
Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 517237, 8 pages
http://dx.doi.org/10.1155/2013/517237

Review Article
Side Population Cells as Prototype of Chemoresistant,
Tumor-Initiating Cells

Vinitha Richard, Madhumathy G. Nair, T. R. Santhosh Kumar, and M. Radhakrishna Pillai

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India

Correspondence should be addressed to M. Radhakrishna Pillai; mrpillai@rgcb.res.in

Received 3 May 2013; Accepted 23 September 2013

Academic Editor: Jiing-Kuan Yee

Copyright © 2013 Vinitha Richard et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Classically, isolation of CSCs from tumors exploits the detection of cell surface markers associated with normal stem cells.
Invariable expression of these cell surface markers in almost all proliferating tumor cells that albeit impart specific functionality,
the universality, and clinical credibility of CSC phenotype based on markers is still dubious. Side Population (SP) cells, as defined
by Hoechst dye exclusion in flow cytometry, have been identified in many solid tumors and cell lines and the SP phenotype can
be considered as an enriched source of stem cells as well as an alternative source for the isolation of cancer stem cells especially
when molecular markers for stem cells are unknown. SP cells may be responsible for the maintenance and propagation of tumors
and the proportion of SP cells may be a predictor of patient outcome. Several of these markers used in cell sorting have emerged as
prognosticmarkers of disease progression though it is seen that the development of newCSC-targeted strategies is often hindered by
poor understanding of their regulatory networks and functions.This review intends to appraise the experimental progress towards
enhanced isolation and drug screening based on property of acquired chemoresistance of cancer stem cells.

1. Introduction

The fundamental problem of tumor recurrence and failing
conventional therapies is largely due to the continuing pre-
sumption that human cancer cell populations are homo-
geneous and every cell in a tumor has indistinguishable
tumorigenic potential. Recent experiments, however, insin-
uate that human tumors may not in fact be functionally
homogeneous but comprise of a very small fraction of
cells that possess actual tumorigenic potential [1, 2]. This
scenario subsequently led to the postulation of the cancer
stem cell hypothesis which puts forth that cancer cells have an
hierarchical developmental structure in which only a fraction
of cells termed cancer stem cells (CSCs) can proliferate
indefinitely and form tumors [3]. One of the great advantages
of the cancer stem cell hypothesis is that it also helps
in understanding other cancer concepts such as minimal
residual disease [4]. Cancers that follow the CSC model may
as well undergo clonal evolution if more than one type of
CSCs coexist or CSCs are under environmental selection
[5]. Furthermore, series of genetic mutations impart one
or another type of growth advantage instigating Darwinian

evolution and survival of a group of stronger stem-like cancer
cells overruling translation to malignancy [6]. Evidence that
either stem or progenitor cells can act as targets for tumor
initiation in a range of solid tumors have been exclusively
reviewed by Visvader [7]. Substantiation of this hypothesis
has gradually gathered pace over the past few years opening
up the reality that design of current treatment strategies
may have overlooked these pivotal cells and their molecular
networks that hold the key to tumor recurrence and relapse.

Understanding the molecular and cellular basis of tumor
heterogeneity both in hematological and solid malignancies
and related treatment resilience requires accurate discrimi-
nation of tumor propagating stem-like cells from the non-
malignant cells. This review focuses on the experimental
advances made in the direction of uncovering CSCs in
multiple tumor types and elucidates their role in enhanced
chemo-resistance and metastatic potentials. We also dis-
cuss herein the major regulatory networks governing CSC-
mediated chemoresistance and CSC-based drug screening
assays leading to effective futuristic modes of therapeutic
interventions.
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2. Proof of CSC Concept—The Assays

Self-renewal and lineage capacity are the hallmarks of any
stem cell. Therefore, as with normal stem cells, assays for
cancer stem cell activity need to be evaluated for their
potential to show both self-renewal and tumor propagation.
Prospective isolations of CSC allow their direct comparison
to normal stem/progenitors, revealing important information
about CSC regulation, CSC origins, and disease pathogen-
esis. Purification of solid tumor-initiating cells (T-IC) has
been difficult because of the universal expression pattern
of most cell surface markers that are currently selected for
cell sorting [8]. T-IC xenograft assays for primary human
solid tumor tissue in nude mice pose the challenge of
residual immune function, triggering host resistance mech-
anisms that will not permit single T-IC to be detected [9].
Xenotransplantation systems only measure the ability of a
human tumor cell to grow in a permissive mouse niche
and do not reflect the actual intrinsic behaviour in vivo.
At present, there is no superior assay system to measure
the tumorigenic potential of primary human tumor isolates
[3, 10].

