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ABSTRACT

De novo motif discovery has been an important chal-
lenge of bioinformatics for the past two decades.
Since the emergence of high-throughput techniques
like ChlP-seq, ChIP-exo and protein-binding micro-
arrays (PBMs), the focus of de novo motif discovery
has shifted to runtime and accuracy on large data
sets. For this purpose, specialized algorithms have
been designed for discovering motifs in ChIP-seq
or PBM data. However, none of the existing
approaches work perfectly for all three high-through-
put techniques. In this article, we propose Dimont, a
general approach for fast and accurate de novo motif
discovery from high-throughput data. We demon-
strate that Dimont yields a higher number of correct
motifs from ChiIP-seq data than any of the
specialized approaches and achieves a higher
accuracy for predicting PBM intensities from probe
sequence than any of the approaches specifically
designed for that purpose. Dimont also reports the
expected motifs for several ChIP-exo data sets.
Investigating differences between in vitro and
in vivo binding, we find that for most transcription
factors, the motifs discovered by Dimont are in
good accordance between techniques, but we also
find notable exceptions. We also observe that
modeling intra-motif dependencies may increase
accuracy, which indicates that more complex motif
models are a worthwhile field of research.

INTRODUCTION

New high-throughput techniques such as ChIP-seq (1),
ChIP-exo (2) and protein-binding microarrays (PBMs)
(3) have dramatically increased the amount and quality

of data that can be used for de novo motif discovery.
ChIP-seq experiments determine binding regions of
DNA-binding proteins in vivo by cross-linking protein
and DNA, immunoprecipitating the targeted protein and
sequencing the bound fragments. In case of ChIP-exo, the
fragments are shortened by an exonuclease before
sequencing. PBMs allow for measuring probe-specific
binding affinity in vitro for a huge number of systematic-
ally chosen double-stranded probes. Despite the experi-
mental differences, these approaches yield thousands of
candidate binding regions together with a measure of con-
fidence, which can be used for de novo motif discovery.

Ma et al. (4) provide an extensive comparison of de novo
motif discovery tools capable of using ChIP-seq data,
where ChIPMunk (5) and POSMO (4) are the best-per-
forming tools closely followed by DME (6), DREME (7)
and MEME (8). A detailed comparison of de novo motif
discovery tools using PBM data is given by Weirauch et al.
(9), where FeatureREDUCE emerges as top-performing
algorithm. However, there is no tool that works well for
data from both experimental techniques (9). For ChIP-exo
data, no specialized tool is currently available, and
research resorts to well-established algorithms from the
pre-NGS era (2).

The lack of a universally applicable approach hampers
the integration of data from different techniques and com-
plicates the comparison of the resulting motifs, e.g.
between in vivo and in vitro binding. Hence, we propose
Dimont, a general approach for probabilistic discrimina-
tive de novo motif discovery that is capable of handling
ChIP-seq, ChIP-exo and PBM data.

The runtime of most probabilistic de novo motif discov-
ery tools is mainly determined by iteratively evaluating the
likelihood. As the positions of the binding sites within the
target sequences are unknown (hidden variables), these
tools need to consider all admissible binding site positions
for evaluating the likelihood, which has a decisive influ-
ence on runtime. One approach to circumvent this
problem is to resort to k-mer enumeration methods like
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POSMO (4), which yields a competitive runtime even on
large data sets. Dimont implements an alternative
approach that allows for adhering to probabilistic
methods using the popular ‘zero or one occurrence per
sequence’ (ZOOPS) model of many de novo motif discov-
ery tools (8,10-13) while achieving acceptable runtimes.
Dimont uses that only a few binding sites are buried
within long target sequences. In most probabilistic
approaches, this results in a big discrepancy between the
number of finally predicted binding sites and the number
of positions that need to be evaluated for computing the
likelihood, and in wasting a considerable amount of
runtime during training.

Hence, we only consider those positions contributing the
most to the likelihood of a target sequence (Figure 1).
During optimization, we dynamically determine the pos-
itions to be evaluated keeping the learning scheme flexible
to adapt to the positions of potential binding sites. This
acceleration scheme allows for using all ChIP binding
regions or all PBM probe sequences for de novo motif dis-
covery instead of limiting the input data to a fixed number
of (high-confidence) sequences (14).

As peak occupancies or probe intensities contain
valuable information for motif discovery, Dimont
converts these to soft labels reflecting the a priori prob-
ability of a sequence being bound. These soft labels are
used for learning parameters by a weighted variant (15) of
the discriminative maximum supervised posterior prin-
ciple (16,17).

In previous studies, the complexity of motif models was
limited mostly owing to the limited amount of data. For
this reason, simple models including consensus sequences
as well as position weight matrices and sequence logos as
their graphical representation are widespread. However,
due to the enormous amount of high-throughput data,
more complex models including inhomogeneous Markov
models of higher order, which have been proven advanta-
geous for other binding sites (18,19), can be used for de
novo motif discovery and prediction of transcription factor
binding sites. Hence, we include the capability of learning
higher-order inhomogeneous Markov models into
Dimont.

We implement Dimont within the open-source Java
library Jstacs (20). We provide a Dimont web server at
http://galaxy.informatik.uni-halle.de and a stand-alone
command line application at http://www.jstacs.de/index.
php/Dimont.

