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Abstract
Endothelial cells (ECs) play important roles in cutaneous inflammation, in part, by release of
inflammatory chemokines/cytokines. Because dermal blood vessels are innervated by sympathetic
nerves, the sympathetic neurotransmitter norepinephrine (NE) and the co-transmitter
adenosine-5’-triphosphate (ATP) may regulate expression of EC inflammatory factors. We
focused on IL-6 regulation because it has many inflammatory and immune functions, including
participation in Th17 cell differentiation. Strikingly, NE and ATP synergistically induced release
of IL-6 by a human dermal microvascular endothelial cell line (HMEC-1). Adrenergic antagonist
and agonist studies indicated that the effect of NE on induced IL-6 release is primarily mediated
by β2-adrenergic receptors (ARs). By real-time PCR IL-6 mRNA was also synergistically induced
in HMEC-1 cells. This synergistic effect of NE and ATP was reproduced in primary human
dermal endothelial cells (pHDMECs) and is also primarily mediated by β2-ARs. Under conditions
of stress, activation of the symphathetic nervous system may lead to release of ATP and NE by
sympathetic nerves surrounding dermal blood vessels with induction of IL-6 production by ECs.
IL-6 may then participate in immune and inflammatory processes including generation of Th17
cells. Production of IL-6 in this manner might explain stress-induced exacerbation of psoriasis,
and perhaps, other skin disorders involving Th17-type immunity.
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1. Introduction
Endothelial cells (ECs) are strategically located between the blood and tissue compartments
and, therefore, are in a position to play important roles in the initiation and regulation of
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inflammation [1]. In part, this is through the release of inflammatory chemokines/
chemokines which allow them to communicate with other cells and organs and thus
modulate immune activities [2–4]. They also express adhesion molecules that mediate
rolling, adhesion and transmigration of leukocytes out of the vasculature and into tissues
such as the skin [5, 6]. Endothelial cells produce a number of chemokines that bind to and
signal through specific receptors on leukocytes, ultimately attracting them to areas of
inflammation [3, 7], as well as cytokines including IL-6.

The last several decades have provided strong evidence that the nervous system and immune
system are involved in functional cross talk. Interactions between the nervous, immune and
endocrine systems are mediated by numerous molecules including cytokines,
neurotransmitters, neuropeptides, hormones and their respective receptors. These
interactions play an important role in many immune responses including inflammatory
diseases and host susceptibility [8–11].

Stress has complex effects on the immune system and can affect both innate and acquired
immunity. Stressors may be physical or psychological and can be acute or chronic. The
stress response is controlled by elements of the central and peripheral nervous systems.
Stress has been shown to have stimulative or inhibitory effects on the immune system
depending on the type, duration and intensity of the stressor applied [12–14].

Under conditions of stress, two main neurological pathways are activated, the hypothalamic-
pituitary-adrenal axis and the sympathetic nervous system (SNS). Activation of these two
pathways results in the release of several types of stress hormones including glucocorticoids,
and catecholamines from the adrenal medulla and, especially, norepinephrine by
sympathetic nerve termini. These two pathways play major roles in integrating and
regulating different immune responses [15, 16]. A third axis, the neurotrophin neuropeptide
axis also plays a role [17]. Recent evidence suggests a link between stress and disease
susceptibility, especially chronic inflammatory diseases including rheumatoid arthritis,
asthma, atherosclerosis and irritable bowel disease as well as psoriasis and certain other skin
diseases [16, 18–20].

The SNS innervates both primary (bone marrow and thymus) and secondary (spleen and
lymph nodes) immune organs, as well as the skin and other organs and tissues. [15, 21–25].
The SNS also innervates the vasculature allowing it to regulate vasomotor functions and
release of blood cells from the blood marrow. Recent evidence indicates the SNS is
important in regulation of proinflammatory conditions [11, 26] and that sympathetic
neurotransmitters have an important role in regulating immune and inflammatory responses
[10, 15, 26].

