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ABSTRACT

Motivation: The translational landscape of diverse cellular systems re-

mains largely uncharacterized. A detailed understanding of the control of

gene expression at the level of messenger RNA translation is vital to

elucidating a systems-level view of complex molecular programs in

the cell. Establishing the degree to which such post-transcriptional regu-

lation can mediate specific phenotypes is similarly critical to elucidating

the molecular pathogenesis of diseases such as cancer. Recently, meth-

ods for massively parallel sequencing of ribosome-bound fragments of

messenger RNA have begun to uncover genome-wide translational con-

trol at codon resolution. Despite its promise for deeply characterizing

mammalian proteomes, few analytical methods exist for the compre-

hensive analysis of this paired RNA and ribosome data.

Results: We describe the Babel framework, an analytical method-

ology for assessing the significance of changes in translational regu-

lation within cells and between conditions. This approach facilitates

the analysis of translation genome-wide while allowing statistically

principled gene-level inference. Babel is based on an errors-

in-variables regression model that uses the negative binomial distribu-

tion and draws inference using a parametric bootstrap approach. We

demonstrate the operating characteristics of Babel on simulated data

and use its gene-level inference to extend prior analyses significantly,

discovering new translationally regulated modules under mammalian

target of rapamycin (mTOR) pathway signaling control.

Availability: The Babel framework is freely available as source code at

http://taylorlab.ucsf.edu/software_data.html.

Contact: barry.taylor@ucsf.edu

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The translation of cellular messenger RNAs (mRNAs) is the all-

important final product of gene expression. Nevertheless, a com-

plete understanding of gene expression at the level of mRNA

translation is generally lacking. As mRNA levels explain only

a modest fraction of protein abundance, we must establish the

landscape of mRNA translation and determine the mechanisms

by which it is regulated to fully elucidate diverse cellular systems.

Nevertheless, genome-scale characterization of translational

changes has lagged behind the development of similar methods

for exploring mammalian transcriptomes. Recent advances in

profiling ribosome occupancy with deep sequencing (Ingolia

et al., 2009), however, now allows a near codon resolution

view of ribosome-bound mRNAs. Briefly, ribosome profiling en-

tails isolating fragments of such mRNAs, which results in�30bp

ribosome-protected fragments (RPFs) that are purified and pro-

cessed for massively parallel sequencing. Simultaneously, and

from the same cells, poly(A)þ mRNA is purified, and concurrent

sequencing of both ribosome and RNA libraries generates short

sequence reads that identify either the position of a bound ribo-

some or the expression of the cognate transcript. These methods

have been used to explore translation in diverse genomes includ-

ing those from yeast, zebrafish, murine models and human can-

cers (Bazzini et al., 2012; Guo et al., 2010; Hsieh et al., 2012;

Ingolia et al., 2011; Thoreen et al., 2012).

These studies have revealed a complex and multifaceted trans-

lational landscape in mammalian transcriptomes. Although open

reading frames (ORFs) that initiate with an AUG codon are

canonical and are perhaps best characterized, a variety of non-

canonical structures also contribute to the diversity and complex-

ity of translation. These include upstream ORFs, non-AUG ini-

tiation of translation, internal ribosome entry sites, translational

re-initiation and frameshift, leaky scanning and the ever expand-

ing world of small RNAs: expressed short and long non-coding

sequences that lack an ORF.
So, although ribosome profiling promises a new window into

the nature and dynamics of normal and anomalous mRNA

translation, progress is predicated on the development of

robust methodologies to facilitate statistically principled analysis.