MATERIALS AND METHODS

The input data of Dimont are DNA sequences
X =Xy,...,x, where each symbol x, is from the DNA
alphabet ¥ ={4,C,G,T}. Each of the sequences is
assigned some measure of evidence that reflects how
likely this sequence is bound by the transcription factor
of interest. In case of ChIP-seq and ChIP-exo data, such a
measure is the number of reads or fragments under a ChIP
peak, often termed ‘peak statistic’ or ‘peak occupancy’.
For PBM data, such a measure is the signal intensity of
the probe sequence on the microarray.
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Figure 1. Normalized likelihood profile of a sequence. The red dashed
line visualizes the threshold that is used to accelerate the algorithm. All
positions with peaks above the threshold are included in £, and all
remaining positions are not used for evaluating the likelihood.

In the following, we assume that high-confidence se-
quences, i.e. those with a high peak statistic or a high
signal intensity, contain a binding site of the motif of
interest with substantially higher probability than low-
confidence sequences. Hence, we transform these
measures to probabilities that reflect how likely a
sequence is bound by the transcription factor as explained
in ‘Soft labels from peak statistics and signal intensities’
section. For ChIP-seq and ChIP-exo data, we additionally
assume that binding sites of the targeted transcription
factor occur clustered around the centers of the ChIP
peaks. Hence, we use a non-uniform position distribution
over the binding site positions in the Dimont model, which
we introduce in ‘Dimont models and objective function’. In
subsequent sections, we describe how we accelerate the
optimization of the parameters of the Dimont model, we
outline the complete Dimont algorithm, and we introduce
the performance measures and data sets used in the case
studies of this article.

Soft labels from peak statistics and signal intensities

We map the peak statistics of ChIP data and the signal
intensities of PBM data to soft labels that reflect the prob-
ability assumed « priori of being bound by the targeted
factor. For this reason, we refer to the probabilty of being
bound as ‘foreground probability’ and to the converse
probability as ‘background probability’.

Here, we propose a mapping that is based on the ranks
of the signals within a data set. We denote as r, the rank of
the n-th sequence x, in the data set. Let m = max,{r,} be
the maximum rank, and let /2, = ’* be the relative rank. We
set ¢ to the a priori fraction of sequences that receives a
foreground probability greater than 0.5, and we refer to ¢
as ‘weighting factor’. The value of ¢ can be adapted to the
characteristics of the data, for instance, the significance
level of accepted ChIP-seq peaks. In general, it is reason-
able for any data source to also include low-confidence
sequences into the input data to preserve the discrimina-
tive nature of Dimont. In our studies, we use ¢ = 0.2 for
ChIP data and ¢ =0.01 for PBM data. We define the

foreground probability of sequence x, as

wff’ = (1)
’ h,  1—q°
1+1_1hr1. qq

and the background probability as w? := 1 —w/¢. For
simplicity reasons, we refer to the sequences in
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conjunction with the foreground probability as ‘fore-
ground’ and to the same sequences in conjunction with
the background probability as ‘background’.

Dimont models and objective function

Dimont is based on the popular ZOOPS model used in
many de novo motif discovery tools (8,10-13). In Dimont,
the motif model is a uniform mixture model over the DNA
strands using an inhomogeneous Markov model of user-
specified order, which includes the position weight matrix
(PWM) model (21,22) for order 0 and the weight array
matrix model (18,19) for order 1. We give a detailed def-
inition of the likelihood of the motif model in Section 1 of
the Supplementary Material.

In addition, we use a non-uniform position distribution
P(£) over all possible binding site positions relative to
an anchor position. More specifically, we use a Gaussian
distribution with given initial standard deviation of 75
around the anchor position for ChIP-seq, ChIP-exo and
PBM data (details in Section 2 of the Supplementary
Material).

For positions not covered by a binding site, we use a
uniform distribution. Hence, the likelihood P (x|A) of an
input sequence x, given the ZOOPS model with param-
eters A is defined as

P(motif | A
(E4L—|W_) Z PO)Py(xg, ... Xprw—1 | L)
| | lel (2)
1 — P(motif | 1)
+
|Z|E

Pr(x|)) =

where P(motif|LA) denotes the a priori probability
of observing a motif in a sequence, £ is the set of admis-
sible positions, initially set to [I,L —w+l1], and
Pr(xg,...,Xp—1 | A) denotes the likelihood of the motif
model of width w. During optimization, we adapt £ ac-
cording to the acceleration scheme described in
Accelerated discriminative learning section.

As background model Puy(x|A), we use either a uni-
form distribution or a homogeneous Markov model of
order d.

To optimize the parameters of these models, we intro-
duce a weighted variant (15) of the discriminative
maximum supervised posterior principle (17,16,23) to de
novo motif discovery, i.e.

N
A : P(c| M) Pe(x, | 1)
A = argmax w¢lo - O o),
gmax ) ) v, log X PR 1 2) Ol
CEl
3

where C = {fg,bg} is the set of classes, and Q(A|«) denotes
the prior on the parameters A given hyper-parameters «. In
case of Dimont, this prior is a transformed product-Dirichlet
prior (23) using BDeu hyper-parameters (24,25) based on an
equivalent sample size of 4 for the foreground class and
4. '%q for the background class. Parameter optimization is

performed numerically using conjugate gradients.
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Accelerated discriminative learning

We achieve an acceleration of parameter optimization by
two general ideas. First, we perform a pre-optimization of
parameters using a ‘reduced data set’ containing the
highest-confidence sequences of foreground and back-
ground class (Hence, these sequences also correspond to
the lowest-confidence sequences of the alternative class).
To this end, we select the 30% of the sequences, but not
>1000 sequences in total, obtaining the most extreme
probabilities w/¢ and w’8, respectively. We select these
sequences such that the proportion of foreground and
background probabilities is approximately identical to
the full data set by successively adding sequences with
the highest w/8 and w?, respectively.

