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ABSTRACT

Motivation: The accurate detection of copy number alterations

(CNAs) in human genomes is important for understanding suscepti-

bility to cancer and mechanisms of tumor progression. CNA de-

tection in tumors from single nucleotide polymorphism (SNP)

genotyping arrays is a challenging problem due to phenomena

such as aneuploidy, stromal contamination, genomic waves and

intra-tumor heterogeneity, issues that leading methods do not opti-

mally address.

Results: Here we introduce methods and software (PennCNV-tumor)

for fast and accurate CNA detection using signal intensity data

from SNP genotyping arrays. We estimate stromal contamination by

applying a maximum likelihood approach over multiple discrete gen-

omic intervals. By conditioning on signal intensity across the genome,

our method accounts for both aneuploidy and genomic waves. Finally,

our method uses a hidden Markov model to integrate multiple sources

of information, including total and allele-specific signal intensity at

each SNP, as well as physical maps to make posterior inferences of

CNAs. Using real data from cancer cell-lines and patient tumors, we

demonstrate substantial improvements in accuracy and computa-

tional efficiency compared with existing methods.

Availability: Source code, documentation and example datasets are

freely available at http://sourceforge.net/projects/penncnv-2.
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1 INTRODUCTION

Copy number alterations (CNAs) refer to the copy number

change of a chromosomal segment that is of somatic origin,
often observed in tumor tissues (Albertson et al., 2003; Pollack

et al., 2002). In contrast to inherited copy number variants

(CNVs) present in the germline, CNAs tend to be longer and

occupy a significantly larger proportion of the genome. The

recent application of single nucleotide polymorphism (SNP) gen-
otyping arrays has led to the characterization of genomic aber-

rations associated with cancer development and prognosis

(Beroukhim et al., 2007; Caren et al., 2010; Waddell et al.,

2010; Weir et al., 2007), and some studies have investigated

CNAs in cancer cell lines (Bignell et al., 2010) and tumor

subtypes (Beroukhim et al., 2010; Curtis et al., 2012). The com-

prehensive characterization of CNAs in cancer genomes is crit-
ical for understanding disease etiology and for advancing the

development of targeted therapies for individual cancer patients

(Attiyeh et al., 2005; Perez et al., 2011; Slamon et al., 1987;
Zhang et al., 2009).

A number of methods have been proposed to detect both
CNVs and CNAs using SNP genotyping array-based technolo-

gies such as those from Affymetrix or Illumina. Compared with
array-comparative genomic hybridization (CGH) platforms,

which measure only the total intensity at each marker, SNP

arrays report both the overall intensities of the probe hybrid-
ization reaction for each SNP, as well as the ratio of the inten-

sities between the two alleles. Recent versions of high-density
SNP arrays have incorporated non-polymorphic markers to

better interrogate genomic regions for which SNP information

is not adequate or not available. By leveraging signal intensity
data from SNP arrays, statistical methods can measure both

total copy number and allelic states with high resolution due
to the high density of SNPs featured on these microarrays (typ-

ically ranging from 500 000 to42.5 million markers across the

genome). Dozens of computational algorithms have been de-
veloped for CNV detection on SNP arrays, and these methods

have already been widely used in human genetics research
(Winchester et al., 2009). However, the problem of CNA de-

tection is considerably more difficult than CNV detection for
several reasons. First, whereas germline CNVs can be inferred

based on the assumption of a baseline copy number of two,

calibration of the baseline in tumors is not obvious, as tumor
cells may be aneuploid (i.e. have an abnormal number of

chromosomes). A second complication, known as stromal con-
tamination, arises from the fact that samples derived from ma-

lignant tissue are often contaminated with adjacent normal

tissue. Simply modeling the copy number state of the tumors
may lead to inaccurate estimates, as the true copy number state

is distributed as a mixture of normal and one or more tumor
cells populations. Third, intra-tumor heterogeneity is now

appreciated as a common feature of cancer genomes

(Gerlinger et al., 2012; Michor and Polyak, 2010), and sub-
populations of cancer cells may harbor distinct copy number

changes. Fourth, although CNAs and CNVs can both be re-
current events, CNA boundaries may be more variable in a

region across samples, so sensitivity may be an issue for

CNA methods. Continuous time hidden Markov Models
(HMMs) are traditionally favored for modeling the underlying

state space (i.e. copy number and allelic state) for CNV/CNA*To whom correspondence should be addressed.
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inference, as they integrate over all parameters in the model,
including the spatial relationship between SNPs along the

genome, allowing one to obtain both point estimates and

their confidence intervals for the parameters of interest. In

the current study, we present an HMM-based solution to

CNA detection that addresses each of the issues specific to

tumor genomes. Because several previously published methods

have also considered some of these complications, we compare

these with our approach and highlight its advantages.