It has long been hypothesized that stress can influence certain skin conditions such as
rosacea, psoriasis and atopic dermatitis [18, 27–31]. Accumulating experimental evidence
indicates that the neuroendocrine system plays a key role in cutaneous inflammation [20,
32–34]. The SNS within skin is supplied by postganglionic fibers of the paravertebral chain
ganglia [35, 36]. NE released from sympathetic varicose axon terminals diffuses from the
release site; thus, NE transmits its signals nonsynaptically to immune cells and the
endothelium. Circulating NE, as well as that released from SNS peripheral nerves locally,
may modulate immune function by binding to ARs expressed on immune cells, often
resulting in changes in cytokine/chemokine production. ARs are heteromeric 7-
transmembrane spanning G-coupled-proteins and are subdivided into 3 classes, each of
which contains three members; α1 (α1A, α1B, α1D), a2 (α2A, α2B, α2C); and β (β1, β2,
and β3). ARs are also present on endothelial cells [37, 38]. In human and mouse skin the β2-
AR appears to be the most abundant AR. It is the sub-type of β-ARs expressed by the major
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cell types found in skin including keratinocytes [39, 40], fibroblasts [41] and melanocytes
[42]. However, α-ARs are also present in the skin [43, 44]. It has previously been shown
that NE enhances lipopolysaccharide-induced IL-6 release from cells of the human dermal
microvascular endothelial cell line HMEC-1 [45].

Adenosine-5’-triphosphate (ATP) participates in many intra- and extracellular functions [46,
47]. Extracellular ATP may act in an autocrine or paracrine manner and exerts important
effects on many cell types. ATP can also be released from many cell types and is a
sympathetic co-transmitter along with NE and neuropeptide Y [48–50]. ATP binds to
purinergic P2 receptors, which belong to either the ionotropic P2X receptor family (ligand
gated channels) or the metabotropic P2Y receptor family (G protein-coupled receptors), with
activation of downstream signaling pathways [46, 51, 52]. Puringenic receptors are also
expressed by macro- and micro-vascular endothelial cells [53]. We have demonstrated that
HMEC-1 cells express mRNA for several P2 receptors [54]. We have also previously shown
that ATP (as well as ATPγS, a hydrolysis-resistant long-lived analog of ATP) increases the
secretion of IL-6 and the chemokines CXCL8 (interleukin-8), CCL2 (monocyte
chemoattractant protein-1) and CXCL1 (growth related oncogene-) by HMEC-1 cells as
well as by primary human dermal microvascular endothelial cells (pHDMECs) [54, 55].
ATPγS also upregulates expression of intercellular adhesion molecule 1 (ICAM-1) by
HMEC-1 cells [54]. We hypothesized that under conditions of stress, activation of
symphathetic nerves may lead to release of ATP by nerves associated with dermal vessels
followed by release of cytokines/chemokines by endothelial cells and upregulation of
ICAM-1 leading to enhanced recruitment of inflammatory cells into skin interstitium.

Under conditions of stress, activation of symphathetic nerves may lead to release of both
ATP and NE in the vicinity of dermal blood vessels. Complex interactions between the
effect of ATP and that of NE may regulate the ability of endothelial cells to release certain
types of cytokines/chemokines. In this regard, it has been reported that exposure of rat
thymic epithelial cells to both NE and ATP resulted in an additive effect on IL-6 synthesis
[56]. However, the influence of co-transmitters on immune responses and cutaneous
inflammation, particularly at the endothelial level is poorly understood. In this study we
have examined the effect of the sympathetic co-transmitters NE and ATP on IL-6 release by
the dermal microvascular endothelial cell line HMEC-1 and pHDMECs. We focused on the
cytokine IL-6 because it is involved in differentiation of Th17 cells [57–65], which are now
believed to be key in the pathogenesis of psoriasis [63–72].

2. Materials and Methods
2.1 Reagents

Norepinephrine was purchased from EMD Biosciences, Inc. (La Jolla, CA). ATP (cell
culture grade) and phentolamine (Phent) were from Sigma-Aldrich (St. Louis, MO).
Propranolol (Prop), ICI 118,151 (ICI), isoproterenol (Iso) and salbutamol (Sal) were from
Tocris (Ellisville, MO). The high capacity cDNA kit and Power SYBER Green Master Mix
were obtained from Applied Biosystems (Foster City, CA).

