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Abstract
Case-based computer-aided decision (CB-CAD) systems rely on a database of previously stored,
known examples when classifying new, incoming queries. Such systems can be particularly useful
since they do not need retraining every time a new example is deposited in the case base. The
adaptive nature of case-based systems is well suited to the current trend of continuously expanding
digital databases in the medical domain. To maintain efficiency, however, such systems need
sophisticated strategies to effectively manage the available evidence database. In this paper, we
discuss the general problem of building an evidence database by selecting the most useful
examples to store while satisfying existing storage requirements. We evaluate three intelligent
techniques for this purpose: genetic algorithm-based selection, greedy selection and random
mutation hill climbing. These techniques are compared to a random selection strategy used as the
baseline. The study is performed with a previously presented CB-CAD system applied for false
positive reduction in screening mammograms. The experimental evaluation shows that when the
development goal is to maximize the system’s diagnostic performance, the intelligent techniques
are able to reduce the size of the evidence database to 37% of the original database by eliminating
superfluous and/or detrimental examples while at the same time significantly improving the CAD
system’s performance. Furthermore, if the case-base size is a main concern, the total number of
examples stored in the system can be reduced to only 2–4% of the original database without a
decrease in the diagnostic performance. Comparison of the techniques shows that random
mutation hill climbing provides the best balance between the diagnostic performance and
computational efficiency when building the evidence database of the CB-CAD system.

1. Introduction
Computer-aided decision (CAD) systems typically rely on intelligent methods for providing
a second opinion to physicians when diagnosing patients. For example, CAD systems have
been widely developed and utilized for the diagnosis of various forms of cancer such as
breast (Cheng et al 2003, Sampat et al 2005, Doi 2005, Lo et al 2006), lung (Li et al 2005,
Doi 2005, 2007, Sluimer et al 2006, Katsuragawa and Doi 2007) and colon (Doi 2005,
Perumpillichira et al 2005) from radiologic images. In a typical CAD system, the task is to
classify an incoming query case to one of several predefined groups (e.g. normal/abnormal,
normal/benign/malignant) based on information acquired from the patient. The main CAD
paradigms utilized for such a classification task are rule-based and case-based reasoning.
The fundamental difference between these two paradigms lies in the way they utilize
previously acquired examples for constructing the CAD system and for classifying incoming
query cases.
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In rule-based systems, the acquired examples are used to construct decision rules. These
rules are further used to make decisions regarding new, unknown cases. Popular examples of
this approach are artificial neural networks (Zurada 1992), where knowledge about the
previous cases is incorporated into the weights of the inter-neuron connections. Other
examples are systems based on statistical principles (Duda et al 2000) or decision trees
(Mitchell 1997). In rule-based systems, the training examples are used exclusively for
training the CAD system. As soon as the system is trained, it is applied independently to the
new, incoming cases using only the rules found during training.

In contrast, there is virtually no training in case-based systems. Instead, the available
examples are stored in the database of the system to serve as established knowledge during
the classification stage. When a new query case is presented to a case-based system, it is
compared with knowledge examples. Then, classification of the query case is done based on
these pair-wise comparisons. This type of decision making is also known as evidence-based
since it relies on prior evidence of established cases. CAD schemes that were built upon
content-based image retrieval concepts fall under this category (Chang et al 2001, Tourassi
et al 2003, 2007b, El-Naqa et al 2004, Park et al 2007). Note that in this context, the case
base is often referred to as a knowledge database or reference library.

In this study we focus on one of the distinct issues tied with case-based systems, namely
managing the case base (i.e. database of known examples). Storing examples directly in the
database of the system has one major advantage over the rule-based approach. The case base
can be updated without retraining the system. On the other hand, there are some drawbacks
as well, such as the ever-increasing storage requirement. Data storage becomes a major
problem when a large number of examples needs to be stored in the system to maintain case-
base variety while each example requires a lot of storage space. This is a typical scenario
when storing clinical images. Another problem arising in a large case-based system is the
computational cost of classification due to the need for comparing the query case to many
examples from the case base. This problem is intensified when a single comparison incurs a
large computational cost due to an elaborate (dis)similarity measure. An example of a case-
based medical decision support system facing such challenges is the information-theoretic
CAD (IT-CAD) system proposed by our group (Tourassi et al 2003, 2007b) for mass
detection in screening mammograms. The system uses the information theoretic concept of
mutual information to assess the similarity between two mammographic cases. The first
practical difficulty is the fact that the examples are stored in the database in the form of full
images and not feature vectors causing large storage requirements. The second difficulty is
the longer calculation time of assessing the mutual information between two mammographic
images instead of just comparing the extracted image features.

The disadvantages of case-based systems can be alleviated by proper management of the
system’s case base. In fact, careful selection of the examples included in the database may
not only decrease the decision time and storage requirements, but could possibly improve
the CAD performance by removing redundant or even misleading examples.