Prior analyses have described the global features of translational

efficiency in different systems, species and upon multiple perturb-

ations by comparing the log of scaled ribosome counts to the log

of scaled mRNA counts for groups of genes (Bazzini et al., 2012;

Guo et al., 2010; Hsieh et al., 2012; Ingolia et al., 2009, 2011;

Thoreen et al., 2012). However, it is unclear how such a measure

would lead naturally to inference about the biological signifi-

cance of individual changes in genes, especially in the presence

of few replicates. There is, therefore, a great need for robust

methods for drawing gene-level inference on the basis of changes

in translational regulation or even subtle shifts in patterns of

ribosome occupancy. The importance of such quantitative meth-

ods will only grow as ribosome profiling is adopted more widely

to characterize translational abnormalities that drive diverse

pathologies including human cancers. Such efforts would serve*To whom correspondence should be addressed.
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as a vital companion to extensive genetic characterization efforts

already underway, such as The Cancer Genome Atlas (http://

cancergenome.nih.gov/).
Here, to facilitate such efforts, we describe a statistical frame-

work, Babel, for determining genes with unexpected ribosome

occupancy: those insufficiently explained by their intrinsic tran-

script abundance within a condition, and those whose ribosome

association changes in magnitude or direction between condi-

tions (Fig. 1A). We demonstrate its statistical properties through

simulations, and its applicability through the re-analysis of

ribosome profiling data interrogating translational control

downstream of the mTOR signaling pathway.

2 METHODS

2.1 Outline of methods

The relationship between the level of ribosome occupancy and mRNA

expression transcriptome-wide can be described quantitatively from

sequencing data. We sought to exploit the monotonic relationship be-

tween ribosome association and mRNA levels as the basis for the gene-

level inference described here (Fig. 1B). For a transcript with a given

abundance, the expected level of ribosome occupancy can be inferred

so that translationally regulated genes are those for which the level of

bound ribosome deviates significantly from that expected value. To esti-

mate this expected level, we developed an errors-in-variables regression

model. Unlike typical regression, our model treats the mRNA level (pre-

dictor) as measured with error rather than as fixed. As a first step, mRNA

levels are modeled by the negative binomial (NB) distribution, as is con-

vention (Robinson and Smyth, 2008), because the variance of the counts

is greater than the mean. As a second step, because ribosome occupancy

involves counts for which there is again extra Poisson variation (Fig. 1C),

we also model the level of bound ribosome given mRNA abundance as

NB. To estimate the mean in the second part of the model, we tested

multiple regression forms (Fig. 1B). A trimmed least-squares approach

(for which a fraction of genes with outlying mRNA levels were excluded

before model fitting) was most stable over all experiments (data not

shown). This second over-dispersion parameter is modeled using an it-

erative algorithm to prevent overestimation. Subsequent inference under
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Fig. 1. The Babel framework and analysis. (A) A schematic of the Babel framework in which ribosome profiling data are processed and aligned, and an

NB-regression-NB model is developed in each sample to identify genes whose ribosome association is higher or lower (red and blue arrows, respectively)

than expected (gray) from its mRNA expression level. Significant translationally regulated genes across all the samples of a given condition are

determined (left) as are those that change significantly between conditions (right). (B) Although multiple candidate parametric and non-parametric

regression forms were evaluated for estimating ribosome association based on mRNA abundance (plotted here as read counts in log-scale), the trimmed

least squares approach was chosen (see text). (C) Errors-in-variables regression is justified by the intrinsic uncertainty of mRNA levels under the NB

distribution where variability increases with increasing level of expression, demonstrated here for three genes with NB means of 100, 500 and 1000. The

NB model of ribosome-given-mRNA counts is further necessitated by significantly greater variance than mean RPF counts across the distribution of

mRNA abundance (inset)
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Babel is based on a parametric bootstrap. Specifically, in every sample

with mRNA and ribosome data, we estimate a P-value for every gene

under the null hypothesis that the level of bound ribosome is as expected

from mRNA abundance. These P-values are estimated for a one-sided

test in which both low and high P-values are of interest; low P-values

correspond to higher than expected ribosome-given-mRNA counts and

high P-values correspond to the opposite.

Because Babel quantifies gene-level mRNA translation (ribosome oc-

cupancy given mRNA levels) as a P-value in each sample of a given

condition, a particularly important challenge is to combine these into a

single assessment of the significance of translational regulation based on

at best a few biological replicates. A long-standing approach for combin-

ing multiple independent P-values is Fisher’s method (see Equation 4).