2.2 Cell culture and media
HMEC-1 cells were a gift from T.J. Lawley (Emory University, Atlanta, GA). This cell line
was created by immortalizing HDMECs via simian virus 40 transformation and retains
many properties of native dermal microvascular endothelial cells including cell adhesion
molecule expression and cytokine/chemokine production [2, 73]. HMEC-1 cells were
maintained in endothelial cell basal media (EBM; Lonza, Walkersville, MD), supplemented
with 10% heat inactivated fetal bovine serum (FBS; Gemini, Bio-Products, Sacramento,
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CA), 100 U/ml penicillin, 100 µg/ml streptomycin, (Mediatech, Manassas, VA), 10 ng/ml
epidermal growth factor (BD Biosciences, Bedford, MA) and 1 µg/ml hydrocortisone
(Sigma-Aldrich, St. Louis, MO). Cells were maintained at 37°C in a humidified atmosphere
with 5% CO2. In experiments that examined the effect of drugs on cytokine production or
RNA transcription, cells were incubated in EMB supplemented with 2% FBS and penicillin/
streptomycin only and referred to as depleted media (DM). Primary neonatal foreskin human
dermal microvascular endothelial cells (neonatal pHDMECs) were from pooled donors and
were obtained commericially (Lonza, Walkersville, MD). Primary endothelial cells were
grown in endothelial cell basal 2 media (EBM 2) supplemented with the EGM –2 MV single
Quotes (Lonza), containing supplements and growth factors (hydrocortisone, hEGF, FBS,
VEGF, hFGF-B, R3-IGF-1, ascorbic acid and gentamicin/amphotericin-B).

2.3 Cytokine ELISAs
HMEC-1 cells were plated and adhered in 12-well plates at 2×105 cells/well in complete
media. After approximately 4 hrs cells were switched to depleted media and incubated
overnight. Sixteen hours later the media was replaced with fresh depleted media and cells
were treated with various concentrations of NE and/or ATP for the times indicated and
supernatants were harvested. For neonatal pHDMECs, 0.15×105 cells/well were plated in
12-well plates in CM media and incubated overnight. Medium was replaced with fresh CM
and cells were treated with NE and/or ATP as indicated and supernatants were harvested 8
hrs later. IL-6 quantitation was performed by sandwich enzyme-linked immunosorbent assay
(ELISA) with matched antibody pairs and standards from BD Biosciences (San Jose, CA).
Optical density was determined using a Versamax microplate reader (Molecular Devices,
Sunnyvale, CA) and analyzed with Softmax software.

2.4 RNA isolation and real-time PCR
For RNA isolation, 0.5×106 cells were plated in 35 mm dishes in 2 ml of complete medium
or 0.25×106 cells per well in 1 ml complete media in 12-well plates, allowed to adhere for
approximately 4 hours and then were cultured in depleted medium overnight. After the
appropriate treatment and time, total RNA was extracted using the RNeasy Plus Mini Kit
from Qiagen (Valencia, CA), which includes a genomic DNA eliminator column. cDNA
was synthesized from 1 µg of RNA using a high capacity cDNA synthisis kit from Applied
Biosystem (Foster City, CA). IL-6 expression levels were analyzed by real-time PCR using
the Power SYBER Green Master Mix (Applied Biosystem) and primers obtained from
Invitrogen with the ABI 7900HT instrument (Applied Biosystems). Gyceraldehyde–3-
phosphate-dehydrgenase (GAPDH) was used as an internal control and data were analyzed
by the relative comparative Ct method [74, 75]. RNA primers used were as follows.
GAPDH: forward 5’-TGGTATCGTGGAAGGACTCA-3’, reverse 5’-
CCAGTAGAGGCGGGATGAT-3’, IL-6: forward 5’-GACAGCCACTCACCTCTTCA-3’,
reverse 5’-CCTCTTTGCTGCTTTCACAC-3’. Melting curve analysis was performed to
verify the specificity of primer amplification products. RNA was normalized to GAPDH and
given as fold expression level relative to media only control.

2.5 Viable cell count after various treatments
Two hundred-fifty thousand HMEC-1 cells per well were cultured in 12-well plates in
medium containing the appropriate amount of norepinephrine with or without the addition of
100 µM or 50 µM ATP. After 24 hours, supernatants were collected and the cells were
removed by trypsinazation and collected by centrifugation. Viable and dead cells were
counted from triplicate wells for each condition by the Trypan blue exclusion method.
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2.6 Statistical analysis
In each study, biomarker levels under multiple experimental conditions were measured. The
experiments may be carried out in multiple plates and repeated in multiple experiments.
Linear regression was used to estimate the contribution from each and/or combination of
treatments while controlling for potential systematic differences in different experiments
and/or different plates when possible. Hypotheses related to biomarker levels under different
experimental conditions were then examined using simultaneous tests for General Linear
Hypotheses [76]. P-values were adjusted for multiple comparisons by controlling the false
discovery rate.