Case base optimization is a long-standing problem in artificial intelligence (Blum and
Langley 1997, Wilson and Martinez 2000). The problem can be stated in several different
ways depending on the ultimate optimization goal. In medical CAD systems, two main
properties should be taken into account: (i) system performance and (ii) response time per
query. For a case-based CAD system, both properties are directly tied to the size of the case
base. These two properties can be of different importance in different environments. Priority
is typically given to system performance, measured often by receiver operator characteristic
(ROC) analysis (Bradley 1997, Metz et al 1998b, Obuchowski 2003). In such a scenario,
certain minimal conditions on system performance may have to be met and the system
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designer chooses the smallest subset of available examples that meets such conditions. In
another scenario, system performance needs to be maximized at any expense. Then, the case
base size is of no concern. In most situations, the case base size should be reasonably
controlled while ensuring that the diagnostic performance of the system is not compromised.
In our study, we account for all of these scenarios in the formalization of the problem, the
applied techniques and the experimental evaluation.

The existing case base reduction algorithms can be classified into three general groups. The
first group comprises algorithms based on the nearest-neighbor editing rule. These
algorithms rely on the distances between examples and their class membership to remove
those on the borders of classes, noisy examples, etc (Hart 1968, Aha et al 1991, Aha 1992).
The algorithms from the first group are well suited to feature-based systems and metric
spaces. The second group is iterative algorithms that evaluate the classification performance
of the case-based system when relying on subsets of examples. A typical algorithm falling
into this group is random mutation hill climbing (Skalak 1994), where the subsets are
randomly modified and the old set is replaced if the performance obtained by the new set is
strictly better. This group of algorithms is easily applicable with feature-based and
featureless systems as well as suitable for metric/nonmetric spaces (Pekalska et al 2006).
Finally, the algorithms belonging to the third group operate under very different principles.
Instead of selecting the most useful examples from the available pool, they modify the
existing examples or create new, more representative ones. Such an algorithm is called the
prototypes (Chan 1974), which merges examples that are close to each other using weighted
averaging. Since these algorithms rely on feature-based representation of cases, they are not
applicable to featureless systems. Furthermore, this third group of case selection algorithms
seems inappropriate for clinical evidence-based systems since it alters clinical evidence.
Regardless, case-base selection algorithms are typically developed and evaluated using
classification accuracy (number of correctly classified queries versus total number of
queries) as the figure of merit.

Recently, case-base optimization gained some interest in the CAD community. For example,
Park et al (2007) proposed a variation of the edited nearest-neighbor rule (Wilson and
Martinez 2000) for case-base reduction. The authors evaluated the technique with a feature-
based CAD system for false positive reduction in screening mammograms. The method uses
the leave-one-out (LOO) technique to assign a decision variable to each examplein the case
base. Then, two thresholds T1 and T2 are set. Given these thresholds, the reduction is
performed such that an example is removed if it depicts a mass and the corresponding value
of the decision variable is lower than T1 as well as if it depicts a normal tissue and the
corresponding value of the decision variable is higher than T2. In this way, nontypical
examples are removed from the case base. In their experiments, the authors examine some
thresholds such that T1 + T2 = 1. The second study on case-base reduction for a CAD system
was that reported by our group (Tourassi et al 2007a) for the same clinical problem as the
previous study. This technique implements an entropy-based selection scheme where only
examples with the highest entropy (i.e. highest information content) are preserved in the
case base. The technique was proposed and investigated strictly within the context of our IT-
CAD system and as such it is not necessarily generalizable to feature-based CAD systems.

Choosing an example selection algorithm for a particular clinical problem is not trivial. As
discussed before, each of the previously proposed algorithms has its own advantages and
disadvantages and many of them are limited to specific types of case representation. The
aims of this study were to investigate algorithms previously proposed in machine learning
that are suitable to a variety of CAD systems, adapt them for optimization based on
clinically relevant objectives and evaluate them with respect to our own evidence-based IT-
CAD system for false positive reduction in screening mammograms. Specifically, we chose
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to investigate three different intelligent techniques that fall into the second group of case
selection algorithms described before. Our criteria of choosing the techniques are discussed
in more detail in the following section. Overall, we chose to focus on intelligent techniques
that are not only well suited to our own featureless CAD system but also easily generalizable
to other types of evidence-based CAD systems.

This paper is organized as follows. Section 2.1 formalizes the problem of case selection and
describes in detail the methods employed in this study. Section 2.2 introduces the IT-CAD
system that serves as the test bed for the study. Sections 2.3 and 2.4 describe the dataset and
experimental design, respectively. Section 3 presents the experimental results. The paper is
concluded with discussion in section 4.

2. Case-base optimization methods
To formalize the problem, we assume that T is an initial set of available examples and S is a
subset of T. Then, given a desired number of examples in the final case base (k), the
problem is to find such S* that among all the subsets of T containing k examples, S*

provides the best performance. Formally, find

(1)

where A(S) is a measure of the classification performance of the system given S as its case
base. Note that the desired number k is imposed by the case-base storage restrictions or by
the response time requirement for efficient, real-time application of the system. We selected
to investigate three different intelligent methods of case-base reduction to improve the
efficiency of our own CAD system. The selection criteria used were as follows:

• applicability to both feature-based and featureless-case-based CAD systems,
independent of their (dis)similarity measure and decision function;

• adaptability of the selection algorithm to optimize clinically relevant performance
measures such as area under the ROC curve and partial ROC area;

• adaptability of the selection algorithm to specific storage limitations;

• simplicity of implementation.

Consequently, the intelligent algorithms selected for comparative investigation in this study
were genetic algorithm selection (GAS), greedy selection (GREEDY) and random mutation
hill climbing (RMHC). A random selection (RANDOM) technique was also applied as the
default strategy to establish whether a more sophisticated strategy is indeed necessary.

