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ABSTRACT

Motivation: The biological significance of genomic features is often

context dependent. Annotating a particular dataset with existing

external data can provide insight into function.

Results: We present CruzDB, a fast and intuitive programmatic

interface to the University of California, Santa Cruz (UCSC) genome

browser that facilitates integrative analyses of diverse local and

remotely hosted datasets. We showcase the syntax of CruzDB using

microRNA binding sites as examples, and further demonstrate its

utility with three biological discoveries. First, DNA replication timing

is stratified in gene regions—exons tend to replicate early and introns

late during S phase. Second, several non-coding variants associated

with cognitive functions map to lincRNA transcripts of relevant

function, suggesting potential function of these regulatory RNAs in

neuronal diseases. Third, lamina-associated genomic regions are

highly enriched in olfaction-related genes, indicating a role of nuclear

organization in their regulation.

Availability: CruzDB is available at https://github.com/brentp/cruzdb

under the MIT open-source license.
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1 INTRODUCTION

Biological significance of many genomic and epigenomic

features is context dependent. Recently, large scale integrative

projects such as the Encyclopedia of DNA Elements
(ENCODE) project (ENCODE, 2012) have systematically

analyzed the regions of active transcription, gene regulation

and chromatin patterns in the genome. Even though decades

of research provided insights into many individual functional

elements, integrative analyses have presented a systems-level
picture that could not be captured previously. Moreover, these

integrative projects have highlighted that biological function

of certain features can be appreciated in the context of other

genomic and epigenomic features in the genomic neighborhood

(Ernst and Kellis, 2013).
Systematic presentation of large-scale datasets from the

ENCODE (ENCODE, 2012) and other projects in the
University of California, Santa Cruz (UCSC) genome browser

(Kent et al., 2002) has enabled individual investigators to ana-

lyze their local data in the context of these already available
features. Already, we are beginning to see the utility of such

a community-wide integration of diverse datasets and their
role in uncovering new facets of basic biology and clinical

research. Researchers routinely use publicly available data-
tables from the ENCODE project and many other large-scale

projects from the UCSC genome browser, which also allow
programmatic access to much of the information used on

that site via its public MySQL servers (Dreszer et al., 2012).
Even so, there exists no user-friendly computational framework

that allows integration of multiple in-house and publicly avail-
able data-tables and parallelized context-dependent analyses

of the integrated datasets. Today, in the era of ‘the $1000
genome, the $100 000 analysis’ (Mardis, 2010), we believe

that such a computational framework can increase the speed
and efficiency of integrative analyses in many areas of biomed-

ical research.
We present CruzDB, a programmatic interface to the genome

data resources from UCSC (Dreszer et al., 2012) that offers a

simple, parallelizable and intuitive syntax to address common
use-cases including annotation and spatial querying. We first

describe the design features of CruzDB, flexibility of the user
interface and potential utilities. We present example code from

the library and then describe four diverse findings that we made
using CruzDB.

2 APPROACH

CruzDB uses the python programming language and sqlalchemy

(SQL-alchemy) library to access publicly available data hosted
at the UCSC genome browser database (Dreszer et al., 2012).

By using sqlalchemy, we are able to wrap the database tables
dynamically rather than requiring explicit code for each of the

thousands of available tables (10 076 in the hg19 database) for
each organism and version-specific database.
Although CruzDB can function using only the remote data

from UCSC’s MySQL instance, we show that substantial
improvements in speed can be achieved from having a local mir-

ror and using built-in parallelization (described in next section).
The library contains a suite of tests to ensure correctness.

CruzDB requires python 2.6 or 2.7, the MySQL client libraries
and the python sqlalchemy library. Installation is available using

standard python tools from http://pypi.python.org/pypi/cruzdb
or from the source repository at https://github.com/brentp/
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3 METHODS

CruzDB simplifies common tasks such as those that return upstream or

downstream features, exons, introns, untranslated regions (UTRs) and

transcription start sites. Location-based queries can use the UCSC bin

column (Kent et al., 2002) when available for more efficient queries. The

bin column that is present in some of the database tables is used to

implement an efficient k-nearest neighbor search for a given feature

along with methods to find nearest upstream and downstream neighbors.