3. Results
3.1 Norepinephrine and ATP synergize in inducing IL-6 protein production by HMEC-1 cells

To determine the effect of ATP and NE on the production of the cytokine IL-6, HMEC-1
cells were treated with 10 M ATP, 50 M ATP or 100 M ATP in the presence or absence of
various concentrations of NE (5×10−5 M to 1×10−7 M) (Figure 1A, 1B and 1C,
respectively). After 24 hrs, supernatants were collected and analyzed for IL-6 content by
ELISA. As shown in Figure 1, ATP and NE alone are each able to induce secretion of IL-6
at the concentrations tested. When added together, ATP and NE show remarkable synergy in
the production of IL-6 at all combinations of concentrations examined. ATP (50 µM or 10
µM) and NE (1×10−5 M, 1×10−6 M or 1×10−7 M) also show striking synergy after only 8 hrs
of incubation (data not shown).

3.2-ARs mediate norepinephrine augmentation of ATP-induced IL-6 expression by HMEC-1
cells

To determine which class of ARs is responsible for the augmentation of ATP-induced
activation of IL-6 by NE, experiments using receptor antagonists and agonists were
performed. Initially, HMEC-1 cells were treated with the non-specific -AR antagonist
propranolol or the -AR antagonist phentolamine. As shown in Figure 2A, when cells were
treated in the presence of propranolol, the synergistic effect of ATP (50 µM) and NE (1 ×
10−6 M) on IL-6 was completely abolished, while phentolamine had only a very small
effect. Similarly, the presence of the 2-AR inhibitor ICI 118,551 resulted in a significant
reduction in observed synergy (Figure 2B). Controls showed that NE induction of IL-6
could be blocked by propranolol and ICI 118,551 but not phentolamine. In addition, the
adrenergic blockers had no effect on ATP-induced IL-6 release. These results indicated that
NE augmented the ATP-induced release of IL-6 primarily through β2-ARs. Further
experiments were done with the β-agonists isoproterenol (non-specific β) and salbutamol
(β2-specific). Both agonists induced IL-6 release by HMEC-1 cells, similar to NE’s effect.
ATP and isoproterenol together synergized in producing IL-6. The levels achieved were the
same seen with ATP and NE. ATP and salbutamol also synergized in producing IL-6,
although the levels were slightly less than those obtained with the same concentration of NE
and isoproterenol (Figure 2C). These results provide further support for the role of β2-ARs
in this response.

3.3 Real-time PCR analyses show increased levels of IL-6 mRNA in HMEC-1 cells treated
with ATP and NE

To investigate the effect of ATP and NE on IL-6 mRNA expression, a real-time RT-PCR
time course experiment was performed. ATP (100 M) and NE (1×10−6 M) each induced the
synthesis of IL-6 mRNA at 30 min. 1 hr, 2 hr and 4 hr, with peak induction occurring after 1
hr after treatment (Figure 3). Treatment with both ATP and NE resulted in synergistic
induction of IL-6 mRNA levels at 1 hr and 2 hr, with the largest effect observed at 1 hr.
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These results indicate that the increased levels of IL-6 protein observed in the ELISA assays
are due, at least in part, to an increase in mRNA levels.

3.4 Neither norepinephrine nor ATP affect HMEC-1 cell viability 24 hrs after treatment
To exclude the possibility that treatment of HMEC-1 cells with the combination of ATP and
NE resulted in an increase in cell death and concurrent increase in release of IL-6 protein,
cell viability studies were conducted. HMEC-1 cells were treated with 50 µM or 100 µM
ATP in the presence or absence of NE (10−5 M, 10−6 M, 10−7 M) for 24 hrs. Cells were
harvested by trypsinization and washing from wells. Viable cells were counted by the trypan
blue exclusion method. As shown in Figure 4, neither ATP nor NE alone, or in combination,
significantly affected HMEC-1 viable cell count after 24 hrs treatment.