2 METHODS

2.1 Overview

Our CNA calling algorithm, PennCNV-tumor, is an HMM-based

method that is loosely based on the model used in PennCNV (Wang

et al., 2007), an algorithm developed specifically for germline CNV

detection. Later in the text, we describe the key features that are

unique to the proposed method.

For each sample, we include global parameters that model stromal

contamination (�) and aneuploidy (via a correction factor �), and SNP

specific parameters that model intra-tumor heterogeneity (�i), allelic im-

balance (baci) and copy number (cni) at each SNP i. Aneuploidy estima-

tion is an essential a component of chip-wide normalization in tumor

samples so that a baseline Log R ratio (LRR) of 0 is assigned to SNPs

whose CN corresponds to the overall DNA index (which may not equal 2

as in hypo- or hyper- diploid tumor samples). Formally, stromal contam-

ination is the overall fraction of normal cells among a mixture of tumor

and normal cells. In contrast, we characterize intratumor heterogeneity,

at each SNP i, based on the fraction of subclones in addition to the

dominant tumor clone. Such events may suggest functionally important

somatic events during tumor progression. Allelic imbalance provides

information as to which germline allele is more likely to have somatic

gain/loss at heterozygous sites, offering biological insights into the func-

tional role of germline mutations (Wang et al., 2011). Furthermore,

unlike CNVs that typically represent single-copy deletions or duplica-

tions, tumor CNAs often involve amplification of multiple copies.

Finally, our current HMM accommodates the fact that CNA events

are more prevalent and usually much larger than CNVs in cancer

samples.

2.2 Estimation of stromal contamination

Although stromal contamination and CNA calls can in principle be sim-

ultaneously estimated, our analyses on real data suggest that CNA calls

are more reliable if we first estimate stromal contamination (�) in a pre-

processing step. The parameter � can then be used in the HMM for CNA

detection. To estimate �, we apply a maximum likelihood estimation

procedure at each contiguous k non-overlapping window (e.g. 100 mar-

kers) across the genome. We exclude non-polymorphic markers, as well

as SNP markers in the sex chromosomes and mitochondria from the

estimation procedure. The method leverages the fact that at regions

where there is a single copy number loss or an amplification event, a

mixture of tumor and stromal samples will likely shift the B allele fre-

quency (BAF; i.e. the ratio of intensities between the B allele and both

alleles) distributions for heterozygous SNPs. By default, half of the win-

dows with the lowest average LRR values are considered. Our model

assumes a baseline average heterozygosity level for the genome is already

known, derived from empirical evidence (e.g. h¼ 0.3 for Illumina 550K

array for any given Caucasian sample). For this model, rather than using

the BAF, we consider the B minor allele frequency (BMAF), which is

equivalent to BAF for BAF5.5 and 1-BAF in all other cases. Suppose

that s is the index of the first marker of a window. We consider w can-

didate values for �k ranging from 0 to 1 (e.g. w¼ 50 candidates provide a

resolution for �k of 0.02). At each candidate c (c¼ 1, 2, . . . , w), we com-

pute the log-likelihood �kc at a sliding window withmmarkers and finally

choose c that maximizes the expression:

logLð�kjBAFÞ ¼ argmax
c
ð
Xsþm�1
i¼s

logðð1� hÞ’ðBMAFi; 0, �0Þ

þh’ðBMAFi; 0:5�kc, �kcÞÞÞ

ð1Þ

where j() is the density function of a univariate Gaussian distribution.

Assuming that higher BMAF values have higher variance, �kc is assigned

from a linear interpolation of �homo and �het, the standard deviations of

BMAF for homozygous and heterozygous SNPs, respectively (both par-

ameters are pre-specified in PennCNV for Illumina or Affymetrix arrays).