An ideal in vitro assay would be (a) quantitative, (b)
highly specific and sensitive to detect CSCs even at low
frequency, and (c) rapid. Several in vitro assays have been
used to identify tumor stem cells, including sphere assays,
serial colony-forming unit (CFU) assays (replating assays),
and label-retention assays [3]. Expression of surface markers
by CSCs may vary over time and/or by location [11]. Isolation
of CSCs was based on functional activity when CSC cell
surface phenotypes could not be applied to all cancers arising
from the same tissue type. Investigators have FACS-purified
and functionally characterized human cancers based on
aldehyde dehydrogenase (ALDH) expression, demonstrating
that ALDH+ cells are enriched for CSCs in primary breast
[12] and colon cancer [13]. In some cases, markers not
previously identified on normal stem/progenitors have been
used to isolate tumorigenic populations. ABCB5, a known
chemoresistance mediator in melanoma, was expressed in
only a minority of tumor cells (1.6–20.4%) and only ABCB5+
cells were capable of establishing primary grafts and serially
transplanting disease in NOD/SCID mice [14].

An early method for stem cell isolation used the drug
efflux property of stem cells. Most cells accumulate fluores-
cent dyes such asHoechst 33342 and Rhodamine, but a subset
of “dull cells” is often found and termed the “side population”
(SP phenotype) (Figure 1). A large fraction of hematopoietic
stem and tissue stem cells is in the SP fraction, and most of
the cells in the SP fraction are stem cells (extensively reviewed
in [15]). These cells maintain a high efflux capability for
antimitotic drugs as well. The method was first described in
murine bone marrow cells while displaying Hoechst fluores-
cence simultaneously at two emission wavelengths, wherein
SP cells represented a small subset of cells that were enriched
at least 1000-fold in HSC activity [16]. SP cells isolated from
malignant gastric [17] and gallbladder carcinoma [18] cells
have been shown to exhibit stem cell characteristics such
as unlimited self-renewal, multipotent potential, and drug
resistance [3].

The SP cells are identified according to their ability to
efflux the Hoechst dye at a higher pace than the remaining
tumor cells termed themain population (non-SP). Moreover,
the degree of efflux activity seems to correlate with the
maturation state, such that cells displaying highest efflux
activity are the most primitive in terms of differentiation
potential. There is also a direct link between dye efflux and
stem cell capacity, such that the cells at the lowest tip of SP
phenotype (with the highest dye efflux and least amount of
dye) exhibited the highest stem cell activity over the longest
period of time [16]. T-ICs sorted in thismethod displayed self
renewal capabilities in vivo; that is, the sorted cells generated
a tumor mass in mice every time they were transplanted into
a new mouse [19]. However, as with cell surface markers,
possession of an SP phenotype is not a universal property
of stem cells, and in some tissues, the SP fraction may not
contain the stem cells. Indeed, combining SP determination
with cell-surfacemarker phenotyping has lead to efficient and
reliable characterization of one of the most pure and potent
adult stem cell populations, the HSC subset.The SP assay has
finally emerged as a promising method for identifying stem
cell and progenitor populations in different tissues (Table 1),
particularly in the absence of specific cell-surface markers
[20].