Second, we observe that only few binding sites are
detected within long target sequences as exemplarily
depicted in Figure 1. A large proportion of runtime is
wasted while evaluating the likelihood of the motif
model for positions that will never be predicted as poten-
tial binding sites. Hence, we only use the most relevant
positions corresponding to the largest summands in
Equation (2) instead of computing all terms. For this
reason, we compute and normalize all summands of
Equation (2) for each sequence x yielding

PPty - Xt |1)
Ve = — MA\AE +w—1 ) (4)

POPM(XG - Xy 1 | 1)

=1

We then rank the positions ¢ by y, in descending order. This
rank is different from the rank r, according to the peak
statistics or signal intensities, respectively, as given by the
biological experiment. Here, the rank reflects the prediction
due to the statistical model. Subsequently, we select in des-
cending order a set of relevant positions £ until
> ver Ye = 0.5, and we refer to this threshold as ‘likelihood
cutoff’. During numerical optimization, we determine £ at
the beginning of each iteration using the current set of par-
ameters A. Evaluating the likelihood of Equation (2) in the
numerical optimization, we only use the positions in L.

The Dimont algorithm

In the following, we describe the Dimont algorithm step
by step.

Pre-processing
We read the input sequences including peak statistics or
probe intensities, which we convert to soft labels.

Initialization
For initializing the motif model, we first enumerate all
7mers that occur in the reduced data set. We then rank
these 7mers by log(ny,) - nyy /1y, where ny, is the sum of the
foreground probabilities w/¢ of all sequences x,, containing
the current 7mer at least once, and ny, is the correspond-
ing sum of the background probabilities w’s. We filter the
ranked 7mers by excluding redundant variants, which
have a Hamming distance of <2 to better-ranked 7mers.
Of the ranked and filtered 7mers, we select the top 50
7mers and use each of these to initialize the core of a motif
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model of initial width w such that the central positions
obtain a probability of 0.9 for the corresponding nucleotide
in the 7mer and a probability of % for the remaining nu-
cleotides. The bordering positions are assigned a uniform
distribution. We then evaluate the conditional likelihood,
i.e. Equation (3) without the prior term, and choose the top
m initial motifs with respect to conditional likelihood.

Pre-optimization

For each of the m initial motifs, we optimize the param-
eters according to Equation (3) on the reduced data set
using the accelerated optimization described in the
previous section. We then rank the resulting motifs by
the supervised posterior achieved in the optimization.

Filtering motifs

Initialization and pre-optimization may result in redun-
dant motifs, e.g. shifted variants or reverse complemen-
tary motifs. To reduce runtime, we filter such redundant
motifs before the final optimization. We consider two
motifs redundant if their score profiles, i.e. their y, for
all positions ¢ =1,...,L —w+1 show a Pearson correl-
ation greater than 0.3, averaged over all sequences in the
reduced data set. During this filtering step, we allow for
shifts of the score profiles up to w in both directions.
If two motifs are considered redundant, we keep the
motif variant achieving the larger supervised posterior.

Final optimization

For each of those motifs that remain after the filtering
step, we optimize the parameters with respect to
Equation (3) on the complete input data set.
Subsequently, we compute the Kullback—Leibler diver-
gence (26) between the marginal distribution at each
motif position and the nucleotide composition of the
complete data set. We remove bordering motif positions
as long as Kullback—Leibler divergence is below 0.2. If
Kullback—Leibler divergence exceeds 0.8 for a bordering
position, we expand the motif by one additional position.
We then adjust the standard deviation of the position dis-
tribution, and finally optimize the parameters with respect
to Equation (3) on the complete input data set. Again, we
rank the resulting motifs by the supervised posterior
achieved in the optimization on the complete data set.

Post filtering

We finish the Dimont algorithm with a final filtering step
in analogy to pre-optimization to eliminate redundantly
reported motifs.

Default parameters

As default parameters of Dimont, we suggest (i) a motif
model of order of 0, i.e. a PWM model; (ii) a uniform
background model; (iii) a weighting factor of ¢ =0.2;
(iv) an initial motif width of w = 15; and (v) m = 20 pre-
optmization runs. We use these default parameters
throughout this article if not stated otherwise.

Performance measures

For evaluating the performance of de novo motif discovery
predictions, several measures have been used. For PBM
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data, we stick to the area under the receiver-operating
characteristic curve (AUC-ROC) and Pearson correlation,
as these have been used as final performance measures in
the DREAMS challenge (9). Pearson correlation is sensi-
tive to monotone transformations of the predicted scores,
while AUC-ROC is insensitive to such transformations.
For maximizing the Pearson correlation, we search an
adequate transformation,

c-r
I+|c-r|’

©)

where r is the predicted score, namely, the likelihood ratio,
and ¢ is a free parameter. We optimize ¢ to maximze the
Pearson correlation on the training data and use this
optimal value to transform the likelihood ratios of the
test data. For computing AUC-ROC, probe sequences
with a mean signal intensity >4 standard deviations
above the experiment average are assigned to the
positive class, and all other probe sequences are assigned
to the negative class (9).