All intelligent algorithms are based on the same principle. In each algorithm, the selected
case-base subsets of a given size are evaluated using the chosen figure of merit. Each
algorithm, however, applies a different exploration technique to find the most diagnostically
useful case-base subset. The exploration techniques are not dependent on case representation
(feature-based or featureless), distance measure (metric or non-metric) or decision
algorithm. Therefore, the intelligent techniques presented here are applicable to any case-
based CAD classifier. Furthermore, since the case-based system is included in the intelligent
selection process, it is feasible that intelligent case selection may result in improvement of
the system’s diagnostic performance.

Although different metrics could be used as the figure of merit for performance evaluation,
we used ROC analysis-based assessment. Namely, the area under the curve (AUC) is chosen
as the evaluation index since it is widely used with CAD systems. Specifically, the
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Wilcoxon approach (Bradley 1997) was utilized to calculate the AUC. Thus, the problem
was to find

(2)

where AUC(S) is the area under the ROC curve for the system with the case base S.

For each of the intelligent algorithms, the LOO technique was used to calculate AUC(S).
Given a candidate subset SC ∈ T at each step i (i = 1, …, |T|), one example Ei is removed
from T and used as a query to the system based on the candidate subset SC. Whenever the
left-out example Ei belongs to the selected candidate subset SC, this example is temporarily
excluded from SC for the purpose of calculating the response of the system. This way,

example Ei is not compared to itself.  denotes the decision variable, for example Ei,
based on subset SC. Accordingly, a vector of decision variables is obtained for all examples

from the development dataset . This vector,
together with the corresponding ground-truth values for these examples, is used to calculate
the area under the ROC curve (AUC(S)) using the Wilcoxon approach.

2.1. Genetic-algorithm-based case selection
Genetic algorithm-based selection (GAS) is a technique utilizing evolutionary computation
to find an optimal case-base subset. Genetic algorithms (GAs) have been applied to select a
subset of features in feature-based systems as well as optimization of the case base (Cano et
al 2003, Llora and Garrell 2003, Mazurowski et al 2007). Initial investigations on the
applicability of GAs to the case weighting (Mazurowski et al 2008) and case selection
(Mazurowski et al 2007) problem with our IT-CAD system have been presented before for
discrimination of true masses from normal breast parenchyma. Here, a more extensive study
is presented by applying several case base reduction algorithms and by using a more
elaborate data handling scheme as well as a new, more clinically challenging dataset.

In GAs, each candidate solution for a problem is coded in a chromosome of one individual.
The algorithm starts with typically randomly generated population of individuals (usually
50–200). Then, best solutions are evolved by means of crossover, mutation and natural
selection. More details about the mechanics of the GA can be found elsewhere (Michalewicz
1999, Eiben and Smith 2003). The rest of this subsection is devoted to the description of
solution representation and the genetic operators used specifically in this study.

The diagram illustrating the progress of the genetic algorithm used in this study is shown in
figure 1. A candidate solution for the problem at hand is a k-element subset S of the original
nT -element set of available cases T. To represent such a solution in a chromosome (i.e. a
sequence of numbers), all the examples in the original case base T are numbered. Given
such numbering, the chromosome representing a subset of T is an n-element sequence
containing ‘1’ on the ith position of the sequence if the ith example belongs to S and ‘0’ if it
does not. Therefore, each chromosome contains exactly k 1’s and (nT − k) 0’s (Cano et al
2003). To generate an offspring from the best-adapted individuals, a one-point crossover
recombination technique is utilized. Given two parents, a single point (called locus) is
chosen randomly in the chromosome. Then, chromosomes of parents are split into two parts
in the locus, generating two offspring individuals. The first offspring inherits the first part of
the chromosome of the first parent and the second part of the chromosome of the second
parent. The second offspring inherits the first part of the chromosome of the second parent
and the second part of the chromosome of the first parent.
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Such a crossover, even though shown efficient in various applications, has a significant
drawback for our application. The problem at hand is a constrained optimization problem
because only candidate solutions of a certain form (i.e. sets of a given size k) are proper
candidate solutions to the problem. Such a constraint on the candidate solution incurs a
constraint on the chromosome, namely a chromosome representing a proper solution must
contain exactly k 1’s. The one-point crossover operator used in this study does not guarantee
that when the parents satisfy the constraint, the offspring satisfies it as well. To deal with
this issue, a repair function is applied to the offspring chromosomes. The repair function
randomly changes 1’s to 0’s if the number of 1’s is too large or 0’s to 1’s if the number of
1’s is too small in order to obtain the proper number of 0’s and 1’s and respectively a subset
with the required number of elements.

At every iteration of the GA algorithm, each chromosome is subject to random mutation as
well. The mutation is performed by allowing each position in the chromosome to flip (i.e.
change 1 to 0 or 0 to 1) with a certain probability. Typically, the mutation probability is kept
very small. Such an operator, similar to the presented crossover operator, is ‘constraints-
blind’. Therefore, the chromosome repair function described in the previous paragraph is
applied. Note that the repair function could be applied only once at the end of the mutation
step. We chose, however, to apply the repair function twice, at the end of the crossover and
mutation steps separately, so that the two aspects of the GA algorithm are clearly delineated.
Crossover and mutation operations are a fundamental aspect of GAs. The repair function is
just a modification to ensure that the solutions satisfy the constraints imposed by the specific
problem. Actually, a repair function is one of the standard ways of approaching constrained
optimization problems and has been previously described in the GA literature (Michalewicz
1999, Eiben and Smith 2003). Finally, to select the parents and individuals to survive,
proportional selection with windowing was applied and a roulette rule was used to
implement it (Eiben and Smith 2003). As a fitness function, simply the ROC area index
AUC(S) was used.