3. Regulators of Multidrug Resistance in CSCs

In clinical scenario, many patients with solid tumors respond
poorly to existing treatment regimens (including chemother-
apy, radiation, and tumor-targeted agents) or relapse quickly
after an initial remission. Several characteristics that make
CSCs resistant to conventional chemo- and radiotherapy
include high expression of drug transporters, relative cell
cycle quiescence, high levels of DNA repair machinery, and
resistance to apoptosis [15]. The potential for quiescence of
cancer stem cells is also a potential concern, and these cells
may be resistant to drugs even in the absence of transporter
expression or activity. The nature of clinical drug resistance
is multifactorial, involving alteration in drug targets, inac-
tivation/detoxification of the drug, decreased drug uptake,
increased drug efflux, and the dysregulation of apoptotic
pathways [21]. ABC transporters are not the sole cause of drug
resistance in CSCs; several other factors (Figure 2), such as
the capacity of a stem cell for DNA repair and its quiescent
state, may also have an impact on drug resistance in a tumor
[22].

3.1. Drug Transporters. Amongst the three “ATP-binding cas-
sette (ABC)” transporters ABCB1 (MDR1/P-glycoprotein),
ABCC1, and ABCG2, (BCRP) had the highest expression
in side population (SP) cells [23]. ABCG2 emerged as an
important multidrug resistance protein because it confers
cross-resistance to several structurally unrelated classes of
cancer chemotherapeutic agents [24]. A recent discovery
showed that Nrf2, an oxidative stress sensor, maintains
the SP cell phenotype by upregulating ABCG2 expression
through its direct interaction with an antioxidant response
element [ARE] on the ABCG2 promoter [25]. The func-
tional MDR1 conferred resistance to apoptosis induced by
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Figure 1: “Side population” phenotype in an oral squamous cell carcinoma cell line, RCB1015.The cell line was stained withHoechst33342 and
analyzed by flow cytometry. (SP-side population; MP-main population; bf-bright field image; uv-ultraviolet fluorescence; blue color- nuclear
staining with Hoechst33342 dye).
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Figure 2: Prime instigators for chemoresistance in tumor stem
cells. Factors contributing to acquired chemoresistance in cancer
stem cells epitomized by side population phenotype across multiple
tumor types.

chemotherapeutic drugs in addition to a fundamental role
in regulating cell death mediated by caspases. MDR1 has
also been shown to confer resistance to cell lysis induced by
activated complements [26]. This growing body of evidence
implicates the importance of transporter proteins in the
protection of the SP cells against a diverse range of cell death
stimuli by functioning as an energy-dependent pump, which
exports drugs out of drug-resistant mammalian cells, lower-
ing the intracellular drug concentration to sublethal levels,
thus acting as determinants of the chemoresistant phenotype
of stem-like SP cells in several human malignancies. They

also impart resistance to multiple chemotherapeutic drugs
currently used in therapy (Table 2).

3.2. Genomic Instability. Cancers in general exhibit extensive
modifications in genome composition, ranging from sub-
tle point mutations to dramatic gains and loss of genetic
material (aneuploidy) [27]. The vast majority are likely to
be passenger mutations [somatic mutations without func-
tional consequences] that do not contribute to the devel-
opment of cancer or confer any clonal growth advantage
that often occur during cell division [28]. However, a small
minority are critical drivers of tumorigenesis that would
have occurred during growth of the cancer, conferring a
growth advantage by positively selecting cancer cells in the
microenvironment of tissue origin [28].These alterations also
render tumor cells the ability to evade growth-inhibitory
signals, resulting in uncontrolled tumor growth. To affirm
that genomic instability is involved in the induction of CSCs,
studies have been conducted using side population (SP)
cells in human nasopharyngeal carcinoma [NPC CNE-2]
and CD133+ human neuroblastoma cells [29]. These cells
were subjected to DNA damage by ultraviolet light and
mitomycin C treatment resulting in an increase in SP fraction
with overexpression of cell cycle regulators in NPC and
neuroblastoma SKN-SH cells. An increase in the number
of SP cells was also observed in recurrent tumor tissue as
compared with the primary tumor in the same NPC patient
[29]. Studies mention that DNA methylation could also be
one of the reasons for acquired drug resistance. A total of
13/41 genes were consistently hypermethylated in cisplatin-
resistant ovarian cancer cell line A2780 cell derivatives.
Furthermore, 5/13 genes [ARMCX2, COL1A1, MDK, MEST,
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Table 1: An account of stem cell-like SP phenotype in malignancies.