Comparing the results of Dimont to other tools and
between experiments, we use sequence logos as proposed
by Ma et al. (4), the normalized Euclidean distance as
proposed by Linhart et al. (27) and AUC-ROC.

Data

ChIP-seq data

We obtain the ChIP-seq peaks (centers and peak statistics)
of the 26 ChIP-seq data sets compiled by Ma et al. (4)
from original publications (28-34). For the comparison
of ChIP-seq and PBM data, we additionally obtain the
ChIP-seq peaks of Foxol (GSM546525, (35)), GATA4
(GSM 558904, (36)), Tecf3 (GSMI15177, unpublished)
Tbx5 (GSM558908, (36)) and Tbx20 (GSM 734426, (36))
from Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/), and of Nr5a2 (SRP001796, (37)) from the
hmChIP database ((38), http://jilab.biostat.jhsph.edu/
database/cgi-bin/hmChIP.pl).

For each of these data sets, we download the genome
sequences of the corresponding species and genome
version (hgl8, mm8, mm9, dm3) from the UCSC
Genome Browser (http://hgdownload.cse.ucsc.edu/down
loads.html). For each ChIP-seq peak, we extract 1000 bp
of genomic sequence centered around the given peak
summit and annotate these sequences with the corres-
ponding peak statistic.

ChIP-exo data

We obtain the ChIP-exo peaks (peak coordinate and oc-
cupancy) from the supplement of Rhee and Pugh (2). For
CTCF, we download the human genome sequences (hgl8)
from the UCSC Genome Browser. In case of the three
yeast data sets, we obtain the yeast genome (build
19-Jan-2007) from the Saccharomyces Genome Database
(http://www.yeastgenome.org/download-data). For each
ChIP-exo peak, we extract, based on CW distance,
200bp (CTCF) or 100bp (yeast factors) of genomic
sequence centered around the given peak center, and we
annotate these sequences with the corresponding peak
occupancy.


,
-
,
,
-
]
-
-
,
,
,
,
,
paper 
de-novo
]
-
more than 
]
]
]
,
]
]
]
]
]
]
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
]
]
http://jilab.biostat.jhsph.edu/database/cgi-bin/hmChIP.pl
http://jilab.biostat.jhsph.edu/database/cgi-bin/hmChIP.pl
http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
,
]
http://www.yeastgenome.org/download-data

PAGES5oF 11

PBM data

We obtain the 40 tuning, the 66 training and the 66
test PBM data sets of DREAMS challenge2 (http://wiki.
c2b2.columbia.edu/dream/index.php/D5¢2). For the com-
parison of ChIP-exo and PBM data, we additionally
obtain PBM data sets for Phdl (UP00351) and Rapl
(UP00321) from the UniPROBE database (39,40)
(http://thebrain.bwh.harvard.edu/uniprobe/). Of each
probe sequence, we extract the first 40 bp, comprising 35
unique base pairs and 5 bp of linker sequence.

In case of the PBM data sets of DREAMS, we follow
the proposal of Weirauch et al. (9) and use the mean signal
intensities after spatial detrending and quantile
normalization.

RESULTS
Runtime

We assess the runtime of Dimont on all data sets con-
sidered in this article on a standard laptop (Intel Core
i7, ULV, dual core, 2 Ghz) using standard parameters.
In Figure 2, we plot the runtime of Dimont against the
size of the input data set for different types of input data.
For ChIP-seq data sets comprising sequences of length
1000 bp, we observe runtimes of ~5min for medium
sized data sets. On the largest ChIP-seq data set contain-
ing 73795 sequences of length 1000 bp, Dimont runs for
1h 15min. Without the speed-up strategy described in
Accelerated  discriminative learning section, runtime
would increase by a factor of 5 to 29 as shown for
selected data sets, namely, KNI (504 sequences), c-Myc
(3 413 sequences), KR2 (5 793 sequences) and FoxA?2
(11461 sequences). We give a detailed overview of
runtime dependency on the speed-up strategy and motif
order in Supplementary Figures S1-S3.

For ChIP-exo data sets comprising sequences of length
200 in case of CTCF and sequences of length 100 in case
of the yeast data sets, runtime decreases substantially, and
Dimont reports a motif after at most 5 min.

In case of the PBM data containing ~40 000 probe se-
quences of length 40 bp per data set, Dimont runs for
2-8 min.

ChIP-seq

In a first case study, we assess Dimont using default par-
ameters on the 26 ChIP-seq data sets of Ma et al. (4). In
Figure 3, we present exemplary motifs for three of the
factors considered, while the motifs reported for all data
sets are available in Supplementary Figure S4. In addition
to a visual comparison of the motifs discovered to those
from the literature, we consider the normalized Euclidean
distance (27) between the two motifs as a measure for their
similarity.

The motif of FoxA2 discovered by Dimont closely re-
sembles the motif reported in the Jaspar database (41)
with clear consensus GTAAACA (normalized Euclidean
distance d = 0.06). The motif of Tcfcp?2l1 is also recovered
well by Dimont (d = 0.12), although minor differences are
visible: the strength of conservation at some positions
differs between the motif reported by Dimont and that
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Figure 2. Runtime evaluation of Dimont on the data sets used in this
article. We consider all ChIP-seq data sets (blue), ChIP-exo (red) and
PBM (green) data sets used in this article. Upright triangles represent
the runtime without the speed-up strategy, whereas reversed triangles
represent the runtime using the speed-up strategy. Runtime decreases
by a factor of 5 to 29 due to the speed-up strategy.

of Jaspar. In addition, Dimont includes two additional
positions with a slight preference for A into the motif,
while the last conserved G, present in the Jaspar motif,
is omitted. The latter might be an effect of the strand
model of Dimont combined with the roughly palindromic
structure of Tcfep2ll.