For windows where tumor and normal copy numbers are concordant

(e.g. CN¼ 2), �k is not informative and is uniformly distributed across

the set of candidate values c. For informative regions however, �k will be

consistent. Hence, we select the mode of �k, taken across all windows, as

our estimate of the global parameter �. The standard deviation param-

eters �homo and �het can also be estimated from the data, but from our

experience, these estimates do not vary substantially from pre-specified

values. Similarly, choosing alternative values for h between 0.1 and 0.5

has little impact on estimation of �. These findings suggest that our

procedure for estimating � is robust to prior assumptions.

2.3 Adjustment of signal intensity by aneuploidy and

genomic waves

For SNP genotyping arrays, values for the LRRi and BAFi at each SNP

can be generated from the Illumina GenomeStudio software for Illumina

arrays or from the PennCNV-Affy pipeline for Affymetrix arrays at each

SNP (indexed by i in our notation). LRRi is a normalized measure of total

signal intensity of two alleles (i.e. sum of A and B allele intensities) and

BAFi is a normalized measure of allelic intensity ratio. Further details can

be found in (Wang et al., 2007). We now describe our pre-processing

procedure, which adjusts observed LRRi values to account for both

aneuploidy and genomic waves.

Tumor samples may have large-scale duplications and deletions of one

or more chromosomes, so the average ploidy levels cannot safely be

assumed to be two, as is the case for germline samples. After evaluating

several aneuploidy estimation methods, we adopted a straightforward

method of exploiting the empirical LRRi distribution for SNPs with

BAFi values within a narrow range. The approach is an integral part of

the PennCNV-tumor algorithm. We estimate the aneuploidy correction

factor � by taking a weighted average of all possible copy numbers at sites

where BAFi is near .5 (e.g. j BAFi �.5j5.01), where the weight is the

emission probability (described in the following section) at the HMM

state associated with the copy number. The expected intensity value asso-

ciated with � is then added to the LRRi at each SNP, which is similar in

spirit to previously described methods (Attiyeh et al., 2009; Yau et al.,

2010).

In addition to aneuploidy adjustment, a second adjustment procedure

eliminates the phenomenon known as ‘genomic waves’ (Diskin et al.,

2008; Marioni et al., 2007). Genomic waves refer to the variation in hy-

bridization intensity that is related to the genomic position of the clones.

In practice, real datasets usually exhibit genomic waves and would result

in erroneous CNA calls (see examples later in the text). Our solution

entails fitting a regression model where GC content is included as a pre-

dictor variable (Diskin et al., 2008). This technique complements our

aneuploidy adjustment procedure. Briefly, given M markers in a geno-

typed sample, we collect all the m autosome markers that are at least

1Mb away from each other. For each of the m markers, we collect its

LRR value as Lj (j¼ 1, . . . , m) and the average GC percentage in the

1Mb window around the marker, then fit a linear regression model:

Lj¼�þ�Gjþ "j. After obtaining these estimated regression parameters,

for each of the M marker in the genotyping array, we then calculate the
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expected signal intensity value based on the GC percentage in the 1Mb

window around the marker. The adjusted signal intensity value is then

simply calculated as the observed LRR value minus the expected value

(residual in the regression model).

2.4 Hidden states in HMM

The hidden states of our HMM model copy number counts, LOH status

and intra-tumor heterogeneity. Typical CNV algorithms for SNP arrays

model copy number ranging from 0 to 4, but higher level values may also

be discernable for large CNAs. Unlike other software tools, we consider

tumor copy numbers ranging from 0 to 4 by default but make this par-

ameter user-adjustable. For copy numbers of zero and two copies, we do

not model intra-tumor heterogeneity levels (�i) for the reason of identifia-

bility. However, we include an additional LOH state for two copy num-

bers. For all other copy numbers, we include additional states that

consider values for �i ranging from 0 to 1, in increments of .25 by default.

Supplementary Table S1 recapitulates our state definition, but we empha-

size that this is merely an example, and users have the flexibility to adjust

the models based on prior beliefs.