Tumor type (%) of sp cells Cellular phenotype and features of sp cells Ref.

Breast 0.18 ± 0.45% CD44+/CD24−/vimentin higher and lower levels of
cytokeratins compared to non-SP cells.

[53]
[54]

Lung adenocarcinoma 24%
SP cells showed chemoresistance to platinum drugs and high
expression of genes related to drug resistance (AKR1C1/C2 and
NR0B1) or cancer metastasis (TM4SF1) & high mRNA
expression of ABCG2, ABCC2.

[55]

Endometrial cancer 0.02% Higher expression levels of vimentin, alpha-smooth muscle
actin, and collagen III in SP induced tumors.

[56, 57]

Ewing’s sarcoma 1.2% High clonogenicity, invasiveness, and ABC transporter
expression in SP cells than non-SP

[58]

Glioblastoma 0.4–1.5% CD133+ SP cells coexpressed nestin and generated tumors in
brains of NOD/SCID mice.

[59]

Prostate cancer 0.1–0.9% CD133+, CD45−, CD81+, Sca-1+
SP clonal cells secreted (TGF-beta1)

[60]

Pancreatic cancer 2.1–8.7% CD133+ SP cells showed significant levels of mRNA expression
for CD133, ABCG2, and Notch1 than non-SP cells.

[61]

Leukemia 0.008–4.1% CD34(+) CD38(−) CD123+ [62]

Hepatocellular carcinoma 0.1–28.7% SP cells showed high chemoresistance, self-renewal,
clonogenicity, and ABCG2 expression.

[63]

Medulloblastoma 12.4–39.1% CD133+ SP cells with increased cell size, decreased S-phase, and
proliferative capacity.

[64]

Renal epithelial malignancy 5.9 ± 0.9% SP enriched for quiescent cells with high proliferative capacity
and stem-like properties.

[65]

Head & neck squamous Carcinoma 0.69–0.9% Activation of EGFR, a gene implicated in HNSCC tumorigenesis
leads to increased SP.

[32]

Urological malignancy 0.1–0.6% SP fraction has enhanced colony forming and proliferative
capacity.

[66]

Ovarian cancer 0.9% SP cells showed higher levels of Oct3/4 and colony formation
efficiency than non-SP cells.

[67]

Nasopharyngeal carcinoma 2.6%
CK19 highly expressed SP cells were more chemo/radiation
resistant related to the expression of ABCG2/smoothened
protein.

[68]

Melanoma 0.96% CD44+/CD133+/CD24+/ABCG2 high SP cells. [69]

Laryngeal cancer 1.7–17% SP cells had high self-renewal, proliferation, radiation
resistance, and tumorigenicity.

[70]

Gastric cancer 0.001–12% High expression levels of adhesion molecules 𝛼2, 𝛼5, 𝛽3 and 𝛽5
integrins, CD44, Oct3/4, and Sox2 in SP cell-injected tumors.

[71]

and MLH1] acquired methylation in SP cells isolated from
drug-resistant ovarian cancer [30].

3.3. Signalling Pathways. Expression of EGFR and other erbB
receptors are deregulated in many cancers [31] and a study
on head and neck squamous cell carcinoma cell lines showed
that activation of EGFR leads to increase in chemoresistant
fraction of SP cells thereby playing a role in regulating cancer
stem cells and tumorigenesis in such tumors [32]. IRESSA
[Gefitinib-EGFR inhibitor] plus Vincristine treatment led
to impairment of SP phenotype [32]. PI3K pathway is
also said to be involved in regulating the SP phenotype.