One aspect of Fisher’s method is that when the number of P-values is

small, a single low P-value can lead to a significant combined P-value

(Fig. 2A). We exploited an alternative method that instead emphasizes

consistency among replicates, reasoning that consistently strong signals

are most likely to represent true events of biological significance. This

approach results in a combined P-value that is a function of the arith-

metic mean of the individual P-values. This method maintains symmetry

between each of two or more tests of hypotheses and their P-values as

well as convexity (of the acceptance and rejection regions) (Fig. 2B and

C). It produces a small combined P-value from consistently small one-

sided P-values of ribosome-given-mRNA levels (and the reverse for two

or more large one-sided P-values). Once combined, two-sided P-values

can be estimated and genes are considered regulated at the translational

level if their corresponding P-values are low after adjusting for multiple

comparisons (Fig. 2D).

An equally important problem is identifying genes whose ribosome

occupancy relative to its mRNA abundance changes between conditions.

We developed a statistical test for this purpose based on the differences in

the within-condition P-values. After transforming the P-values using the

Gaussian quantile function, a Z-test is used and two-sided P-values are

obtained.

All analyses conducted here, unless otherwise specified, were per-

formed using the R statistical language, version 2.11.

2.2 Sequencing and alignment

The ribosome profiling strategy, described elsewhere (Ingolia et al., 2009),

produces short single-end sequencing reads of between 36 and 50bp.

Data analyzed here were generated from libraries prepared and

sequenced as previously described (Hsieh et al., 2012) and downloaded

from the NCBI Gene Expression Omnibus under the accession number

GSE35469. Because the ribosome-bound mRNA fragment may be a vari-

able-length component of each sequencing read followed by a known

adapter sequence (CTGTAGGCACCATCAAT), raw sequencing reads

in FASTQ format were first clipped of the adaptor and remaining 30

sequence with the FASTX-Toolkit, retaining only reads of 24bp post-

clipping length or longer. Reads were mapped to the human assembly

(NCBI build 36) with Burrows–Wheeler Alignment (ver. 0.5.9-r16, de-

fault parameters) (Li and Durbin, 2009). Unaligned reads were then

mapped to known splice junctions with Tophat (ver. 1.4.1) (Trapnell

et al., 2009) using a transcriptome index created from version 11 of the

Gencode gene set (Harrow et al., 2006). Provisional merged BAM files (Li

et al., 2009) were created from aligned and unaligned reads from either

the genome or spliced alignment, and read groups were enforced across

lanes and experiments. BAM files were then indexed, coordinate sorted

and had alignment metrics determined, all with the Picard suite (http://

picard.sourceforge.net/).

2.3 Gene-level assessment

For all gene-level inference, only those protein-coding transcripts of levels

1 or 2 of Gencode support (verified or manually curated loci, respectively)

were used. We initially assessed two candidate gene models. The first

retained only the longest transcript of multi-isoform genes. The second

was a unified gene model in which the union of coding sequence across all

isoforms of a given gene was collapsed into a single model per gene. As no

significant difference in read mapping or expression (as reads per kilobase

of exon model per million mapped reads; rpkM) was observed between

these two models, all subsequent analyses used the unified model. The

gene-level inference of ribosome-given-mRNA levels described here eval-

uated only those genes that we estimated to be expressed in the studied

transcriptome. To determine expressed genes, we first mapped aligned

reads to their coding sequences, treated spliced reads between exons as

a single fragment and excluded ambiguous reads (those aligning to over-

lapping coding sequence of two distinct genes: 1.52–2.79% of coding

sequence reads across the aligned libraries). We then calculated a normal-

ized RPKM expression estimate based on scaled library sizes using

Trimmed Mean of M-values (TMM) normalization (Robinson and

Oshlack, 2010). We also generated a null distribution of similar expression

(normalized rpkM) in randomly selected regions of the genome with a size

distribution sampled from the empirical size distribution. These regions

were selected from a genome masked of all coding and non-coding RNAs

(Gencode; levels 1–2) as well as any known or putative human expressed

sequence tags. A P-value was estimated for each gene by comparison

with the distribution of random genomic intervals. Genes with a nominal

P-value50.05 were considered expressed (Supplementary Fig. S3).