3.5 Norepinephrine and ATP also synergize in inducing release of IL-6 by primary human
microvascular endothelial cells and is primarily mediated by 2-ARs

Initial experiments employed HMEC-1 cells as a surrogate for primary human cells. We
subsequently investigated whether ATP and NE could regulate IL-6 release by neonatal
pHDMECs. ATP (50 µM or 100 µM) and NE (1×10−5 M or 1×10−6 M) could induce release
of IL-6 from these cells (Figure 5A). In addition, when primary cells were treated with
various combinations of ATP and NE, significant synergy was also observed for the release
of the IL-6 (Figure 5A). To determine which class of ARs were involved in the synergistic
response in neonatal pHDMECs, cells were treated with propranolol (non-specific β-
antagonist), ICI 118,151 (specific β2-antagonist) and phentolamine (α-antagonist). As
shown in Figure 5B, both propranolol and ICI 118,551 completely abolished the synergistic
induction of IL-6, indicating the involvement of β2-ARs, while phentolamine only had a
small effect. Controls showed that the β-antagonists had little effect on the ATP induction of
IL-6, but blocked its induction by NE alone, as expected. Thus, the synergistic effect of ATP
and NE could be reproduced in neonatal pHDMECs and was also mediated primarily by β2-
ARs.

4. Discussion
ECs play a key role in many immune-mediated disorders and have important functions in
cutaneous inflammation. These activities occur, in part, through the release of inflammatory
factors and expression of adhesion molecules involved in migration of leukocytes out of the
vasculature [2–5, 7]. Because blood vessels are innervated by sympathetic nerves, we have
hypothesized that sympathetic nerve transmitters and co-transmitters have important roles in
regulating endothelial cell immunologic and inflammatory functions. We have previously
reported that ATP and a hydrolysis-resistant, long-lived analog of ATP, ATPγS, enhance
secretion of IL-6 and the chemokines CXCL8, CCL2 and CXCL1 by HMEC-1 cells and
pHDMECs [54, 55]. Sympathetic nerve influences on expression of inflammatory factors by
dermal microvascular endothelial cells may be of particular interest as inflammatory skin
diseases including psoriasis, atopic dermatitis, acne and rosacea are all believed to be
exacerbated by stress [20, 29–31, 33, 77–79]. We have hypothesized that under conditions
of stress, the SNS is activated and sympathetic nerves associated with dermal vessels release
ATP, which then enhances the inflammatory functions of endothelial cells, resulting in
increased cutaneous inflammation. In this regard, IL-6 may be of particular interest as it has
a key role in the differentiation of Th17-type helper lymphocytes [59, 61, 80], believed to
have an important role in the pathogenesis of psoriasis [63–66, 68].

IL-6 was originally defined as a B cell differentiation factor but is now known to be a
pleiotropic factor with many different activities [81–83]. These include induction of an acute
phase response, angiogenic activity and stimulation of myelopoiesis among many other
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effects [83]. With respect to the immune system, IL-6 has many activities [82–84]. It
promotes antibody production, including autoantibody production, and thus plays an
important role in autoimmune diseases characterized by humoral mechanisms. It also plays a
role in the proliferation and differentiation of T helper cells. IL-6 enhances IL-4 -induced
Th2 helper cell differentiation and inhibits IL-12-associated Th1 helper cell differentiation
[61, 83]. Of particular interest to the skin, IL-6 plays an important role in the differentiation
of Th17 cells [57–59, 61, 62]. Th17 cells most probably have physiologic activities in
protection against extracellular organisms [85]. However, they have important functions in
the pathophysiology of several autoimmune diseases [63, 86–88] and, notably, psoriasis.
Through production of IL-17A, these cells play a key role in inflammation associated with
psoriasis [63, 65–72] and, through the elaboration of IL-22, they induce acanthosis of the
epidermis [89, 90], characteristic of psoriasis. In the mouse, IL-6 and TGFβ work together to
promote the generation of Th17 cells [58, 59, 80]. Interestingly, IL-6-deficient, gene-
targeted mice do have some Th17 cells although lesser than control animals. IL-21 may be
able to substitute for some of the effects of IL-6 in promoting Th17 cell generation [91]. In
humans, IL-6, TGFβ and IL-1β are involved in Th17 cell development [63, 92]. In this
regard, IL-6 levels are elevated in lesions of psoriasis [93, 94].