The motif of KNI (d = 0.20) is one of three motifs that
are discovered from ChIP-seq data exclusively by Dimont
(c.f. Supplementary Figure S4, Table 1). We find that the
consensus of the Jaspar motif (AAANTAGAGCA) fits
the motif discovered by Dimont. However, we find two
notable differences between the two motifs. First, the
sequence of As at the 5’ end of the motif is more conserved
in the Jaspar motif. Second, we find mildly conserved Gs
at positions 4 and 12 of the motif reported by Dimont,
which are not present in the Jaspar motif.

We assess the performance of Dimont on all data sets of
Ma et al. (4) by counting the number data sets for which
Dimont successfully discovers the known motif for the
targeted transcription factor. We define a discovery suc-
cessful iff the normalized Euclidean distance between the
predicted motif and the motif described in the literature
(4,33,34,41,42) is smaller than 0.25. We give an overview
of this assessment in Table 1, and we additionally include
the number of motifs correctly discovered by POSMO (4),
MEME (8), DME (6), ChIPMunk (5), HMS (42) and
DREME (7) as reported by Ma et al. (4). All motifs dis-
covered by Dimont are presented in Supplementary
Figure S4.

We find by comparing the discovered motifs to the lit-
erature using the normalized Euclidean distance that
Dimont discovers all 26 motifs. As reported by Ma et al.
(4), POSMO and ChIPMunk discover 23 motifs; MEME,
DME and DREME discover 22 motifs; and HMS dis-
covers 12 motifs. Three motifs (CAD, E2fl and KNI)
are discovered only by Dimont but by none of the
previous approaches.

Considering the average rank of correct predictions, we
find that for 20 of the 26 data sets, Dimont reports the
correct motif on rank 1. For the remaining six data sets
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Figure 3. Three exemplary motifs discovered by Dimont on the FoxA2, Tcfcp2ll and KNI data sets of Ma et al. (4) compared with the corres-

ponding motifs from the Jaspar database.

Table 1. Number of motifs successfully discovered by Dimont on the
data sets compiled by Ma et al. (4) compared with the results of
POSMO, ChIPMunk, MEME, DME, DREME and HMS

Algorithm Total successes Average rank
Dimont 26 1.23
POSMO 23 1.00
ChIPMunk 23 1.00
MEME 22 1.32
DME 22 1.45
DREME 22 1.45
HMS 12 1.00

We define a discovery successful iff the normalized Euclidean distance
between the predicted motif and the motif described in the literature is
smaller than 0.25.

(CAD, GT, KNI, KR1, KR2 and Nanog), Dimont reports
the correct motif only on rank 2. Scrutinizing such cases
(Supplementary Figure S4), we find that the first motif
reported for Nanog does not show a clear similarity to
other known motifs. For KNI, Dimont reports the
binding motif of CAD on rank 1, which can be explained
by substantial co-binding of KNI and CAD (32). For four
Drosophila melanogaster data sets (CAD, GT, KR1, KR?2),
the first motif reported by Dimont is almost identical
having consensus CAGGTAG. The same motif is also dis-
covered by Dimont as a second motif for the HBI and
BCD data sets. This motif is bound by the Zelda (ZLD)
transcription factor, a member of the so-called TAGteam
(43). ZLD has been reported to play a key role in transcrip-
tional activation during maternal-to-zygotic transition, and
regions bound by ZLD in early development are later
occupied by several specific transcription factor including
BCD, CAD, GT, KR and HB (44).

In summary, Dimont discovers all motifs of the ChIP-
seq data sets compiled by Ma et al. (4), including three
motifs that are not found by previous approaches. For the
majority of data sets, Dimont returns the correct motif at
rank 1, whereas rank 2 for the remaining data sets can
often be explained by biological phenomena.

ChIP-exo

In a second case study, we investigate the capability of
Dimont to discover motifs in ChIP-exo data. To this

end, we consider four of the five ChIP-exo data sets
compiled by Rhee and Pugh (2), human CTCF and
Rapl, Rebl and Phdl from Saccharomyces cerevisiae.
We exclude the Gal4 data set, as it contains only 15
binding regions.

We present the motifs reported by Dimont using default
parameters for the yeast data sets in Figure 4. The motif
discovered for Rapl closely resembles the core of the ‘telo-
meric’ motif of Rapl found by Rhee and Pugh (2) and is
an extended variant of the motif reported in Jaspar. In
case of Rebl, the consensus TACCCG of the discovered
motif is identical to the previously reported Rebl consen-
sus (2,45) and highly similar to the Jaspar motif. For
Phd1, Dimont finds a motif highly similar to the Phdl
motif discovered by Zhu et al. (39) from PBM data and
to the Phdl motif reported in Jaspar. Notably, this motif
has not been discovered from these ChIP-exo data by
Rhee and Pugh (2) using MEME for de novo motif
discovery.

For the human insulator CTCF, ChlP-exo as well as
ChIP-seq data are available. We show a comparison of
the motifs discovered by Dimont from the ChIP-seq
and ChIP-exo data sets to the motif present in Jaspar in
Figure 5. All three motifs are highly similar, whereas the
level of conservation slightly differs for some positions.