2.2. Greedy case selection
The greedy case selection algorithm (GREEDY) is an incremental algorithm which chooses
the best possible available solution at each step. The algorithm starts with an empty subset S.
In the first step, the algorithm chooses an example  such that S1 containing only 
provides the highest AUC(S1). Then, in each subsequent step i, the algorithm finds an
example  such that the set Si containing all the examples selected in the previous steps
and the example  provide the best AUC(Si) among all possible selections during that step.
The algorithm stops after k steps providing a subset of the desired size. Note that GREEDY
is similar to forward selection techniques (Blum and Langley 1997). It is guaranteed to find
a globally optimal subset only for k = 1 since at any step, previously selected cases cannot
be eliminated.

2.3. Random mutation hill climbing
Random mutation hill climbing was first applied to case-base reduction by Skalak (1994).
The steps of this iterative technique are as follows. First, a random subset S of a desired size
is selected. Then, in each iteration, one randomly chosen element from S is switched with
one randomly chosen element from the remaining cases (T – S). If such a change improves
the objective (i.e. it strictly increases AUC(S)), it is accepted. Otherwise, the change is
reversed. The algorithm terminates when the maximum number of iterations is reached.
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2.4. Random selection
The random selection algorithm randomly selects a subset of a given size without
replacement and equal probability of selection of each example. As mentioned before, the
RANDOM selection algorithm was implemented for comparison purposes to establish
whether more sophisticated selection strategies are indeed superior.

3. Information-theoretic CAD system
For this study, we focus on an IT-CAD system presented by our group before (Tourassi et al
2003, 2007b). The task of the system is to distinguish between true masses and normal tissue
in screening mammograms. In IT-CAD, the information-theoretic concept of mutual
information (MI) is utilized to assess similarity between images. In information theory,
mutual information between two random variables I(X, Y) is defined as

(3)

and describes the statistical dependence between two discrete random variables. To apply
such a similarity index to images, the probability distributions Px(x) and Py(y) can be
replaced by intensity histograms of images X and Y and the joint probability distribution Pxy
can be replaced with a joint histogram of the two images. Here, the normalized mutual
information (NMI) is used as the similarity measure:

(4)

Such a normalized index is equal to 1 when the images are identical and 0 when there is no
statistical relationship between them.

Given similarity evaluations between a query image and all images stored in the case base,
the system is asked to make a decision regarding the query case. In order to do so, a decision
index (DI) is calculated as follows:

(5)

where Qi is a query case, m is the number of mass examples and n is the number of normal
examples stored in the system’s case base. The first part of the DI evaluates the average
similarity between the query and the known mass cases while the second part evaluates the
average similarity between the query and the known normal cases. After the decision index
is calculated for the query, a decision threshold needs to be applied. If the decision index is
larger than the threshold, then the query case is classified as a mass case. If not, then the
query case is classified as normal.

Thus far, the IT-CAD has been shown to be quite effective for the detection of masses
(Tourassi et al 2003, 2007b) and architectural distortions (Tourassi and Floyd 2004) in
mammograms. Its main advantage over feature-based CAD systems is that no image
preprocessing and feature extraction are necessary for the decision-making process. These
advantages however come with a higher than desired computational cost (due to the
computational complexity of NMI) and large storage requirements (since entire images have
to be stored). Such a drawback can be dealt with effectively by reducing the number of
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examples stored in the case base of the system. In IT-CAD, both the case base storage
requirements and the computational cost of classifying the query are linearly proportional to
the number of examples stored in the case base.

4. Databases and study design
4.1. Databases

For this study, the Digital Database of Screening Mammography (Heath et al 1998) was
utilized. The original mammograms were digitized using a Lumisys scanner to 12 bit images
at 50 μm per pixel. From the mammograms, 512 pixels × 512 pixels regions of interest
(ROIs) were extracted around mass and normal mammographic locations. Three separate
databases of ROIs were created. One database was used for developmental purposes and
proof of concept while the other two databases were used for additional validation. There
was no overlap between the development database (Database 1) and the validation databases
(Databases 2 and 3).

Database 1, used in the main part of the experimental evaluation, consisted of 600 ROIs, 300
depicting biopsy-proven malignant and benign masses (positive class) and 300 depicting
normal breast parenchyma (negative class). Mass ROIs were centered on the physician
annotation provided in the DDSM truth files. The normal ROIs were regions indicated as
suspicious by a prescreening CAD system developed at our laboratory (Catarious et al 2004)
to operate at four false positives per image on average. Note that these suspicious ROIs were
considered normal according to the DDSM truth files and belonged to the negative class.
Thus, the IT-CAD system was essentially tested as a second-level analysis scheme for
reduction of computer-generated false positives. To avoid any bias, we ensured that this
database did not include different views of the same mass. Therefore, all 300 mass ROIs
corresponded to completely different masses. The same was true for all 300 normal ROIs.