Recently, it was shown that a PI3K inhibitor LY294002 could
inhibit all ABCG2, MDR1, and MRP1, the three classes
of ABC transporters that were overexpressed in SP cells
and multidrug resistance [33]. Treatment with Hedgehog
[Hh] pathway inhibitor Cyclopamine or Cyclopamine and
Paclitaxel decreased the SP population and expression levels
ofMDR1 efflux protein in prostate cancer cell lines [34]. Gene
profiling studies and protein profiling have demonstrated an
elevated expression of chemoresistance associated proteins
in various types of cancers. A recent study on human stage
II breast cancer specimens showed an increased expression
of Fra-1 a member of the Fos transcription factor family,
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Table 2: Multidrug resistance mediated by SP cells.

SP expressing cancers Resistance to drugs Ref
Gastric cancer cell line SGC-7901 5-Fluorouracil cisplatin, 5-fluorouracil, doxorubicin [18, 72]
Melanoma Paclitaxel [73]
Malignant pleural mesothelioma Mitoxantrone [50]
Head and neck squamous cell carcinoma 5-Fluorouracil mitoxantrone [74, 75]
CLL Fludarabine, bendamustine, or rituximab [76]
Pancreatic carcinoma Gemcitabine [77, 78]
Nasopharyngeal Mitoxantrone, cisplatin, mitomycin-C [68]
Endometrial Paclitaxel [56]
Glioma 5-Fluorouracil and carboplatin [79]

Breast Paclitaxel, epirubicin, mitoxantrone, carboplatin [80]
[54]

Lung Mitoxantrone, doxorubicin [55]
Esophageal 5-Fluorouracil [81]
Bladder Mitomycin-C, mitoxantrone [82]

correlated with a reduced side population fraction [35].
The reverse was observed between reduced expression of
Fra-1 and chemoresistance [35] which implies the existence
of various regulatory proteins that could be tuning the
chemoresistant side population cells.

3.4. MicroRNA. Recent researches have shed light on the
biological importance of miRNAs in the maintenance of
side population phenotype.Themammalian genome encodes
hundreds of MicroRNAs [miRNAs] that collectively affect
the expression of about one-third of all genes. They are an
abundant class of small nonprotein-coding RNAs that func-
tion as negative gene regulators. Recent evidence has shown
that dysregulation of miRNA activity is associated with
disease. miRNAs have been shown to repress the expression
of important cancer-related genes and might prove useful in
the diagnosis and treatment of cancer. Certain miRNAs have
been shown to promote oncogenesis “oncomirs” or to repress
it [36]. Recent work by Misawa et al. [37] has highlighted
the role of microRNA-21 (miR-21) and its upstream regulator
activator protein-I (AP-1) in sustenance of the chemoresistant
SP cells. Treatment of the cells with the AP-1 inhibitor
SP600125 attenuated miR-21 levels and increased topotecan
sensitivity [37]. miR-Let-7 is downregulated in SP cells and
the downregulation in turn makes let-7 lose the prospects
to restrain Ras mRNA, leading to activation of p-Ras and
p-ERK [38]. Upregulation of let-7 also leads to suppression
of ER𝛼 and may be a promising strategy for the inhibition
of the ER signaling pathway and for the elimination of
cancer stem cells, thus aiding in the treatment of breast
cancer [39]. Recently, miR200c and 34a have also been
shown to modulate chemoresistance against Cyclopamine
and paclitaxel in prostate cancer cell lines [34]. miR-328 is
also important for the maintenance of SP phenotype. miR-
328 overexpression reversed drug resistance and inhibited cell
invasion of SP cells of colorectal cancer [40].