2.4 Errors-in-variables regression of ribosome association

on mRNA abundance

The NB distribution is used throughout the Babel statistical model (see

Fig. 1). One parameterization of the NB distribution is with mean � and

variance �(1þ��), where � represents the parameter for over-dispersion

(variance above what would be expected from the Poisson distribution).

When � is zero, the variance is equal to the mean, and the NB distribu-

tion is the same as the Poisson distribution.
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Let xg,g¼ 1, . . . , n represent the mRNA level for the gth gene and

yg,g¼ 1, . . . , n represent the level of bound ribosome for the same

(levels are read counts in both cases). As is typical in modeling

RNA-seq data, the mRNA levels for the gth gene are modeled as

coming from a NB distribution. Because there are typically few repli-

cates, we estimate a single over-dispersion parameter �x across genes

using the method of Robinson and Smyth (Robinson and Smyth,

2008) as implemented in edgeR (Robinson et al., 2010). Then, we

also model ygjxg as NB with mean xg�̂, where �̂ is estimated from

regression, and over-dispersion �y. We tested multiple regression meth-

ods to identify the optimal approach for estimating �̂� Candidate

models included SuperSmoother, locally weighted regression (lowess),

least squares, and robust least squares (Fig. 1B). Whereas the smooth-

ing-based approaches tended to overestimate ribosome level in genes

with low mRNA levels, robust least squares underestimated the ex-

pected ribosome level because of skew in the models for count data (in

which median5mean) and least squares was susceptible to high lever-

age from genes with high expression (those in the right tail of the

mRNA distribution). In all experimental conditions, a trimmed least-

squares approach, where the g-percent of the genes (by default, g¼ 10)

with lowest and highest mRNA levels are trimmed before model fit,

was most stable, and thus is used. Although univariable in its current

form, exploiting regression here will allow additional covariates to be

incorporated that measure different facets of translational control,

thereby increasing the accuracy of the model.

To estimate �y, after removing the "-percent of the genes with the

lowest and highest abundances, we partition the data based on mRNA

abundance into B bins containing an equal number of genes (by default,

B¼ 20 and "¼ 10). For each bin, we compute the empirical variance of

ribosome levels, Vb,b¼1, . . . , B. Then, �y is estimated by minimizing the

squared error across bins:

�̂y ¼ argmin
�

XB
b¼1

ðVb � �Þ
2: ð1Þ

Because there exists a set of genes for which ribosome levels are dif-

ferent than expected from their intrinsic mRNA levels, which are in fact

the very genes we are trying to identify, we developed an iterative process

to avoid overestimating �y. Here, we define an initial value �̂0 ¼ 0:2 and

eliminate genes in the variance calculations with P-values50.01 under the

NB model with mean equal to the product of �̂ and the median mRNA

abundance in the bin. To calculate the final �̂y, this process is repeated,

seeded with �̂1 (again, excluding outlier genes from the calculation of

variance).

We use the parametric bootstrap and the modeling described previ-

ously to estimate P-values under the null hypothesis that the ribosome

level is as expected from the mRNA level. Here, we begin by simulating

mRNA values x*g1, . . . ,x*gN for every gene from the NB distribution

with mean xg and over-dispersion �̂x, where N is typically 107 to

obtain sufficient granularity of the P-values. Then each y*g1, . . . ,y*gN is

simulated once from a NB distribution with mean x*gj�̂ and over-disper-

sion �̂y, where �̂ and �̂y are as described earlier. A one-sided P-value is

calculated from these simulations as:

pg ¼

PN
k¼1 Iðy

�
gk4ygÞ

N
, ð2Þ

where I is the indicator function. This corresponds to the proportion of

simulated read counts for bound ribosome greater than the observed

count. Low P-values imply ribosome levels are greater than expected

from a gene’s mRNA level, whereas high P-values imply the reverse. If

there is only a single experiment, two-sided P-values are obtained as:

ptg ¼ 2min
g

pg, 1� pg
� �

: ð3Þ

These P-values are corrected for multiple comparisons using the

q-value method of Storey (Storey, 2002). Although the focus so far has

been on the estimate of significance in a single sample, the next section

details how to estimate both one- and two-sided P-values when there is

more than one experiment in a condition.