In summary, Dimont discovers the binding motifs of all
four transcription factors from the ChIP-exo data sets
considered.

Protein binding microarrays

In a third case study, we consider the applicability of
Dimont to PBM data. To this end, we assess the perform-
ance of Dimont on the data provided by DREAMS
challenge2 (cf. PBM data section). In this challenge, the
signal intensities of one PBM layout should be predicted
based on the probe sequences and the signal intensities of
all probes of another PBM layout. During the challenge,
tuning data for both PBM layouts were provided for
calibrating external parameters of the participating
approaches. We use these tuning data to determine (i)
the optimal order d of the background model and (ii)
the optimal weighting factor ¢ for PBM data, whereas
the initial motif width and the number of pre-optimization
runs are left at their default values (cf. The Dimont
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algorithm section). We present the results of these analyses
in Figure 6. Regarding the order of the background
model, we find consistently for motif orders 0 to 2 that
prediction performance as measured by AUC-ROC and
Pearson correlation increases up to a background order of
4. From the first row of Figure 6, we also observe that
motif order 1 (weight array matrix (WAM) model)
performs consistently better than orders 0 and 2.

Hence, we fix the motif order to 1 in the second row of
Figure 6 and investigate the influence of the weighting
factor g on the predictions performance for different back-
ground orders. We find that for higher background
orders, AUC-ROC increases with decreasing weighting
factor. Considering Pearson correlation, a weighting
factor of 0.01 performs slightly better than 0.005,
whereas 0.02 reaches a comparable correlation for most
background orders.

Allowing for model selection with regard to motif order,
we choose for each data set the motif order yielding the
maximum AUC-ROC on the training data set and test the
prediction performance on the corresponding test data set.

AUC-ROC
0.93 0.95
i | ]
Correlation
0.64 0.68
L1 1

B motif=0
B motif=1
& | (=) O motif=2
T T T T T T T T T T T T T T
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Figure 6. Influence of the choice of background order for different
motif orders and weighting factor on the performance on the tuning
data sets of the DREAMS challenge. In the first row, we plot perform-
ance against background order for motif orders 0, 1 and 2 and a fixed
weighting factor of 0.01. In the second row, we plot performance
against weighting factors for a uniform background model and back-
ground orders 0 to 5, given a fixed motif order of 1.

Doing so for the tuning data sets, the performance slightly
increases yielding an AUC-ROC of 0.958 and a Pearson
correlation of 0.714.

Given these results on the tuning data, we fix the back-
ground order to 4 and the weighting factor to 0.01 in the
following analyses on the DREAMS training and test
data. We train Dimont for motif orders 0 to 2 on each
of the 66 training data sets and allow for selection of motif
order on the training data. Following the proposal
of Weirauch et al. (9), we consider the average Pearson
correlation c¢c and the average AUC-ROC roc over all 66
test data sets, and we compute a final score as
(cc/0.696 + (roc — 0.5)/(0.949 — 0.5))/2. Thereby, 0.696 is
the maximum Pearson correlation, and 0.949 is the
maximum AUC-ROC gained by any of the approaches
considered by Weirauch et al. (9).
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Table 2. Performance of Dimont on the DREAMS data compared
with the best approaches according to Weirauch ez al. (9) for predict-
ing PBM signal intensities from probe sequence as measured by
Pearson correlation, AUC-ROC and a combined final score

Algorithm Pearson corr. AUC-ROC Final
Dimont 0.695 0.951 1.002
FeatureREDUCE 0.693 0.949 0.997
Team_D 0.691 0.938 0.984
Team_E 0.696 0.906 0.952

In Table 2, we compare the prediction accuracy
achieved by Dimont to that of the top performers accord-
ing to Weirauch et al. (9), namely, FeatureREDUCE,
Team_D and Team_E. The maximum Pearson correlation
of 0.696 is gained by Team_E, whereas among the existing
approaches, the maximum AUC-ROC of 0.949 is gained
by FeatureREDUCE. We find that Dimont achieves a
Pearson correlation of 0.695, which is slightly greater
than the Pearson correlation of the top performer
FeatureREDUCE but slightly smaller than the Pearson
correlation gained by Team_E. Considering AUC-ROC,
Dimont yields a slightly greater AUC-ROC than all of the
existing approaches considered. However, because of the
large variation between the different data sets, neither of
these improvements can be considered significant.

Combining Pearson correlation and AUC-ROC, Dimont
yields a greater final score than FeatureREDUCE,
Team_D, Team_E and all other approaches considered
by Weirauch et al. (9).

As model selection with regard to motif order further
increases the prediction performance of Dimont, we
consider the selected model orders for different families
of transcription factors, and we give a complete list of
chosen model orders in Supplementary Table S1. For
most families, we do not find a clear preference for a
specific motif order. Notable exceptions are the
AT _hook family, which appears to profit from second-
order dependencies, the bHLH and nuclear receptor
families showing a preference for motif order 1, and the
C2H2 zinc finger family, which shows a slight shift to
motif order 0 compared with all transcription factors.
Motif order 0 is chosen for less than one-third of the
data sets, whereas higher motif orders are preferred for
more than two-thirds of the data sets.

Comparison of de novo motif discovery using different
experimental techniques

Owing to general applicability of Dimont to ChIP-seq,
ChIP-exo and PBM data demonstrated in the previous
sections, we have the opportunity to investigate the con-
sistency of the discovered motifs between in vitro and in
vivo binding and between different technologies. To this
end, we consider all transcription factors for which on the
one hand PBM data and on the other hand ChIP-seq or
ChIP-exo data are available, and CTCF for a ChIP-seq/
ChIP-exo comparison.