2.5 Emission probability

For tumor samples, the observed LRRi and BAFi values are assumed to

arise from an unobserved mixture distribution of normal cells (stromal

contamination) and tumor sub-clones. We denote the true underlying

CN-aware genotypes of the tumor and the contaminating normal cells

at each marker as gt,i and gn,i, respectively. CN-aware genotype refers to

the genotype call that takes into account of allelic copy numbers, such as

A (copy¼ 1), ABB (copy¼ 3) and AABB (copy¼ 4). To accommodate

stromal contamination (�) and intra-tumor heterogeneity (�i), we define

the latent distribution as a Gaussian mixture with means that reflect

contributions from stromal and tumor tissue. At any SNP i, we define

the expected value of the R ratio (RR) as

�r, i ¼ ð1� � � �iÞrmeanðcnðgt, iÞÞ þ ð� þ �iÞrmeanðcnðgn, iÞÞ ð2Þ

where the function cn() counts the total number of copies for a genotype,

and rmean() maps a copy number to an expected RR (based on linear

interpolation of the observed RR at copy number of 0, 1, 2 and 3 from

real datasets). The intra-tumor heterogeneity measure can essentially be

considered as a refinement parameter that is locus specific. When �i¼ 0,

there is no heterogeneity, and all tumor cells have the same copy number

at each marker in the population of tumor cells. The standard deviation

of RRi, sr,i, at each SNP is assigned from a linear interpolation of the

observed RR at copy number of 0, 1, 2 and 3 from real datasets,

given the composite copy number of tumor and normal cells as

(1-�-�i)cn(gt,i)þ (� þ�i)cn(gn,i).

Conditional on �r,i, the emission probability of the RR is modeled as a

mixture of a uniform and Gaussian distribution:

PðRRijliÞ ¼ �r þ ð1� �rÞ�ðr;�r, i, sr, iÞ ð3Þ

where �() is the density function of a Gaussian distribution with mean

�r,i and standard deviation sr,i, and li is a vector for the state parameters

(i.e. gt,i, gn,i, �, �i). The uniform distribution �r accommodates the

random fluctuation of signal measures in chemical assays and possible

genome mis-annotation. By default, �r is assigned as 0.01. We now dis-

cuss the component of the likelihood that involves the observed BAF

signal.

In our method for CNA detection, the main challenge lies in accurately

defining �b,i in the model. For germline CNV calling, the peaks of these

distributions are fixed at given intervals: for example, the peaks of the

BAF distribution are located at 0, 0.33, 0.67 and 1 for three-copy regions.

For CNA calling, the numbers need to be modified: for example, when

�¼ 0.2 and �i¼ 0, the peaks of the distribution becomes 0, 0.29, 0.71 and

1 for three-copy regions (assuming paired germline sample is not

available, or gn,I¼ 2). In the simpler case where homozygous genotypes

(AA or BB) in normal tissues are observed, the mean �b,i is constrained to

be 0 and 1, respectively, as it is reasonable to assume that it is extremely

rare for a new allele to arise de novo. In the case of a heterozygous

genotype, we model the conditional BAF mean (�b,i) for a given SNP i as:

�b, i ¼
ð1� � � �iÞbacðgt, iÞ þ ð� þ �iÞbacðgn, iÞ

ð1� � � �iÞcnðgt, iÞ þ ð� þ �iÞcnðgn, iÞ
ð4Þ

where bac() counts the number of B alleles for a CNV-aware genotype

(e.g., bac(‘‘AAAB’’)¼ 1 and bac(‘‘ABB’’)¼ 2). For copy numbers greater

than zero, we define the emission probability for BAFi as a mixture of

uniform and a Gaussian distribution conditioned on �b,i. We review the

model first described by the original PennCNV article (Wang et al., 2007).

Let I() be an indicator function so that when BAFi is 0 or 1, we multiply

the binomial likelihood density BN() by a mixture of point mass M at

0 or 1, respectively, and a truncated Gaussian distribution.