The data presented herein demonstrate a possible novel locus of interaction between the
sympathetic nervous system and endothelial cells resulting in enhancement of Th17
responses. The finding that norepinephrine and ATP synergize to induce endothelial cells to
produce large amounts of IL-6 suggests a mechanism by which stress may result in
exacerbation of psoriasis or other Th17 cell-associated inflammatory skin conditions. In this
model, stress-induced activation of the sympathetic nervous system will lead to release of
the sympathetic transmitters norepinephrine and ATP by nerve fibers surrounding blood
vessels in the skin. Norepinephrine and ATP would then, in turn, bind to receptors on the
endothelial cells followed by release of large amounts of IL-6. IL-6 would then function to
potentiate the differentiation of Th17 cells. This mechanism may also be operative in
draining lymph nodes as lymph nodes are innervated by the sympathetic nervous system
[15, 21, 22]. In support of this concept, a recent paper implicated ATP receptor signaling in
the skin in Th17 cell responses [95].

Interestingly, there is some precedent for this type of mechanism. Norepinephrine and ATP
each stimulate production of IL-6 by thymic epithelial cells and co-stimulation results in an
additive effect. It has been hypothesized that the effect of sympathetic co-transmitters on
IL-6 synthesis is important for thymocyte differentiation and proliferation within the thymus
[56]. Glucocorticoids also are important mediators of stress responses and recently it was
reported that dexamethasone enhanced ATP-induced IL-6 secretion by HMEC-1 cells [96].

Our results are important for at least two reasons. First, if our model is correct, release of
sympathetic co-transmitters by stress may account for the exacerbation of psoriasis that
occurs with stress. Secondly, these results suggest that mechanisms to alleviate stress or
novel pharmacologic agents to block the effects of ATP and/ or norepinephrine at the
endothelium of dermal vessels may be useful for the therapy of psoriasis. Indeed, because
agents can be applied topically to the skin, it may be possible to develop agents that can
effectively block norepinephrine and/or ATP effects in the skin without systemic absorption,
thus avoiding systemic adverse side effects. Since betablockers reportedly worsen psoriasis
[97], our results may seem unexpected. However, failure to find an association of beta-
blockers and psoriasis has also been reported [98] and it has been reported that beta-
adrenergic agonists induce or worsen pustular psoriasis, concordant with our findings
[99,100].
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Important future directions include determining more precisely what stimuli induce release
of norepinephrine and ATP from sympathetic nerves within the skin and whether other
products of nerves, including sensory nerves, may influence release of IL-6 by endothelial
cells.
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EC endothelial cell

ATP adenosine-5’-triphosphate

NE norepinephrine

SNS sympathetic nervous system

AR adrenergic receptor

pHDMEC primary human dermal endothelial cells

ICAM-1 intercellular adhesion molecule 1

Prop propranolol

Sal salbutamol

DM depleted medium
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Highlights

* Norepinephrine and ATP are sympathetic nerve transmitters

* Dermal blood vessels are associated with sympathetic nerves

* Norepinephrine and ATP synergize in inducing IL-6 production by
endothelial cells.

* Norepinephrine and ATP similarly synergize in increasing IL-6 mRNA
levels.

* These effects require norepinephrine signaling through the 2-adrenergic
receptor.

* This pathway may account for stress-induced exacerbation of cutaneous
inflammation.
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Figure 1.
NE and ATP induce IL-6 secretion by HMEC-1 cells synergistically. Supernatants were
collected after 24 hrs and analyzed by ELISA. (A) Cells treated with 10 µM ATP or each
indicated NE concentration alone significantly increased IL-6 (p<0.001) versus DM. Cells
treated with 10 uM ATP and each NE concentration induced IL-6 release synergistically.
(B) Cells treated with 50 µM ATP or each indicated NE concentration alone significantly
increased IL-6 (p<0.001) versus DM. Cells treated with 50 µM ATP and each NE
concentration resulted in a synergistic release of IL-6. (C) Cells treated with 100 µM ATP or
each NE concentration alone significantly increased IL-6 (p<0.001) compared to DM.
Treatment of cells with 100 µM ATP and 10−5 M NE or 10−6 M NE resulted in synergistic