In a first study, we run Dimont on the PBM data set
and the corresponding ChIP data set using a PWM model
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and the standard parameters for each technology (ChIP-
seq/ChIP-exo: uniform background, ¢ =0.2, w =15,
m=20; PBM: background order d=4, ¢q=0.01,
w=15,m=20) and compare the resulting binding
motifs. We present the results of this study in Figure 7.
For many data sets, namely, Esrrb, Foxol, Gata4 and
Zfx, we obtain largely similar motifs for both, PBM and
ChIP-seq/ChlIP-exo data. This indicates than in vitro
binding assays like PBMs are a valuable technique to de-
termine binding specificities that are also valid in vivo. For
Nr5a2, Phdl, Rapl and Tcf3, we find minor differences
between the PBM and the ChIP-seq/exo motif, which are
basically different levels of conservation and differences in
the number of flanking positions. We observe the greatest
differences for the two T-box motifs, namely, Tbx5 and
Tbx20. The PBM motifs of Tbx5 and Tbx20 are similar,
both having consensus TNACACCT, and agree with in
vitro T-box motifs from the literature (46,47). The ChIP-
seq motifs for both factors differ substantially from their
PBM counterparts and from each other. Although the
reason for this observation remains unclear, a similar in
vivo motif of Tbx20 and a similar discrepancy between in
vitro and in vivo binding of Tbx20 has been reported
before (47), which might indicate similar effects for
other T-box factors including Tbx5. An alternative ex-
planation might be that in vivo Tbx5 co-binds with
another factor enriched in the top ChIP-seq peaks.
However, increasing ¢ up to 0.6 does not result in a dif-
ferent motif, although a greater number of sequences are
considered to be bound.

In a second study, we consider classification across
technologies as an additional indication of the compliance
of in vitro and in vivo binding. In case of PBM data, we use
the partitioning into positive and negative probe se-
quences proposed in the DREAMS challenge (9). For
ChIP-seq and ChIP-exo data, the positive class contains
the sequences around the top 500 ChIP peaks, and the
negative class comprises 10 shuffled variants of each
positive sequence preserving di-nucleotide content. We
assess the classification performance across technologies
and for model order 0 and 1 in a 10-fold cross-validation
(details given in Section 6 of the Supplementary Material).
For the assessment in each iteration of a cross-validation
run, we use only the motif reported by Dimont at rank 1.

We use the Dimont classifiers obtained on the ChIP and
PBM training data to classify both the PBM and ChIP
data sets for the same transcription factor. For PBM data,
we train the classifier using background order 4 as before
but replace the background model by a uniform distribu-
tion for testing to eliminate influences aside the motif
model on classification performance. We present the
results of this cross-validation in Table 3.

For Esrrb, Foxol, Gata4, Nr5a2 and CTCF, the clas-
sifiers applied to data from a different technology than
used for training achieve a performance that is compar-
able with the intra-technology case. In case of Tbx20 and
TbxS5, we observe a considerably decreased performance in
at least one direction of the cross-technology comparison,
a result that is consistent with the previous statements on
the motif level. Although the PBM classifiers for Tcf3 and
Zfx show a decreased AUC-ROC for ChIP-seq test data,
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Figure 7. Comparison of the motifs discovered by Dimont using PBM and ChIP-seq or ChIP-exo data. For Esrrb, Foxol, Gata4 and Zfx, we obtain
largely similar motifs for PBM and ChIP-seq/ChIP-exo data, whereas we find minor differences for Nr5a2, Phdl, Rapl and Tcf3. In case of Tbx5
and Tbx20, the motifs discovered from PWM and ChIP-seq data differ substantially.

Table 3. Mean AUC-ROC of a 10-fold cross-validation

Factor Order 0 Order 1 Order 0 Order 1 Order 0 Order 1 Order 0 Order 1
Test(ChIP-seq) Test(PBM)
Train(ChIP-seq) Train(PBM) Train(ChIP-seq) Train(PBM)
Esrrb 0.922 0.930* 0.901* 0.885 0.896 0.908 0.861 0.906*
Foxol 0.746 0.768* 0.752 0.794* 0.902* 0.868 0.957 0.962
Gata4 0.787 0.807* 0.739 0.777* 0.974 0.974 0.983* 0.979
Nr5a2 0.853 0.858 0.858 0.866* 0.910* 0.864 0.963 0.965
Tbx20 0.772 0.770 0.512 0.524 0.570 0.691* 0.994 0.990
Tbx5 0.629 0.634 0.604* 0.591 0.808* 0.550 0.992 0.993
Tcf3 0.929 0.925 0.784 0.807* 0.973* 0.886 0.973 0.977*
Zfx 0.723 0.719 0.556 0.563 0.950* 0.942 0.970 0.967
Test(ChIP-seq) Test(ChIP-exo)
Train(ChIP-seq) Train(ChIP-exo0) Train(ChIP-seq) Train(ChIP-exo)
CTCF 0.882 0.881 0.800 0.806* 0.909 0.907 0.877 0.879
Test(ChIP-exo) Test(PBM)
Train(ChIP-exo) Train(ChIP-exo) Train(PBM)
Phd1 0.634 0.621 0.632 0.661* 0.786 0.889* 0.962* 0.957
Rapl 0.781* 0.766 0.800 0.819* 0.758* 0.727 0.823 0.837