Database 2, used for the final validation, consisted of 200 ROIs, 101 depicting biopsy-
proven masses and 99 depicting normal breast parenchyma. The ROIs were obtained in
exactly the same way as the ROIs in database 1. In other words, they did not include
multiple views of the same mammographic locations.

Database 3, also used for additional validation of our conclusions, consisted of 98 ROIs, 58
depicting biopsy-proven masses and 40 depicting normal breast parenchyma. These ROIs
were extracted around locations indicated as suspicious by a breast imaging specialist with
more than 15 years of experience. The radiologist was blinded to the ground truth. The
radiologist was asked to report any suspicious locations using a specially designed graphical
user interface (GUI) that displayed one mammographic view at a time. 512 × 512 pixels
ROIs were extracted around the reported locations. Database 3 was used to evaluate how the
results obtained by the intelligent techniques translate to a slightly different clinical task—
reduction of perceptually generated false positives.

4.2. Study design
In the main stage of the study, a ten-fold cross-validation scheme was applied using
Database 1 to assess the effectiveness of each case selection method. The data were
randomly split into ten folds. Nine folds (540 examples, 270 masses and 270 normals) were
used as the development set while the tenth fold (60 examples, 30 masses and 30 normals)
was reserved as the test set. The same experiments were repeated ten times so that each fold
served for testing once. We ensured that at each data split, the train and test sets included
ROIs from completely different mammograms.
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For each case selection method, the dataset folds were used in the following way. Given
each data split, the development dataset (i.e., the nine folds) was used as a pool of examples
available for building the knowledge case base of the CAD system. In the example selection
process, the leave-one-out approach was implemented within the development dataset as
described in the methodology section 2.1. With the case-base selection step complete, the
IT-CAD system was applied using the resulting case base on the test set (i.e. the tenth fold
reserved for testing only). This process was repeated ten times, till each fold served as a test
set. The whole experiment was also repeated separately for various desired case-base sizes
k: 10–500 (see equation (1)). To assess the statistical significance of the CAD performance
differences between the example selection methods and the original CAD (i.e. using the full
case base), we used the ROCKIT software allowing for comparison of ROC areas for
correlated data using a parametric estimation of the ROC curves (Metz et al 1998a, 1998b).

For further validation of our conclusions, additional experiments were conducted such that
the entire Database 1 was used as the development dataset (utilized for construction of the
case base as described in methodology section 2.1). Databases 2 and 3 were used only for
testing. To account for the variability introduced by the relatively small size of these two
databases, AUC performance was estimated using bootstrap sampling (Efron and Tibshirani
1993).

5. Experimental results
In the experiments, the following implementation parameter values were employed. For
GAS, the number of chromosomes was set to 50, the number of offsprings was set to 50 and
the probability of mutation was 0.0005. The maximum number of iterations for GAS was
100. For RMHC, a 2000 iteration limit was used. The above parameters were optimized
empirically to obtain the best performance while keeping the computation time reasonable.
In the analysis of the experimental results we took into account two different design
paradigms, namely one where the CAD system designer imposes a constraint on the case-
base size (k) either because of a limited storage capacity or restricted response time, and
another where the system designer aims for the best possible system performance regardless
of the resulting case-base size and its implications on computational efficiency. The
underlying assumption of the first paradigm is that there may be superfluous cases present in
the case base. The second paradigm is based on the assumption that some cases may have
detrimental effect in the overall diagnostic performance of the CAD system. Both
superfluous and detrimental examples could be eliminated, providing a system optimized in
terms of diagnostic performance and computational efficiency. Results of the experiments
based on Database 1 are presented separately for each design paradigm in sections 3.1 and
3.2. Section 3.3 presents additional validation of the conclusions drawn using Database 1 on
Databases 2 and 3.

5.1. Satisfying limited storage requirements
In this design scenario, a CAD system designer can only afford to store a limited number (k)
of examples in the case base of the system. This number is essentially dictated by the
system’s storage and computational power limitations. Figure 2 compares the IT-CAD
system’s performance obtained by each case-base selection method for various desired sizes
k of the case base. Performance is shown in terms of the average AUC(S) obtained by a
particular example selection method across all cross-validation folds. The horizontal axis of
the graph shows the desired size k of the case-base subset (as defined in equation (2)).

Overall, the three intelligent methods outperform the random selection in a wide range of
desired database sizes. The difference becomes more dramatic as the allowable case base
size is further restricted. This finding suggests that if only a very small number of cases can

Mazurowski et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2013 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be stored in the case base, then intelligent selection of cases is critical to ensure optimized
performance. At the upper limit (i.e. using all available examples), all techniques provide the
same results (0.745 ± 0.020), as expected. For the problem at hand, the RMHC algorithm
consistently provides the best results. Average RMHC results were better than random
selection for all examined desired database sizes. Statistical comparison of the methods was
performed for three representative case base sizes of 20, 100 and 200 examples. Table 1
shows the two-tailed p-values for pair-wise comparisons of the obtained AUC by different
selection methods. These p-values were obtained using the ROCKIT software (Metz et al
1998a, 1998b) after merging the IT-CAD prediction responses across all cross-validation
folds.