2.5 Combining P-values within a condition

For every condition with two or more replicates, we would like a single

consensus P-value to quantify how unexpected the ribosome levels are

given the mRNA abundance of the gene in that condition. A common

approach for combining independent P-values is Fisher’s method, which

uses a test statistic S:

S ¼
Xn
i¼1

�2 log pið Þ, ð4Þ

where S is distributed as �2 with 2 n degrees of freedom. Here, S is a

function of the product of the independent P-values, and thus it is pro-

portional to the geometric mean of the P-values. Fisher’s method is sen-

sitive to single small P-values. We have used and developed an

application of alternative methodology proposed by Edgington

(Edgington, 1972). The method, which is based on the arithmetic mean

of P-values, estimates a combined P-value that is more appropriate than

Fisher’s method in this context because it is less sensitive to single outlier

P-values. In the case of two replicates i and j in a given condition, we let

d¼ piþ pj for piþ pj� 1. This defines a line that passes through (d, 0) and

(0, d) (as in Fig. 2). Here, all pairs of P-values satisfying this condition are

considered equally significant, whereas pairs satisfying d’5d are con-

sidered more significant. Therefore, all more significant pairs of

P-values trace out a triangle to the left of d. For piþ pj� 1, the combined

P-value is thus:

P ¼ 0:5 pi þ pj
� �2

, ð5Þ

whereas for piþ pj41,

P ¼ 0:5þ pi þ pj � 1
� �

� 1�
pi þ pj � 1

2

� �� �
: ð6Þ

The first term corresponds to the triangle for d¼ 1 and the se-

cond corresponds to the trapezoid to the right of this line. Critically,

input for this method is the one-sided P-values of ribosome level on

mRNA, such that pairs of small one-sided P-values give small combined

P-values and pairs of large one-sided P-values give large combined

P-values.

Additionally, this methodology can be generalized to any number of

dimensions using the same principles. The assumption, however, under-

lying the appropriate sampling distribution used to estimate P-values is

difficult to compute. It is the distribution of the sum of independent,

identically distributed random numbers, each uniformly distributed on

the unit interval [0, 1]. This is known as the Irwin–Hall distribution (Hall,

1927; Irwin, 1927), where the density of d is:

fn �ð Þ ¼
1

n� 1ð Þ!

X�
k¼0

ð�1Þk
n
k

� �
ð�� kÞn�1: ð7Þ

Integration gives the cumulative distribution function of d:

Fn �ð Þ ¼
1

n!

X�
k¼0

ð�1Þk
n
k

� �
ð�� kÞn: ð8Þ

The one-sided P-value is then P¼Fn(d). A two-sided combined

P-value can be obtained as before (3) and corrected for multiple com-

parisons as described previously.
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2.6 Assessing changes in translational regulation between

conditions

To compare the translational regulation for every gene between pairs of

conditions, we test for equality of the within-condition P-values, which

allows mRNA levels to change while maintaining a valid test. P-values

are converted to standardized Z-statistics using the Gaussian quantile

function G�1:

z ¼ G�1 pð Þ: ð9Þ

Let pij represent the one-sided P-value for ribosome relative to mRNA

level for the ith condition and jth replicate for one gene. Assuming two

replicates, the corresponding Z-statistics are zij, I¼ 1, 2, j¼ 1, 2. The test

statistic for every gene g is therefore:

tg ¼
z11 þ z12ð Þ � z21 þ z22ð Þð Þ,cSEg

ð10Þ

where cSEg is the estimated standard error of the numerator. Accurately

estimating SEg from a small number of values for every gene is challen-

ging. Although previous methods developed for the analysis of small

microarray studies have used moderated approaches (Smyth, 2004), we

believe insufficient information exists within genes to derive an accurate

estimate in this way. Therefore, we derive a single cSEg across genes. We

calculate the variance–covariance matrix for the Zs, which leads to the

estimate:

cSEg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i, j¼1

s2ij

" #
þ 2 s11, 12 þ s21, 22

� �
� 2ðs11, 21 þ s11, 22 þ s12, 21 þ s12, 22Þ

vuut :