We train Dimont on ChIP-seq, PBM or ChIP-exo data and apply each of the resulting classifiers to each of the available data sets for the same
transcription factor. Comparing AUC-ROC for motif orders 0 and 1, the maximum is displayed in bold face, and significant differences are marked

with an asterisk.

the ChIP-seq classifiers for these data sets yield a compar-
able performance on the PBM test data as for the ChIP-
seq test data. In both cases, one explanation might be the
low number of conserved motif positions (cf. Figure 7),
which leads to a large number of random hits in the
shuffled negative sequences. For Phdl and Rapl, the
ChIP-exo classifiers yield lower AUC-ROC values on
the PBM data than the PBM classifiers, whereas the
converse combinations yield a classification that is com-
parable with the ChIP-exo classifiers.

In the previous section, we observed that increasing the
motif order increases the prediction performance of
Dimont for PBM data. The existence of PBM, ChIP-seq
and/or ChIP-exo data for the same transcription factors
allows for investigating whether this observation is due to
artifacts of PBM data or due to true dependencies between
adjacent positions of transcription factor binding sites.

In Table 3, we find that classifiers trained on PBM data
and applied to ChIP data often achieve a greater classifi-
cation performance for motif order 1 than for motif order
0, whereas the opposite tendency can be observed for the
classifier trained on ChIP data and applied to PBM data.
One explanation might be that the systematic design of
PBMs combined with the large number of probe se-
quences allows for capturing true dependencies between
adjacent positions, whereas the dependencies learned
from ChIP-seq data are also influenced by general
dependencies in the long input sequences. An alternative
explanation could be that different modes of binding exist
for several transcription factors, where only one of these
modes is relevant for in vivo binding, but both are repre-
sented in PBM data. Such heterogeneities could be repre-
sented by higher order motif models, but not by PWMs.
We study the dependencies discovered by Dimont for all
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data sets, which show a significantly greater AUC-ROC
for motif order 1 than for motif order 0 for at least one
combination of training and test data sets in
Supplementary Figure S5-S13, and we compare the
dependencies detected by Dimont to those detected by
diChIPMunk (48) in Section 6 of the Supplementary
Material.

DISCUSSION

New high-throughput techniques including ChIP-seq,
ChIP-exo and PBMs have greatly increased the quality
and amount of data that are available for de novo motif
discovery. Specialized tools have been developed for dis-
covering motifs in ChIP-seq data, and other tools have
been developed for discovering motifs in PBM data.
However, none of the current tools work perfectly
across all of these techniques, which hampers integration
of data from different techniques and cross-technology
comparison of the resulting motifs.

Hence, we developed Dimont, a tool for de novo motif
discovery from ChIP-seq, ChIP-exo and PBM data using
an accelerated discriminative learning scheme. We test
Dimont on a collection of 26 ChIP-seq data sets and
observe that Dimont discovers all of the expected motifs,
where three of these motifs could not be discovered by any
previous approach. Hence, we may state that Dimont is
currently one of the best-performing approaches for de
novo motif discovery from ChIP-seq data. Applying
Dimont to ChIP-exo data sets of three yeast factors and
human CTCEF, the discovered motifs are in well accordance
to the literature. We also assess the performance of Dimont
on the PBM data of DREAMS challenge 2 and find that
Dimont predicts signal intensities from PBM probe
sequence with greater accuracy than previous approaches.
Hence, we may state that Dimont is currently one of the
best-performing approaches for predicting PBM intensity
values from probe sequence. Against the background of
these three benchmark studies, we may state that Dimont
is a general approach for fast and accurate de novo motif
discovery from ChIP-seq, ChIP-exo and PBM data.
Although the runtime required by Dimont is greater than
the runtime of the currently fastest approach, POSMO (4),
we consider a maximum runtime of 1 h 15min and a typical
runtime of <10 min acceptable after days or weeks of wet-
laboratory work.

We further investigate whether motifs discovered by
Dimont from in vitro and in vivo data can be transferred
from one technique to the other by comparing the dis-
covered motifs and by cross-technology classification.
For most transcription factors, we find a good generaliza-
tion of the motifs discovered by Dimont, which indicates
that in vitro experiments often yield motifs that are also
valid for in vivo binding. However, we also observe sub-
stantial differences between in vitro and in vivo binding for
two transcription factors, namely, Tbx5 and Tbx20.

For PBM data, we also observe that using an inhomo-
geneous Markov model of order 1 instead of the popular
PWM model substantially increases prediction perform-
ance. We investigate whether this finding can also be
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transferred to ChIP-seq or ChIP-exo data. Indeed, we
observe that increasing the motif order to 1 for de novo
motif discovery from PBM data increases classification
accuracy on PBM as well as ChIP-seq and ChIP-exo
data in the majority of cases.

These findings indicate that with the increased amount
of data due to current high-throughput techniques, motif
models capturing dependencies between motif positions
may be of great value for predicting transcription factor
binding sites, especially for predicting in vivo binding sites
given in vitro training data.

As Dimont is implemented in the open-source Java
library Jstacs (http://www.jstacs.de), new models
capturing such dependencies can flexibly be implemented
and easily integrated into Dimont by advanced users.

AVAILABILITY

For instant use, we also provide a Dimont web server at
http://galaxy.informatik.uni-halle.de and a stand-alone
command line application at http://www.jstacs.de/index.
php/Dimont.
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