Table 1 shows that for very small case-base sizes (i.e. 20 examples), all intelligent
techniques statistically significantly outperformed random selection (p < 0.0001). For such
low k, the difference in performance between the intelligent techniques and random
selection is most apparent. However, no statistically significant differences are observed
among the intelligent techniques for such low k values. For larger case base sizes (i.e. 100
examples), RMHC statistically significantly outperforms all other techniques. At this size,
even though the difference between the other two intelligent techniques (GREEDY and GA)
and RANDOM were substantial, they did not reach statistical significance. When the
allowable case base size increases (i.e. 200 examples), no statistically significant difference
is observed between RMHC and GREEDY but both techniques significantly outperform
GAS and RANDOM. Although the performance obtained for this case using GAS is lower
than for other intelligent methods, GAS is still statistically significantly better than
RANDOM.

An interesting finding of this study is that with as few as 10 or 20 intelligently selected
cases, the IT-CAD system achieves performance comparable to that when relying on the full
case base. This finding may seem inconsistent with general wisdom that a large case base is
essential in clinical applications. However, such dramatic reduction has been previously
shown in the machine learning field (Wilson and Martinez 2000, Skalak 1994, Pekalska et al
2006). Furthermore, it must be noted that most CAD studies assessing the impact of the
number of training examples were based on the assumption that the examples are drawn
from their populations randomly. Our study approaches this problem from a different
perspective and shows that application of intelligent techniques can identify a set of only
few examples that are critical for the system to maintain its diagnostic capability at the same
level as when using the entire case base.

In addition, we examined the examples that were more frequently selected in the early stages
of the case selection process (k = 20). Figure 3 presents the seven most frequently selected
examples (ROIs) when the case base was optimized with RMHC and the resulting case base
contained 20 examples. Note that for the applied data handling scheme, each example was in
the pool of cases nine times (i.e. nine possible folds). The ROIs presented in figure 3 were
selected at least four times. These are ROIs that were consistently selected as the most
useful diagnostically. It is interesting that five out of the seven examples represent masses.
Furthermore, the overwhelming majority are malignant masses. The shape, size and margin
characteristics are quite diverse and span a wide range. Specifically, figures 3(a) and (c)
show lobulated masses with ill-defined and microlobulated margins, respectively. Figure
3(d) depicts an irregular mass with spiculated margins and associated architectural
distortion. Figures 3(e) and (f) show round masses with circumscribed and microlobulated
margins, respectively. Interestingly, the mass shown in figure 3(e) turns out to be malignant
while that shown in figure 3(f) was the only benign one. Finally, the two most frequently
selected false positive examples are also rather different. Overall, figure 3 shows that given
the requirement of a very small resulting case base, the intelligent techniques select a diverse
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subset of examples with a wide range of characteristics. It must also be noted that the
performance for low k, even though comparable to the performance of the system with a full
case base, is lower than the best performance that can be achieved by the system. In fact,
CB-CAD performance can be further improved by expanding the variety of examples using
one of the intelligent selection techniques.

Also note that since we do not impose a rule for equal prevalence, it is not necessary that the
reduced set will contain an equal number of mass and normal examples. We believe that not
imposing a constraint on class prevalence is more consistent with the clinical problem where
the CAD designer does not know a priori the number of examples from each class that may
be detrimental or the class that will contain more clinically useful examples. However, all
three algorithms can be easily modified to impose an equal number of mass and normal
examples in the selected case base (or any other ratio for that matter).

To address further the issue of imbalance in the selected subsets, we examined more
carefully various subsets of intelligently selected examples. We noted that even though
typically for selected case bases of very small sizes the number of positive examples
exceeds the number of negative examples, as the number of desired examples k increases,
the ratio of mass to normal examples gets closer to 1.

5.2. Maximizing diagnostic performance
In this scenario, no limitations are imposed on the resulting case base size (k). The main
goal is to select examples that provide the best possible CAD performance. Table 2 shows
the best performance in terms of AUC obtained by the system developed with a different
example selection algorithm. Figure 4 shows the corresponding ROC curves. These curves
were derived according to the ROCKIT software. To obtain the curves, we used all decision
indices from ten test sets (normalized to a common mean of 0 and standard deviation of 1
within a split). The best overall performance (AUC = 0.789 ± 0.018) was obtained by
RMHC for 200 examples. The same performance level (AUC = 0.787 ± 0.018) was reached
by GREEDY for 300 examples. A comparison of the ROC performance obtained by these
two methods to the performance of the original IT-CAD system (AUC = 0.745 ± 0.020)
indicates statistically significant improvement in both cases (two-tailed p-value < 0.005).
However, the improvement obtained by GAS (AUC = 0.760 ± 0.019) did not reach
statistical significance (p = 0.3).

5.3. Additional validation
To provide further validation of our observations on Database 1, we performed an
experiment using the entire Database 1 as a development dataset and then tested the system
using Databases 2 and 3. This additional validation simulates an actual clinical scenario
where the case base is built using the preferred intelligent example selection strategy and
then the case-based CAD system is put to practice. Since RMHC emerged as the intelligent
selection technique that provided the best and most robust results in Database 1, these
additional validation studies were performed using only RMHC.