ð11Þ

where the first term is for the variances and the second and third terms

are for the covariances. Generally, if there exists other than two repli-

cates, all within condition covariance terms are added, whereas all be-

tween condition covariance terms are subtracted. Now cSEg would be

estimated ideally from only the genes where there has been no change

between conditions, but these genes are unknown. Therefore, if there are

m total samples in the test, we screen out genes with numerators corres-

ponding to Equation (10) greater than 3
ffiffiffiffi
m
p

before estimating cSEg. Test

statistics (10) can then be converted into two-sided P-values by compari-

son with the standard Gaussian distribution and corrected for multiple

comparisons as described previously.

We note that although genes are correlated across conditions, this test

uses only the P-values within conditions. Nevertheless, the denominator

of the test includes the covariance of the statistics in the numerator, so

this correlation is incorporated. Additionally, a more natural test may use

ribosome occupancy counts directly instead of the Gaussian quantile

transformation of the P-values that we use here. Nevertheless, because

of our use of the errors-in-variables model and the skewness of the NB

distribution, there was no clear formulation to us of such a test. We did

examine test statistics based on differences and log ratios and none were

as powerful as the one described here. This method is suitable for any

number of replicates (including as few as one) after making the requisite

adjustments to (10) and (11).

2.7 Simulations to assess size and power

We performed simulations to evaluate the size and power of the Babel

framework that assumed the NB-regression-NB model was correct. The

parameters used for all simulations were those inferred from the second

replicate of the control (DMSO) experiment in Hsieh et al. (Hsieh et al.,

2012). Specifically, for each set of parameters, we generated 100 datasets

with two replicates in each of three conditions. Using 10 582 expressed

genes, for every replicate and condition we simulated mRNA levels from

a NB distribution with mean according to the observed mRNA abun-

dances and over-dispersion estimated from the Hsieh et al. data. From

these simulated mRNA levels, we further simulated expected ribosome

levels from a NB distribution with mean and over-dispersion again esti-

mated from the Hsieh et al. data, where the former was the product of the

regression value and the simulated mRNA levels. To evaluate power in

these simulations, we increased or decreased the ribosome levels (as RPF

counts) 2-, 3- and 4-fold for the same 50 genes in each simulation. We

increased or decreased genes either in the bottom 5%, the middle 90% or

the top 5% of mRNA abundance to examine whether the procedure

behaved differently at varying mRNA levels. These genes were altered

for only one of the three conditions. Once the data were generated, our

standard procedure for fitting and P-value estimation was used (as

described previously) and altered genes were identified based on two-

sided tests.

2.8 Comparisons with published gene sets

A strict comparison was made between published results and the mRNAs

identified as translationally regulated by Babel. In total, 144 mRNAs were

previously reported as being reduced translationally in PC3 cells upon

PP242 inhibition, as determined by a threshold of translational efficiency

(Hsieh et al., 2012). Translational efficiency was defined previously as the

difference in the log ratio of ribosome occupancy to mRNA level between

treated and untreated cells. Owing to differences in the gene sets used

(UCSC Known Gene versus Gencode version 11), 30 genes could not be

mapped to a Gencode record of level 1–2 of support and, therefore, a

comparison based on 114 genes was made. For all presumptive false nega-

tives in the present analysis, manual inspection of read alignments across

the UCSC canonical form andGencode gene models (including a General

Transfer Format (GTF) file of all unified models used here) was under-

taken with the Integrative Genomics Viewer (http://www.broadinstitute.

org/igv/) to confirm coding sequence differences.