Stohl et al. Page 15

Cytokine. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



induction of IL-6. A representative experiment of 3 (A), 3 (B) and 2 (C) is shown in each
graph; results are the mean +/− SD of assays performed in triplicate. ***p<0.001 vs.
additive effect of each agent alone.
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Figure 2.
Effect of β-adrenergic antagonists and agonists on IL-6 release by HMEC-1 cells.
Supernatants were collected after 24 hrs and analyzed by ELISA. Cells treated with 50 µM
ATP and 10−6 M NE resulted in synergistic induction of IL-6 release (p<0.001) as shown in
each graph. (A) Pretreatment of cells with 10−5 M or 10−6 M Prop abolished this effect
(***p<0.001) while pretreatment with phentolamine had little effect. 10−6 M Prop + 10−6 M
NE is statistically different from 10−6 M NE alone (***p<0.001), but 10−6 M Prop + 50 µM
ATP is not different from 50 µM ATP. (B) Pretreatment with 10−5 M or 10−6 M ICI reduced
this effect (***p<0.001). 10−5 M ICI + 10−6 M NE and 10−6 M ICI + 10−6 M NE is
statistically different from 10−6 M NE alone (***p<0.001), but 10−5 M ICI + 50 µM ATP
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and 10−6 M ICI + 50 µM ATP is not statistically different from 50 µM ATP alone. (C)
Treatment with 50 µM ATP and ISO (10−5 M, 10−6 M or 10−7 M) resulted in synergistic
induction of IL-6 release (***p< 0.001). There is no significant difference between 10−6 M
NE and 10−5 M ISO or 10−6 M ISO. Treatment with 50 uM ATP and SAL (10−5 M or 10−6

M) resulted in synergistic IL-6 release (***p<0.001). One representative experiment of 2 is
shown for each graph; results are the mean +/− SD of triplicate assays.

Stohl et al. Page 18

Cytokine. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Real-time PCR analysis of IL-6 mRNA levels. HMEC-1 cells were treated with 10−6 M NE
and 100 µM ATP for the times indicated. Cells were lysed and total RNA was prepared.
cDNA was synthesized from 1 µg RNA and qPCR was carried out using the Power SYBR
green master mix and GAPDH as the internal control. mRNA levels were calculated using
the relative comparative ΔΔCT method. 100 µM ATP induced IL-6 mRNA levels at 30 min
(p<0.05),1 hr (p<0.001) and 2 hr (p<0.001) compared to DM. 10−6 M NE increased levels at
30 min (p<0.05), 1 hr (p<0.001) and 2 hr (p<0.01) versus DM. ATP and NE synergistically
induce IL-6 mRNA at 1 hr (***p<0.001) and 2 hr (**p<0.01) versus additive effect of each
agent alone. Results shown are the average of three independent experiments. Error bars
represent the mean +/− SD.
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Figure 4.
HMEC-1 viable cell counts 24 hrs after indicated treatments. Two hundred-thousand cells/
well in a 12-well plate were treated in triplicate with various combinations of ATP and NE
for 24 hrs. Supernatants were collected and saved and cells were removed by trypsinazation,
plates washed and all liquids were centrifuged. Viable cells were counted by the Trypan blue
exclusion method. Results shown are the average of two independent experiments done in
triplicate. Error bars represent the mean +/− standard deviation.
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Figure 5.
NE and ATP synergistically induce IL-6 release by neonatal pHDMECs primarily through
2-ARs. Supernatants were collected after 8 hrs and analyzed by ELISA. (A) Cells treated
with 50 µM or 100 µM ATP alone significantly increased IL-6 release versus DM(p<0.01).
Cells treated with 50 µM ATP plus NE (10−5 M or 10−6 M) or 100 µM ATP plus NE (10−5

M or 10−6 M) synergistically induced IL-6 release. ***p<0.001, **p<0.01, *p<0.05 versus
additive effect of each agent alone. (B) Cells treated with 100 µM ATP and 10−6 M NE
resulted in synergistic release of IL- 6 (p<0.001). Pretreatment with 10−5 M or 10−6 M Prop
or 10−5 M ICI abolished this effect (***p<0.001) while pretreatment with phentolamine had
no effect. 10−6 M Prop + 10−6 M NE is statistically different from 10−6 M NE alone
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(***p<0.001) but not from DM and 10−6 M Prop + 50 µM ATP is not different from 50 µM
ATP. 10−5 M ICI +10−6 M NE differs from 10−5 M NE (***p<0.001) but not from DM.
Each graph represents the average of two experiments. Error bars represent the mean +/-SD.

Stohl et al. Page 22

Cytokine. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