The baseline performance of IT-CAD using the entire Database 1 as a case base and tested
on Database 2 was AUC = 0.748 ± 0.034 (estimate based on 5000 bootstrap samples). To
account for the variability due to the stochastic nature of the RMHC and RANDOM
methods, we repeated the selection 50 times for each k. Applying RMHC resulted in an
improvement for all three case-base sizes explored in this study (median values for 50
RMHC runs are given): AUC = 0.812 ± 0.030 for k = 20, AUC = 0.778 ± 0.033 for k = 100
and 0.767 ± 0.033 for k = 200. It is notable that in Database 2, the improvement in AUC
performance for k = 20 was considerably higher than the baseline performance. However,
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this could be attributed to the specific database. The variability introduced by the stochastic
nature of RMHC, as expressed by the standard deviation of the performance in the 50 runs,
was relatively low: 5.5%, 4.9% and 4.2% of the performance value for 20,100 and 200
desired examples in case base respectively. This variability decreases with increasing k.
Random selection resulted in median performance of AUC = 0.659 ± 0.039 for k = 20, AUC
= 0.718 ± 0.036 for k = 100 and AUC = 0.739 ± 0.036 for k = 200. The variability
introduced by RANDOM was much higher than the variability associated with RMHC and
was 16.3% for k = 20, 7.3% for k = 100 and 4.3% for k = 200. Overall, the validation
experiment on Database 2 confirms our conclusions: (i) intelligent selection techniques
allow for a significant reduction of the case base while sustaining or improving the
diagnostic performance of the CAD system and (ii) the intelligent techniques outperform the
random selection, especially when a small case base size is desired.

Testing on Database 3 showed a baseline performance of AUC = 0.562 ± 0.061. This is a
significantly lower performance than what was observed in Databases 1 and 2. However,
this is not unexpected. Databases 1 and 2 are more homogeneous since both contain
computer-generated false positives. Database 3 contains false positives generated by a
highly expert radiologist, thus representing a particularly challenging set. The performance
of the system after applying RMHC was improved to AUC = 0.654 ± 0.059 for k = 20, AUC
= 0.680 ± 0.057 for k = 100 and AUC = 0.681 ± 0.056 for k = 200. The variability of AUC
over 50 RMHC runs was 5.0% for k = 20, 3.2% for k = 100 and 2.0% for k = 200. The
performance for RANDOM was AUC = 0.554 ± 0.062 for k = 20, AUC = 0.544 ± 0.062 for
k = 100 and AUC = 0.564 ± 0.060 for k = 200. The AUC variability with RANDOM over
50 runs (10.5% for k = 20, 6.8% for k = 100 and 6.5% for k = 200) was again larger than the
variability with RMHC selection. Note that again, as expected, the variability introduced by
the selection method (for both RMHC and RANDOM) decreases with increasing k. These
results confirm that case-base optimization translates very well to a database that is more
loosely related to the one used for developing the case base. The results obtained on
Database 3 further support our hypothesis that a substantial improvement in classification
performance of the IT-CAD can be obtained by applying RMHC while at the same time
reducing the case base.

5.4. Comparison to previously reported case-base reduction techniques in CAD
We have also compared the presented algorithms to already proposed ones in the CAD field
(Park et al 2007, Tourassi et al 2007a). To compare the techniques presented here to that
recently proposed by Park et al (2007), we implemented the latter with parameter values
examined by the authors, i.e. thresholds varying from 0.05 to 0.35 for true positive ROIs and
from 0.65 to 0.95 for false positive ROIs. For all examined thresholds, the obtained AUC
was lower than that of the original system (AUC = 0.745 ± 0.020). However, a small
reduction of the database by 15% was observed with a non-significant drop of performance
(AUC = 0.720 ± 0.020).

Comparison of the entropy-based selection technique proposed by our group (Tourassi et al
2007a) using Database 1 resulted in small improvement of the overall performance (AUC
improved from 0.745 ± 0.020 to 0.752 ± 0.019). Applying this technique allowed for case
base size reduction by 26% (to 400 examples) without compromising the performance of the
system.

6. Discussion
This study focused on the problem of building a database of examples for case-based
medical decision support systems. The significance of the problem was discussed, and three
intelligent techniques were experimentally evaluated for solving the problem. Although the
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study was performed with respect to our own information-theoretic CAD system, the
proposed techniques are applicable to virtually all case-based CAD systems, irrespective of
the type of case representation (i.e. feature-based or featureless), case (dis)similarity
functions (i.e. metric or non-metric) and/or decision algorithms they employ.

The experimental results show high efficiency of the examined techniques for the IT-CAD
system with a significant advantage of the intelligent techniques over random selection. The
techniques studied can be applied in various ways, depending on the ultimate optimization
goal. If the main goal is to reduce the available case base with no loss of diagnostic
performance or with limited loss, intelligent techniques such as the random mutation hill
climbing algorithm are very promising. For our study, all intelligent techniques were able to
build a concise database of 10–20 cases (less than 4% of its original size) without
compromising the overall performance of the system. This finding may seem controversial;
however, it is consistent with evidence provided in machine learning with a variety of
benchmark databases. For example, (Wilson and Martinez 2000) showed that the case base
can be reduced to less than 1% of the original database without loss of performance. Skalak
(1994) showed on some benchmark problems that for the k-nearest-neighbor (k-NN) rule,
the number of examples can be reduced to as few as 1% of the original database. Recently,
Pekalska et al (2006) demonstrated that the database of examples in case-based systems can
be in some cases reduced to about 20 examples when using the k-nearest-neighbor
classification rule without a decrease of performance. The study by Pekalska et al is of
particular relevance to our own study as it demonstrates a similar finding using a non-metric,
dissimilarity-based classifier. The same authors also show that when more sophisticated
classification rules are applied, the database can be reduced to as few as three examples
without compromising the performance of the system.