The query results from each table can be customized, such that, for ex-

ample, an interval within a CpG island can be annotated with ‘island’,

whereas one that is nearby will be annotated as ‘shore’. Other operations

include the generation of browser URLs to view a specific feature, the

extraction of coding exons and retrieval of the genomic sequence for any

of those feature types from the UCSC Distributed Annotation Server.

One can also obtain a list of BLAST-Like Alignment Tool (BLAT)

(Kent, 2002) hits for a particular feature.

Using CruzDB, it is possible to mirror a subset of tables from UCSC

to a local MySQL or SQLite database using a single line of python code.

A local copy allows a user to add data that are not in UCSC and then use

that new table just as one would use any other table in the database. This

expands the utility of our tool to any dataset with a start, end and

chromosomal designation. Though it improves the speed of otherwise

network-intensive operations, having a local copy is not necessary, and

all of CruzDB’s features are available on the public MySQL instance,

except for those that modify the database.

To further speed up large numbers of queries, we provide a memory-

efficient implementation of an interval tree that can be much faster than

performing repeated SQL queries. Because all features must be read into

memory to create an interval tree, there is a trade-off between the time to

read all features into memory versus the time spent querying. That trade-

off depends on the number of intervals. Figure 1 shows the comparison

between local and remote instances and whether parallelization is used

when annotating about 3300 intervals (timing data are available in

Supplementary File S1). Note that SQLite is quite fast, even without

parallelization; however, the time for repeated queries to the remote

(UCSC) MySQL instance can be greatly reduced by reading the entire

table into a local interval tree to reduce network back-and-forth. As the

number of intervals to annotate increases, so does the speed improvement

from reading the intervals into a tree. Some speed improvement may be

achieved by modifying MySQL settings; here we have used the default.

The most common use-case has been to annotate a list of intervals with

any table from the UCSC genome-browser database. We provide an

interface, by which, with a single command, a user can annotate a file

of intervals with a list of tables present in the database. For gene-like

tables, the output lists the nearest gene, and whether the interval overlaps

an exon, intron, untranslated region or other gene feature.

4 EXAMPLES

4.1 Code example: microRNA (miRNA) targets

Because CruzDB is a library, we show a short code example,

using the target-scan database of predicted miRNA targets

(Grimson et al., 2007) available in the UCSC genome browser

as targetScanS. We will walk through the important parts of the

code. The full code to perform the analysis is 12 lines (excluding

comments) and is available as Supplementary File S2. First, we

import the needed libraries:

from cruzdb import Genome

from cruzdb.sequence import sequence

Then, we mirror the refGene and targetScanS tables from

UCSC (version hg19) to a local SQLite database:

local¼Genome(‘‘hg19’’)\

.mirror((‘‘refGene", ‘‘targetScanS’’),

"sqlite:///hg19.mirna.db’’)

Now that we have mirrored these tables from the remote

UCSC server, they will always be available in the local SQLite

database as long as we keep the hg19.mirna.db file. We then

iterate over the rows of refGene, where each row is a python

object with methods such as ‘is_coding’.

for gene in (rgene for rgene in

local.refGene if rgene.is_coding):

Inside that loop, we extract the gene’s 30 UTR and search for

any miRNA in targetScanS that it overlaps using the efficient bin

query:

utr_start, utr_end ¼ gene.utr3

sites ¼ local.bin_query(’targetScanS’,

gene.chrom,

utr_start,

utr_end)

Still inside the gene loop, we then filter to those sites that

contain at least one miR-96 binding site with a score485 and
then print those to a file along with the UTR sequence. We also

save the gene name for later gene-ontology analysis:

if any(‘‘miR-96’’ in s.name

and s.score485 for s in sites):

print gene, sequence(’hg19’, gene.chrom,

utr_start, utr_end)

ref_seq_ids.append(gene.name)
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Fig. 1. Intervals annoted per second for a set of about 3300 intervals

using a local SQLite, local MySQL or remote (UCSC) MySQL instances

for parallel SQL queries (light) or traditional serial queries (dark)
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After this loop, we will have a file of the genes that have a
miR-96 binding site in their 30 UTR. We can also send the genes
to DAVID (Huang et al., 2009) in a single command:

Genome.david_go(refseq_ids)

This will open a genome browser window with the genes
loaded into DAVID. Even with this short example, we identify

relationships that are biologically plausible. We know that miR-
96 is associated with hearing loss (Menca et al., 2009); when we
look at the ontology enrichment from DAVID (Supplementary

File S3), we see terms associated with synapses and cell junction
which are, in turn, known to be associated with deafness and

hearing loss (Martinez et al., 2009). Although our findings in this
example are not necessarily novel, it does demonstrate the use of
our approach in identifying enrichment of biologically relevant

functions in the set of genes with a common miR binding site,
which can be helpful in prioritizing gene lists to identify disease

(or other condition) relevant regulatory elements.

4.2 Replication timing

DNA replication in the human genome is spatiotemporally seg-

regated such that some genomic regions are replicated early and
some late (Hansen et al., 2010). It was previously suggested that
gene-rich regions replicated early. But it was not surveyed

whether both exons and introns replicate early, or whether the
replication timing pattern is context dependent even at a finer
scale. Integrating DNA replication timing data from multiple cell

types, and using the definition provided by Hansen et al. (2010),
we marked the ‘constant early’ and ‘constant late’ replication

timing regions—i.e. the regions that were replicated early and
late irrespective of the cell type tested. Integrating this locally
hosted dataset with CpG island, and refGene data-tables from

the UCSC genome browser, we find that early-replicating regions
are enriched for gene bodies and for CpG islands relative to the

late-replicating regions (Supplementary Files S4 and S5), which
is consistent with that reported by Hansen et al. (2010). In con-
trast, we find that introns are relatively more likely to be repli-

cated late. For instance, among those regions that fall within a
gene, there is 152% enrichment for late-replicating regions that
fall entirely in an intron (without touching an exon) relative

to early-replicating regions. When we restrict to coding genes
with at least one intron, the enrichment goes up to 159%

(Supplementary Files S6 and S7). Although it requires further
investigation, this is a novel finding that suggests that even
though gene-rich regions are replicated early, there are finer-

scale replication timing patterns that correlate with intron–
exon structures.

4.3 LincRNAs

Complex genetic diseases are usually associated with multiple
common and rare genetic variants. Although a small subset of
these variants overlap with known genes, many reside in non-

protein coding regions. Some of these variants were shown to
affect regulatory elements that affect expression of known genes.
Non-coding RNAs (ncRNAs) are a class of regulatory RNAs

that play important roles in development, cancer and other dis-
eases. LincRNAs are a relatively recently identified class of

ncRNA, which play key role in epigenetic regulation (Lee,

2012), and there are 420 000 predicted lincRNA genes in the

human genome. So far, the genetic variants have not been

systematically surveyed in the context of different classes of

ncRNAs including lincRNAs.
Here, we use lincRNA transcripts available in the UCSC hg19

from Cabili et al. (2011) and overlap with the genome-wide asso-

ciation study (GWAS) catalog from NHGRI (Hindorff et al.,

2009) as available in UCSC’s gwasCatalog table. The catalog

contains a list of 12194 single nucleotide polymorphisms (SNPs)

that have been associated with one of over 600 traits. After

annotating with CruzDB (Supplementary File S8), we examined

SNPs from the GWAS catalog that overlapped a lincRNA, and

especially those that were410kb from the nearest gene. Using

these criteria, we found 388 SNPs that overlapped a lincRNA

and were also sufficiently distant from known RefSeq genes.

When we enumerate the trait (disease category) with the highest

proportion of SNPs that fall within a lincRNA distant to a gene

and then filter to those that show at least five SNPs within a

lincRNA, some traits among the highest by this metric are intel-

ligence (5 of 57 SNPs fall in lincRNAs) and other categories

related to cognitive disorders (Supplementary File S9).

Although overlap does not automatically indicate causality, it

is consistent with the role of these lincRNAs in development.