PðBAFijliÞ ¼ �b
þ ð1� �bÞBNð0;KðzcnÞ � 1, pBÞðIfb¼0gM0 þ If05b51g�ðb; 0, sb, 1ÞÞ

þ ð1� �bÞBNðKðzcnÞ � 1;KðzcnÞ � 1, pBÞ

ðIfb¼1gM1 þ If05b51g�ðb; 1, sb,KðzÞÞÞ

þ ð1� �bÞ
XKðzcnÞ
g¼1

BNðg;KðzcnÞ � 1, pBÞ�ðb;�b, i, sb, iÞ

ð5Þ

where K(zcn) denotes the number of total possible genotypes for copy

number state zcn, and

BNðg;KðzcnÞ � 1, pBÞ ¼
KðzcnÞ � 1

g

� �
pgBð1� pBÞ

KðzcnÞ�1�g ð6Þ

is the probability of observing g copies of allele B, and pB is the popula-

tion frequency of the B allele, estimated from a large ethnically matched

reference panel. As indicated in we integrate over all possible genotypes

for any copy number state greater or equal to two.

Because there is no contribution to signal from tumor cells when copy

number is zero, in the case of copy number zero, we define the emission

probability for BAFi simply as

PðBAFijliÞ ¼ �b þ ð1� �bÞ�ðb; :5, :5Þ ð7Þ

As mentioned earlier, our method can account for tumor heterogeneity,

which manifests as values of �i that differ from the global stromal con-

tamination value �. To calculate the emission probability for a particular

value of �i, we assume a Gaussian density function centered at �:

Pð�ij�Þ ¼ �ð�i; �, s�Þ ð8Þ

The final emission probability (likelihood) is simply the product of the

RR, BAF and tumor heterogeneity emission probabilities.

2.6 Transition probability

For whole-genome SNP arrays, the transition probabilities can be calcu-

lated in the same manner as in PennCNV by considering the distance

between SNPs on the array. We estimate the transition matrix that

defines all possible pairs of states by applying the forward-backward

and Baum–Welch algorithms.

2.7 Incorporating datasets with tumor-normal pairs

It is reasonable to assume that in some cases, detection of CNAs in tumor

cells is confounded by copy number changes mapping to the same regions

in the germline. For instances where germline and tumor DNA is avail-

able on the same individuals, one can easily disentangle CNAs that are

unique to tumors versus those shared with germline. Statistically, infor-

mation from germline DNA is straightforward to incorporate, as has
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been done in other software tools (Sun et al., 2009; Yau et al., 2010). In

this case, where paired samples are available, site-specific copy number

counts enter through the parameter cn(gn,i), whereas in the more general

case when the germline component in unavailable, we simply fix the

parameter at value 2.

2.8 Posterior inference

The Viterbi algorithm, used by programs such as PennCNV, infers copy

number by tracing the most likely state path across all markers. However,

this approach can be unsatisfactory in some cases (such as when stromal

contamination levels are high), as several candidate models can plausibly

explain the data. To account for this uncertainty, in the method proposed

here, we use the posterior probabilities derived from the forward–back-

ward algorithm. Copy number calls and model parameters are therefore

posterior averaged values. The HMM reports absolute copy number for

tumor samples, which can be divided by aneuploidy levels to obtain a

relative copy number, which is usually more informative.

3 RESULTS

In this section, we report comparisons between PennCNV-tumor

and existing software for calling CNAs, namely, ASCAT (Van

Loo et al., 2010), GAP (Popova et al., 2009), GenoCN (Sun
et al., 2009), OncoSNP (Yau et al., 2010) and GPHMM

(Li et al., 2011).

3.1 Estimating stromal contamination

Stromal contamination is commonly observed for tumor sam-

ples, as the sample collection procedure may inadvertently result

in the inclusion of normal cells. To evaluate CNA detection
methods under varying levels of stromal contamination, we

examined a previously published (Staaf et al., 2008) dilution

series, which includes 12 samples with mixtures of known pro-

portions of the normal cell line HCC1395BL and the paired

breast carcinoma cell line HCC1395 for a variety of values

(0, 10, 14, 21, 23, 30, 34, 45, 47, 50, 79, 100). Stromal contam-

ination estimates made using GAP and GPHMM have been

previously reported in (Li et al., 2011), and these results were

incorporated into our comparison. For other programs, we ran
the software using recommended settings. Program settings and

full output for each method in this analysis can be downloaded

from https://sourceforge.net/projects/penncnv-2/files/supplemen

tary_files/.
This comparative analysis demonstrated the superior perform-

ance of our method over other competing approaches. Figure 1

shows the plot of expected versus actual estimates for each

method. Both GPHMM and our estimation procedure were

able to recover known stromal contamination levels across a

broad range of values (correlation coefficient of r¼ 0.99).