3 RESULTS

3.1 Operating characteristics of Babel

To determine the operating characteristics of Babel, we per-

formed simulations from our errors-in-variables doubly NB re-

gression model. We assessed the type I error rate and the power

both within and between conditions by varying the number of

replicates; significance and mRNA expression levels; and in the

case of power, fold change. Both within and between conditions,

Babel produced accurate nominal P-values in the tails for null

data, that is, data for which there is no true difference for any

gene. As an example, for �¼ 0.05 for both within and between

conditions, 5.21 and 4.94% of genes were significant for two

replicates, respectively (Supplementary Table S1; Fig. 3A).
We also evaluated the power of Babel by altering 50 genes at

multiple levels of mRNA expression, increasing or decreasing the

ribosome association between 2- and 4-fold. Within a given con-

dition, Babel had similar power for increases and decreases

across different levels of the mRNA distribution, except for the

expected reduction in power for identifying decreases of any

magnitude in ribosome association at low levels of mRNA ex-

pression. At � ¼ 0.05, mRNAs with a 4-fold increase or decrease

in ribosome association in two replicates were identified 87.4 and

92% of the time, respectively, in the middle 90% of the mRNA

abundance distribution (Fig. 3B, see Supplementary Table S2).

As expected, increasing either the fold change of ribosome-given-

mRNA levels or the number of replicates increased the power in

all cases. For testing between conditions, additional replicates are

needed to achieve similar power to the within test. For the

2999

Assessing gene-level translational control

p
P
-
p
i
While
-
ile
p
to
while
p
tilize
p
due to 
 (DMSO)
,
two
three
,
four
,
p
tilized
above
Due
-
ere
http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/
p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt533/-/DC1
two
four
very 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt533/-/DC1
Indeed, f


aforementioned parameters (4-fold increases among middle 90%

mRNA levels at �¼ 0.05), 73% of increased genes were identi-

fied (as compared with the 87.4% described previously).

Nevertheless, the power increases to 88% with the addition of

a third replicate, emphasizing the need for proper study design

when considering a multifaceted analysis of changes both within

and between conditions. Finally, we confirmed that increasing

the fold change or the mRNA level always increased the power in

Babel and that for fixed levels of both, there was more power to

detect genes with increased translation than those with decreased

translation.

3.2 Reassessing mRNA translation downstream of mTOR

signaling

To assess the performance of Babel, we analyzed translational

control downstream of mTOR signaling (Supplementary Fig.

S1). Ribosome profiling was previously performed on the PC3

prostate cancer cell line upon perturbation with one of two

pharmacological inhibitors of mTOR: either the allosteric inhibi-

tor rapamycin or the stringent adenosine triphosphate (ATP) site

inhibitor PP242 (Hsieh et al., 2012). Each experiment was per-

formed in duplicate as a biological replicate, and control experi-

ments were performed with DMSO.
The original analysis identified 144 mRNAs that were

decreased selectively in ribosome association upon PP242 inhibi-

tor treatment. Of these, 114 were analyzed here (because of dif-

ferences among gene definitions; see Methods). Notably, at

�¼ 0.05, Babel analysis identified 90 of these 114 genes from

the original analysis (79%; P-value� 0, McNemar’s test), indi-

cating strong concordance (Fig. 4A). These included a large

number of the components of the translation machinery and a

functionally validated pro-invasion gene signature, both consist-

ent with upstream inhibition of mTOR signaling (Hsieh et al.,

2012). Among 24 presumptive false negatives, those identified by

the previous study but not significant in Babel, some had high

variability between replicates (Supplementary Fig. S2), whereas

others varied because of differences in the gene models used by

the two analyses (see Methods).

Notably, at a q-value cutoff of 0.25, Babel analysis identified

163 genes with a significant increase or decrease in ribosome as-

sociation upon robust mTOR inhibition with PP242. Of those,

100 were not previously observed (Supplementary Table S3).