Our result may appear inconsistent with findings of previous studies which demonstrated
that a large and diverse database is needed to develop a successful CAD classifier. Note,
however, that these studies assume that the examples available for the development of the
CAD system are drawn randomly from the available population. In fact, our results concur
with these previous findings by showing that as more examples are selected randomly from
the available pool, the CAD performance increases consistently and that random selection of
just a few examples is insufficient, resulting in a significant decrease of performance (figure
2). Our investigations extend these previous results by showing that given a large collection
of available examples, sophisticated rather than random case base selection results in a
significantly smaller case base with similar or better predictive power. Nevertheless, the
amount of case base reduction depends on the size and diversity of the original case base as
well as the complexity of the decision problem at hand.

The techniques studied can also be applied when the main goal is to maximize the diagnostic
performance regardless of the case base size. In such a scenario, applying the intelligent
techniques such as RMHC or GREEDY selection are also well justified. For our study, both
techniques resulted in statistically significant improvement of the performance while
reducing the database size to just 200 or 300 examples (37% and 56% of the original
database respectively). This result suggests that system designers need to keep in mind that
some knowledge examples may have detrimental effect on the overall performance of the
system. This finding was also confirmed by other investigators (Park et al 2007). Careful
data mining is certainly warranted to determine when and why some examples may have
detrimental effect, but such analysis is beyond the scope of this paper. Overall, our
comparative study showed that random mutation hill climbing is the most effective
technique for case selection.
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Additionally, we have compared the presented intelligent algorithms to those that have been
previously reported in the CAD field and we showed that the intelligent techniques we
investigated in this paper are superior for the task at hand. The technique proposed by Park
et al was less effective with respect to our own evidence-based CAD system. We believe
that this is mainly because the technique by Park et al is tailored to metric-based similarity
measures. Our CAD system does not satisfy this condition due to the non-metric nature of
the NMI similarity measure. Similarly, the superior performance of the intelligent
techniques implemented in this paper over the entropy-based selection technique can be
attributed to the fact that the CAD system is always part of the case selection process during
the intelligent selection which allows for tailoring the selected case base to the system. The
entropy-based selection method operates independently of the system. Also, it must be noted
that the entropy-based selection technique is specifically applicable to our own IT-CAD
system and not necessarily effective with other evidence-based CAD schemes.

Comparing the computational complexity of the intelligent algorithms is difficult as they
highly depend on the algorithm parameters (e.g. number of chromosomes, iterations, etc). In
this study, however, the RMHC was roughly tenfold faster than the GAS. This result even
further reinforces that RMHC is truly the superior technique for the task at hand, not only in
terms of improving system performance but also in terms of time complexity. Although
more careful optimization of the GAS may have led to better performance, this is not a
trivial issue from the computational point of view. RMHC as well as GREEDY is
considerably simpler to implement compared to the GA-based selection technique.

While the time complexity and implementation time of the algorithms are independent of the
database, system performance obtained with a particular algorithm varies depending on the
clinical application. For example, our experience with the GREEDY selection algorithm was
that it is particularly sensitive to overfitting when only a small pool of examples is provided
to develop a CAD system. Consequently, a CAD designer should carefully choose the
reduction method considering the specifics of the particular problem. Ideally, designers
should compare various different algorithms before finalizing the case-base selection
process.

In conclusion, this study presented a comparative analysis of three intelligent techniques for
case base optimization in evidence-based CAD systems. Although the analysis was based on
a specific CAD system and clinical task, the techniques are applicable to a wide variety of
case-based CAD systems regardless of their case representation, similarity measure and/or
decision-making algorithms. The study clearly demonstrated the advantage of intelligent
case base optimization over conventional random selection. Furthermore, random mutation
hill climbing emerged as the superior choice. It not only markedly improved the efficiency
of our evidence-based CAD system but also improved significantly its diagnostic
performance.
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Figure 1.
Diagram illustrating steps of the genetic algorithm.
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Figure 2.
Average IT-CAD performance obtained with each case-base selection method at various
desired case-base sizes.
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Figure 3.
The most frequently selected examples by RMHC in Database 1 when the resulting case-
base size was 20.
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Figure 4.
ROC curves for the best IT-CAD performance obtained with each case-base selection
method.
(This figure is in colour only in the electronic version)
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Table 1

Two-tail p-values for the AUC pairwise comparison of techniques for three representative case-base sizes in
Database 1.

Case base size (k) 20 100 200

RMHC versus GREEDY 0.6698 0.0088 0.7065

RMHC versus GAS 0.5848 0.025 0.0167

GREEDY versus GAS 0.2568 0.7932 0.0249

RMHC versus RANDOM 0.0000 0.0004 0.0003

GREEDY versus RANDOM 0.0000 0.0655 0.0004

GAS versus RANDOM 0.0000 0.1178 0.0478
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Table 2

Best AUC performance on Database 1 obtained by the IT-CAD system developed with different case-base
selection algorithms. For each algorithm, the numbers in parentheses indicate the number of case-base
examples for which the best performance was obtained.

Original CAD RMHC (200) GREEDY (300) GAS (50)

AUC 0.745 ± 0.020 0.789 ± 0.018 0.787 ± 0.018 0.760 ± 0.019
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