GAP produced accurate estimates at higher levels of stromal

contamination, but over estimated at lower levels (r¼ .28).
The remaining programs overall did not recover the true values

as well: OncoSNP (r¼ 0), GenoCN (r¼�.23) and ASCAT

(r¼ .02). We also note that other programs that require user-

specified priors do not perform as well either. For example,

PICNIC (Greenman et al., 2010) can be overly sensitive to

user-specified priors such that they significantly influence the

final computational predictions. In summary, our maximum like-

lihood method resulted in the accurate estimation of stromal

contamination, which is essential for the optimal detection of
CNAs in subsequent steps.

3.2 CNA calling on tumor samples with known

aberrations

To evaluate our ability to call CNAs, we compared our method
and others on the breast cancer cell line SUM159. These data

were generated on the Illumina CNV370-Duo array and were
previously characterized extensively on four different technical

platforms (Curtis et al., 2009). SUM159 is known to harbor
CNAs at multiple different scales on chromosome 5, including

a whole-arm amplification of the p-arm, a megabase-level dele-

tion at �100Mb, and two kilobase-level complex duplication
toward the telomere of 5p (Fig. 3 in Curtis et al., 2009).

Supplementary Figure S1 illustrates a comparison of copy
number estimates using different methods. For large events,

inference was nearly identical in terms of localization of aberra-
tions (albeit some differences in their magnitude) for GenoCN,

OncoSNP, ASCAT, GPHMM and PennCNV-tumor. However,
different algorithms yielded discordant calls for small CNAs,

perhaps reflecting the different sensitivity of each algorithm

under default settings.

3.3 CNA inference in the presence of stromal

contamination

To further evaluate the sensitivity and consistency in calls using

different methods, we tested the concordance rate of CNAs calls
on the breast cancer dilution series. As we do not know the true

CNA profile, for each algorithm, we treat the calls generated on
the tumor cell line HC1395 as the reference and tested how many

of these calls can be recovered for each diluted sample in the face

Fig. 1. Comparison of several methods’ ability to estimate the tumor cell

fraction from the breast cancer dilution series data. Lowes smoothed

curves are superimposed on the predictions. Results on GPHMM and

GAP were obtained from Li et al. (2011). PennCNV-tumor achieves

better correlation (r¼ 0.99, L1norm¼ 0.05, L2norm¼ 0.06) with experi-

mental data than most other methods
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of noise from stromal contamination (Supplementary Fig. S2).

We ran each program using the recommended settings except for

GAP, which we were not able to successfully run. However, we

integrated into our comparison previously published results (spe-

cifically CNA calls for this data made using GAP, which are

available at http://bioinfo-out.curie.fr/projects/snp_gap/.) For

each program, we calculate the proportion of calls concordant

with the reference sample. An ideal method would have high

concordance, and the concordance is expected to monotonically

decrease as a function of stromal contamination. Qualitatively,

PennCNV-tumor performs most similarly to GAP and

GPHMM. The other programs show a noticeable drop in con-

cordance across various levels of stromal contamination. It is

also important to note each method’s sensitivity to detect aber-

rations across various levels of stromal contamination. A method

that is not sufficiently sensitive may call nearly every site copy

neutral for a pure tumor sample, which in turn can artificially

produce perfect concordance when applied to samples with

higher levels of stromal contamination. Supplementary Figure

S3 illustrates the distribution of percentage of sites aberrant

across different stromal contamination levels. The figure indi-

cates that sensitivity levels for the methods were calibrated simi-

larly. Finally, we were also interested in how these methods

compare in terms of concordance and percentage aberration

when considering only large CNA events. We filtered results

across methods on only CNAs greater than 10MB and plot

the comparison of concordance and percent aberrations in

Supplementary Figures S4 and S5. Interestingly, the programs

appear to diverge in their distribution of percentage sites aber-

rant when only large (410MB) CNA events are considered in

contrast to all sized events.
Finally, we also tested a dilution series dataset simulated by

CnaGen (Mosen-Ansorena et al., 2012), as the ground truth is

known. The dataset contains 11 samples, with tumor purities

ranging from 0.01 to .99. Each sample contains a region with

intratumor heterogeneity of 80%, and PennCNV-tumor cor-

rectly identified the region from those samples with tumor

purity450%. In contrast, other methods were not able to predict

stromal contamination with reasonable accuracy, as summarized

in Supplementary Table S2.