There are several more instances where disease-associated vari-

ants overlap with lincRNAs with relevant biological functions.
Using more relaxed criteria, where an SNP was selected simply

if it was closer to a lincRNA than to the nearest gene, we found

2153 SNPs (Supplementary File S10). Our findings combined

with the recent study showing a lower incidence of SNPs

within lincRNAs (Chen et al., 2013) show the importance of

annotating GWAS results with lincRNAs in addition to genes.

4.4 Lamina-associated domains

Within the nucleus, different genomic regions occupy distinct

nuclear territories, such that some regions are in contact with

nuclear lamina–termed lamina-associated domains or LADs

(Dittmer and Misteli, 2011; Guelen et al., 2008). These regions

usually have repressive chromatin marks and lower levels of gene

expression. However, it has not yet been investigated systemat-

ically whether certain classes of genes are more clustered in

LADs compared with that expected by chance. Overlaying

data on LADs from Guelen et al. (2008), and known genes, we

find over 5000 genes overlap completely/partially with the LADs

(Supplementary File S11). Furthermore, piping the genes that

overlap a LAD with a score40.9 (the fraction of probes with

a positive smoothed log-ratio) to the DAVID gene-ontology

enrichment software (Huang et al., 2009), we report strong

enrichment for categories related to olfaction (adjusted

P51e-80), G-protein coupled receptor (adjusted P51e-60) and

other categories related to sensing (Supplementary File S12).

Our findings are consistent with a recent report (Clowney

et al., 2012) that nuclear clustering of olfactory receptor genes

governs their monogenic expression. It is suspected that laminB

receptor-induced changes in nuclear architecture influences sin-

gular transcription pattern of the olfactory receptor genes

(Clowney et al., 2012).
When we create a stricter subset of genes by filtering to those

with a score greater than 0.9 that fall entirely within an LAD, we
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find even stronger enrichment of olfaction and related terms
(adjusted P 51e-106), G-protein coupled recepter (adjusted
P51e-95, Supplementary File S13).

5 DISCUSSION

We have showcased the programmatic interface of CruzDB
using miRNA binding sites as motivation, and further demon-
strated its utility using three biological examples. The biological

examples and their CruzDB code demonstrate the simple syntax,
and the potential of this utility to facilitate hypothesis-driven
studies. Although the examples we have shown are in human

version hg19, CruzDB can be used for any organism and version
available in the UCSC database by using, for example, ‘dm3’ as
the initializer.

Although previous studies have demonstrated higher order
organization of DNA replication timing patterns in the human
genome, our observation that replication timing patterns correl-

ate with intron–exon structures reveals a finer-scale stratification
of DNA replication patterns within gene regions. LincRNAs
play major regulatory roles in different biological processes in
neuronal and other tissue types, but their role in complex cogni-

tive traits and diseases has not been systematically assessed yet.
We report several instances where disease-associated variants
overlap with lincRNAs with relevant biological functions.

Our findings, combined with the recent study showing a lower
incidence of SNPs within lincRNAs (Chen et al., 2013), highlight
the importance of examining GWAS hits in this context. Finally,

integrating data on LADs and protein-coding regions, we find
that olfactory receptor genes are highly enriched in the LADs.
Our findings are consistent with a recent report that nuclear
clustering of olfactory receptor genes governs their monogenic

expression, and that laminB receptor-induced changes in nuclear
architecture influence singular transcription pattern of the
olfactory receptor genes (Clowney et al., 2012).

Further work needs to be done to validate this work and to
demonstrate the broader impact of our findings in each of these
four biological cases in detail, we aim to pursue them outside the

scope of this method article. Nevertheless, the four examples
outline the broad utility of CruzDB and its applications in
diverse areas of biomedical research.

6 CONCLUSION

We have introduced CruzDB, a parallelizable and intuitive pro-
grammatic interface with UCSC genome browser that allows
integrative context-dependent analyses of diverse local and

remotely hosted datasets, as well as annotation and spatial
querying. Some of the functions that make CruzDB a library

of broad and general utility are the feature extraction, fast quer-
ies and simple syntax. Using the library, one can mirror the
UCSC databases to a local SQLite or MySQL database, perform
location-based queries and perform integrative analyses combin-

ing local and remotely hosted features. We have shown how
to create a local copy of selected tables is a single line of
code and how having that local copy improves the speed of

later analyses.
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