3.5. Aldehyde Dehydrogenase (ALDH). Similar to Hoechst
dye extruding SP cells, high expression of ALDH appears

to be a marker for stem cells from many tissues [41]
and methodology to isolate viable cells by ALDH activity
using a fluorescent labeled aldehyde substrate [Aldefluor]
is now available. Data from several groups suggest that
Hoechst and ALDH may identify SP cells from a variety
of malignancies, and combined use of ALDH and Hoechst
efflux activity to isolate the quiescent stem cell fractions
and may be particularly useful in those malignancies where
little is known about the phenotypes associated with the
differentiation program of the tissues of origin [42]. The
elevated expression of ALDH in side population cells might
be playing a role in rendering resistance to chemotherapeutic
agents. Aldehyde dehydrogenase is a polymorphic enzyme
responsible for the oxidation of aldehydes to carboxylic
acids. These genes participate in a wide variety of biological
processes including the detoxification of exogenously and
endogenously generated aldehydes [43]. In normal stem cells,
specifically the ALDH1 family mediates the synthesis of
intracellular all-trans-retinoic acid that is required for the
growth of the hematopoietic system and other tissues [44].
The role of ALDH is not limited to retinoic acid metabolism,
as it is also involved in the detoxification. ALDH1 is cytosolic,
ubiquitously distributed, and in particular confers resistance
to anticancer drugs of the cyclophosphamide family by their
detoxification [44]. ALDH family of enzymes are known
markers of chemoresistance as evident from studies done on
various types of cancers and tumour initiating cells [45, 46].
Hence, targeting SP cells should be considered as alternative
models for high throughput drug screening that might
aid in significantly improving existing therapeutic incon-
sistencies associated with chemoresistant tumor-initiating
cells.

4. Renewal of Therapeutic Realization

Identification of cancer stem cells to date is based on tumori-
genic potential in permissive conditions and not dependent
on the actual fate of cells within patients under specific
conditions [47]. Cancer cells with tumorigenic potential
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could be held transiently or permanently, by environmental,
epigenetic, or immunologicalmechanisms from actually con-
tributing to disease as elucidated in CSC shift hypothesis [8,
47]. Agents or compounds that show specific activity against
SP cells will have a definite role after primary debulking
therapy. Drugs have to be developed to target specifically
these SP cells that have higher malignant potential with
numerous getaway strategies from immune surveillance and
attack ensuing minimal residual disease [MRD], metastasis,
and recurrence. Various attempts have been developed in
formulating such drugs that would transpire as a promising
cure for cancer, particularly in combination with chemother-
apy. Salinomycin was found to act as a potent inhibitor of
multidrug resistance gp170, as evidenced through drug efflux
assays in cancer cell lines overexpressing P-gp/MDR1 [48].
Since SP cells overexpress MDR1 it might serve as a potent
inhibitor of SP cells as well. Curcumin has shown to inhibit
the side population [SP] cells of rat C6 glioma cell line and
is a dietary phytochemical with potential to target stem cell
mediated tumor initiation and development [49]. A reactive
oxygen species [ROS] generator Emodin (1,3,8-trihydroxy-6-
methylanthraquinone), suppressed the function of ABCG2
via ROS-related mechanism. Emodin was also able to sen-
sitize SP cells to cisplatin by the inhibition of expression
of abcg2 [18]. The PI3K/mTOR inhibitor NVP-BEZ235 and
PI3K inhibitor Wortmannin were capable of decreasing the
SP fraction and the drug efflux along with a significant
reduction in the levels of ABCG2 [50]. Low-molecular-
weight heparin [LMWH] combined with cisplatin could
overcome cisplatin-resistance and induced apoptosis in lung
SP cells both in vitro and in vivo [51]. Tetrahydrocurcumin
(THC), the ultimate metabolite of the curcumins in vivo,
was found to be able to inhibit the function of P-gp, MRP1,
and MXR and additional evidences also directed towards the
development of curcumin I and THC as MDR modulator
to use in combination with conventional chemotherapy [52].
Even though several strategies for targeting cancer stem cells
have been proposed, a number of concerns related to efficacy
and outreach are yet to be explored and resolved before
such research targeting cancer stem cells can enter clinical
trials.

Further elucidation of the biological features of these
putative tumor initiating cells with radical survival capacity
and tumorigenic potential may impart new insights on
factors that drive sudden acquired drug resistance. This
survival tactic of cancer cells has been consistently creating
numerous hurdles towards restorative therapy for a number
of humanmalignancies. Better comprehension of the concept
and reassessment of existing preclinical drug development
paradigms that target themolecular pathways controlling self
renewal, survival, and resistance in cancer stem cells can
significantly improve existing therapeutic inconsistencies by
eliminating both the root and stem of the disease.
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