3.4 CNA inference in presence of intra-tumor

heterogeneity

We assessed the ability of PennCNV-tumor to call tumors in the

presence of intratumor heterogeneity, which is characterized by

proportions of normal cells that can differ across sites. We are

not aware of existing datasets in which the true profile of

intratumor heterogeneity is known, so we evaluated the perform-

ance of our program and others through the same simulated

datasets, which have previously been described earlier for evalu-

ating stromal contamination. For each scenario (modeling a spe-

cific level of stromal contamination), we simulated intratumor

heterogeneity in random regions covering 12% of the genome,

where each of these regions span �15Mb. We compared the

accuracy of CNV calls against other methods, where OncoSNP

was the only other competing program that could account for

intratumor heterogeneity. Supplementary Table S2 lists the L1

errors for estimates of tumor copy number and intratumor

heterogeneity, calculated as the sum of the absolute value of

deviations between the true and estimated values, taken across

all sites. PennCNV-tumor generally had better concordance with

respect to copy number estimates as compared with OncoSNP,

whereas OncoSNP had slightly better accuracy in estimating

intratumor heterogeneity when stromal contamination levels

were lower. Additionally, OncoSNP has better performance to

predict stromal contamination when the values are below 50%.

Interestingly, ASCAT performed well for CN inference, but was

not able to complete analyses for tumor purities outside the

range of .4 to .9. GPHMM appeared to have the lowest sensi-

tivity, calling most sites as copy neutral.

3.5 Computational efficiency

One dimension of performance for CNA calling that is often

overlooked is computational efficiency. As the availability of

large multi-dimensional datasets (e.g. The Cancer Genome

Atlas) increases, the ability to complete analyses in a timely fash-

ion is becoming more important. We recorded run times and

memory usage across the programs GenoCNA, OncoSNP,

GPHMM, ASCAT and PennCNV-tumor. Table 1 highlights

the computational demands of these programs for the analysis

of 12 samples used in the dilution series analysis across more

than 370,000 SNPs. One should keep in mind though that

these are based on default settings, which we have assumed the

authors have suggested to give a good balance between accuracy

and run time performance. ASCAT and GenoCN required 66

and 72 times more memory, respectively, than PennCNV-tumor.

However GPHMM and ASCAT were slightly faster than

PennCNV-tumor.

4 DISCUSSION

Over 10 software tools have now been published for identifying

CNAs from SNP arrays. Most are based on HMMs, but several

use segmentation algorithms. Our proposed algorithm uses SNP

genotyping arrays to identify CNAs and estimate their magni-

tude in tumor samples, while accounting for intratumor hetero-

geneity, stromal contamination and aneuploidy. When compared

against other popular methods, our approach performs compar-

ably in terms of the detection and estimation of CNAs but shows

marked improvements in the estimation of stromal contamin-

ation and runtime efficiency. Later in the text, we discuss the

Table 1. Computational requirements of various programs benchmarked

on the same machine with two Intel X5680 CPUs at 3.33GHz

Program Run-time in minutes Memory

OncoSNP 328 605MB

GenoCN 104 1013MB

PennCNV-tumor 35 14MB

GPHMM 21 647MB

ASCAT 20 930MB

Note: Twelve samples across 24 chromosomes were analyzed.
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major differences between various algorithms and potential

avenues for future improvements.

(i) Capability of integrating multiple sources of ‘prior’ informa-

tion in the likelihood calculation step. To our knowledge,

only OncoSNP and our program PennCNV-tumor com-

prehensively account for stromal contamination, tumor

heterogeneity, aneuploidy and genomic waves when infer-

ring CNAs, whereas other tools consider only a subset of

these issues.