Although many of these new findings were attributable to the

broader range of mRNA expression Babel uses to credential

genes for analysis, others revealed specific facets of mTOR regu-

lation of translational control. Babel appeared particularly effect-

ive at identifying networks of functionally related genes. One such

inter-connected module was comprised of multiple Rab family

Ras-related GTPases involved in endocytosis. Although both

the original study and Babel identified PP242-inhibitor related

translational regulation of RABGGTC, a Rab geranylgeranyl-

transferase, Babel also identified RAB3A and RAB13, indicating

mTOR signaling may play a role in the translational regulation of

multiple molecular components of endocytic trafficking.

Among core functional modules, Babel analysis identified five

subunits of the eukaryotic initiation factor 3 (eIF3) that were

significantly reduced in ribosome association upon mTOR-

kinase inhibition (Supplementary Table S4). Although two

non-conserved subunits eIF3l and eIF3h were identified previ-

ously (Hsieh et al., 2012; Thoreen et al., 2012), we found three

additional components that had lower than expected ribosome-

given-mRNA levels upon mTOR inhibition with PP242 that

were absent upon rapamycin treatment, an effect that was

eIF3-specific (Fig. 4B). Although the precise biochemical func-

tions of eIF3 remains to be determined, it is known that eIF3

interacts with eIF4G to mediate the assembly of the 43 S ribo-

some on individual mRNAs and its depletion reduces transla-

tion. Notably, all of the translationally repressed subunits, both

conserved and non-conserved, have a direct physical interaction

(Fig. 4B, inset), four of which (eIF3a, f, h and e) are also con-

stituents of the functional core essential for eIF3 complex for-

mation (Masutani et al., 2007; Siridechadilok et al., 2005; Zhou

et al., 2008). These findings support a direct contribution of eIF3

loss to PP242, but not rapamycin-mediated inhibition of trans-

lation. Additionally, subunits dispensable for active eIF3 com-

plex formation(Masutani et al., 2007) (eIF3l) were also

translationally repressed, indicating a regulatory function may
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exist beyond complex formation that is controlled at the trans-

lational level rather than at the transcriptional level in response

to upstream mTOR signals. Together, these results demonstrate

eIF3 may be a key downstream effector of mTOR–kinase-

mediated inhibition of translation.

4 DISCUSSION

The ability to draw statistically principled inferences about trans-

lationally regulated genes from ribosome profiling is necessary

for the discovery of specific mechanisms of, and abnormalities in,

translational control in diverse cellular systems. Here, we intro-

duce the Babel framework for performing just such an analysis.

Babel produces a natural and readily interpretable summary

(P-value) of the level of ribosome-given-mRNA for individual

genes within samples and between conditions. On simulated

data, we demonstrated that Babel has proper type I error both

within and between conditions and possesses good power that

increases with sample and effect size, emphasizing the need for

careful design of ribosome profiling experiments. A reanalysis of

ribosome profiling in response to multifaceted mTOR inhibition

both confirmed prior findings, and importantly, extended them

to identify novel functional modules subject to translational

control in prostate cancer cells.
Among the greatest strengths of Babel is model flexibility. As

more is learned about the layers of overt post-transcriptional

regulation that impact ribosome occupancy and may uncouple

the abundance of a transcript from its level of active translation,

quantitative measures of these underlying processes can be incor-

porated as covariates to improve the accuracy of the model.

Babel also introduces a new approach for combining P-values

across independent tests in this context that has applicability far

beyond the analysis of ribosome profiling. Nevertheless, chal-

lenges remain. Our simulations and experience indicate that

modeling RPFs for genes with low mRNA abundance (and,

therefore, low RPFs) can produce inaccurate P-values based

on what may be small stochastic fluctuations in read counts be-
tween samples (see Supplementary Note). Although beyond the

scope of this work, improving this will require a joint estimate of
RPF and mRNA counts sufficient to produce accurate P-values

from the bootstrap in the left tail of the mRNA distribution.

Furthermore, additional improvements to the ribosome profiling
protocol are necessary to extend these analyses to isoform-

specific translational patterns.
Despite these challenges, Babel establishes a statistical frame-

work for inferring changes in translational regulation of cellular
mRNAs. In conjunction with ribosome profiling, the Babel

framework will help bridge the gap in our understanding of

the translational control of normal and pathogenic phenotypes.
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