original report can be explained based on the associa-
tion between XFS and LOXL1 SNPs; another FGF10 variant 
may be the true genetic factor and the associations observed 
in the present and previous studies may have resulted from 
strong LD with the true FGF10 variant. Variable LD patterns 
among different ethnic groups could explain the conflicting 
results; the true risk-associated allele in FGF10 may be linked 
to the G allele of rs339501 in the Chinese population and 
the A allele of rs339501 in the Japanese population. This 
explanation does not seem to be unreasonable because a close 
similarity exists in the genetic backgrounds of the Japanese 
and Chinese populations [47]. In addition, our study and the 
original study used limited sample sizes of extreme myopia 
(433 from Japan, 125 from Taiwan). Limited sample sizes can 
sometimes lead to false positive or negative results in an asso-
ciation study. Therefore, further association studies of FGF10 
variants with larger sample sizes of Japanese, Chinese, and 
other ethnic populations are needed. We also need to consider 
the disparity in gender between the present and the original 
study. Men comprised 44.4% of patients with extreme myopia 
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in the present study, whereas 65.4% of patients were men 
in the original study. In recent genetic studies of extreme 
myopia, 30–40% of the patients were men [48-50], suggesting 
that extreme myopia is more common in women, although 
the association of gender with extreme myopia still needs to 
be elucidated. Therefore, sampling bias may have existed in 
the original study.

In conclusion, we found that the FGF10 variants, 
including rs339501 reported in the previous study, are asso-
ciated with extreme myopia in our Japanese population, 
whereas the disease risk–associated allele differed between 
the present and the previous study. Our findings suggest that 
the FGF10 variants studied in the present study are not an 
important risk factor for susceptibility to extreme myopia. 
However, because FGF10 variants may still affect the risk of 
extreme myopia, further genetic studies are needed to clarify 
the contribution of the FGF10 region in the development of 
extreme myopia.
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