(ii) A unique but simple approach for estimating stromal con-

tamination. Although we estimate the global � (stromal

contamination) and the aneuploidy offset parameter � in

a data pre-processing step, in principle, it should be pos-

sible to estimate these parameters in an integrated analysis

(e.g. learning the HMM parameters). However, our pre-

liminary results have suggested that for reasons of iden-

tifiability, it is difficult to get consistent estimates: for

example, disentangling global � from local � (intra-

tumor heterogeneity) estimation when both are included

as free parameters in the model. As domain knowledge is

critical in most statistical learning problems, we incorpor-

ate an a priori heterozygosity rate for each given sample in

our pre-processing step. A good approximation of this

fixed parameter can lead to superior accuracy over com-

peting methods, as demonstrated in the real breast cancer

dataset with known dilutions of stromal tissue. Our simu-

lation study suggested that this method might not be

optimal in certain contexts however. For instance, when

we simulated a large proportion of sites that had tumor

heterogeneity, our stromal contamination estimates did

not perform as well as in the real breast cancer data.

Because this example was based on simulated data, it is

possible that the simulated data did not properly reflect

realistic distributions of intratumor heterogeneity, CNAs

or other phenomena. Furthermore, these simulation study

results should be balanced against our program’s ability to

make predictions that were more robust across the entire

spectrum of stromal contamination levels (other methods

we tested were unable to make reliable estimates beyond

50% stromal contamination). Inference of high stromal

contamination levels can be of great interest in certain

cancer contexts. In late stages of pancreatic cancer, typic-

ally malignant cancer cells represent only 25% of the cells

in the tumor on average (Boyd et al., 2009). The authors of

GPHMM found that among fresh breast cancer biopsies,

‘About 91% tumor samples (87 of 96) are mixed with

450% normal cells, of which 60 have normal cell propor-

tions larger than 0.7, and 12 have normal cell proportions

greater than 0.85’ (Li et al., 2011).
(iii) The need for some users to fine-tune calling algorithms to

achieve the desired resolution and granularity: We have pro-

vided users with flexibility in specifying the state space in the

HMM. Previous studies show that copy number states up

to 6 can be readily discerned by eye in the signal intensity

plots (Attiyeh et al., 2009). It is possible that even higher

copy number can be detected by sophisticated computa-

tional means, though they may not have much practical

value. Among the features described earlier in the text, (ii)

is unique to our algorithm, to be best of our knowledge.

Several further improvements may be made to the proposed

method. For instance, different researchers have varied require-

ments for the sensitivity and specificity of CNV calling, depend-

ing on their research needs. Many software tools, including

PennCNV-tumor, rely on post-calling QC to control sensitivity

and specificity (e.g. minimum number of probes thresholds and

the log likelihood threshold). However, it is possible to directly

control the sensitivity within the HMM model by arbitrarily

setting a different set of noise parameters and transition param-

eters. CNV filtering may also be introduced post hoc using a

suitable ethnically matched reference. We plan to introduce

tools in our software that can automate parameter tuning by

applying supervised learning procedures on ‘gold standard’

datasets. Third, it is a known problem that HMM-based algo-

rithms tend to over-segment the data, resulting in long CNV

regions being broken into several small calls. This depends on

the HMM parameters, so it cannot be directly adjusted from the

algorithm per se. However, several post-calling adjustment pro-

cedures have been developed before; for example, PLINK and

PennCNV both have CNV-processing steps that merge neigh-

boring CNV calls if the ‘bridge’ between the two neighboring

calls are less than a certain threshold (such as 20%) of the

total combined call. For tumor CNA calling, this post-processing

procedure can also be used. Fourth, our current approach esti-

mates stromal contamination in a pre-processing step, rather

than treating it as a parameter in the HMM. We have previously

attempted to discretize alpha (e.g. from 0 to 1 in increments of

0.1) and estimate it in HMM; however, this increases the HMM

states by �11-fold, but the estimation per marker is highly

unstable.
Finally, we wish to stress that a variety of genome-wide

approaches, and technical platforms have been developed for

CNV detection (Alkan et al., 2011). Although next-generation

sequencing may soon replace SNP arrays in certain areas, it is

still cost-prohibitive for genome-wide screening. In addition, the

accurate detection of CNVs/CNAs from sequencing data is non-

trivial, dependent on sequencing depth, and represents an area of

ongoing development. Hence, SNP arrays remain a cost-effective

and popular approach to interrogate CNAs, as evidenced by

recent large-scale oncogenomic profiling studies such as TCGA

(TCGA, 2012) and METABRIC (Curtis et al., 2012).
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