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Sensemaking is the active process of constructing a meaningful representation (i.e., making sense) of some complex aspect of
the world. In relation to intelligence analysis, sensemaking is the act of finding and interpreting relevant facts amongst the
sea of incoming reports, images, and intelligence. We present a cognitive model of core information-foraging and hypothesis-
updating sensemaking processes applied to complex spatial probability estimation and decision-making tasks. While the model
was developed in a hybrid symbolic-statistical cognitive architecture, its correspondence to neural frameworks in terms of both
structure and mechanisms provided a direct bridge between rational and neural levels of description. Compared against data from
two participant groups, the model correctly predicted both the presence and degree of four biases: confirmation, anchoring and
adjustment, representativeness, and probability matching. It also favorably predicted human performance in generating probability
distributions across categories, assigning resources based on these distributions, and selecting relevant features given a prior
probability distribution.This model provides a constrained theoretical framework describing cognitive biases as arising from three
interacting factors: the structure of the task environment, the mechanisms and limitations of the cognitive architecture, and the use
of strategies to adapt to the dual constraints of cognition and the environment.

1. Introduction

We present a computational cognitive model, developed in
the ACT-R architecture [1, 2], of several core information-
foraging and hypothesis-updating processes involved in a
complex sensemaking task. Sensemaking [3–6] is a concept
that has been used to define a class of activities and tasks
in which there is an active seeking and processing of infor-
mation to achieve understanding about some state of affairs
in the world. Complex tasks in intelligence analysis and
situation awareness have frequently been cited as examples of
sensemaking [3–5]. Sensemaking, as in tomake sense, implies
an active process to construct a meaningful and functional
representation of some aspects of the world. A variety of
theories and perspectives on sensemaking have been devel-
oped in psychology [3, 4], human-computer interaction [6],
information and library science [7], and in organizational

science [8]. In this paperwe present a cognitivemodel of basic
sensemaking processes for an intelligence analysis task.

A major concern in the intelligence community is the
impact of cognitive biases on the accuracy of analyses [9].
Two prominent biases are confirmation bias, in which an ana-
lyst disproportionately considers information that supports
the current hypothesis, and anchoring bias, inwhich an initial
judgment is insufficiently revised in the face of new evidence.
In the task used in this paper, sensemaking is instantiated in
terms of estimation of probability distributions over hypoth-
esis space. Rational Bayesian optima are defined over those
distributions, with cognitive biases defined as deviations from
those optima. In this framework, confirmation bias can then
be defined as a distribution “peakier” than the Bayesian
optimum, whereas anchoring bias is a flatter-than-rational
distribution reflecting an insufficient adjustment from the
original uniform prior. We present simulation results that
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Figure 1: The Data-Frame model of sensemaking. Image repro-
duced by Klein et al. [4].

exhibit several cognitive biases, including confirmation bias,
anchoring and adjustment, probability matching, and base-
rate neglect. Those biases are not engineered in the model
but rather result from the interaction of the structure and
statistics of the task, the structure and mechanisms of our
cognitive architecture, and the strategies that we select to
perform the former using the latter.

Figure 1 presents the Data/Frame theory of sensemaking
[3]. The Data/Frame theory assumes that meaningful mental
representations called frames define what counts as data and
how those data are structured for mental processing [4].
A similar conceptual model was employed in Pirolli and
Card [5] to perform a cognitive task analysis of intelligence
analysis [10–12]. Frames can be expressed in a variety of
forms including stories, maps, organizational diagrams, or
scripts. Whereas frames define and shape data, new data can
evoke changes to frames. In this framework, sensemaking
can involve elaboration of a frame (e.g., filling in details),
questioning a frame (e.g., due to the detection of anomalies),
or reframing (e.g., rejecting a frame and replacing it with
another). The Data/Frame theory proposes that backward-
looking processes are involved in forming mental models
that explain past events, and forward-looking mental sim-
ulations are involved in predicting how future events will
unfold. We describe how frames can be represented in a
cognitive architecture and how the architectural mechanisms
can implement general sensemaking processes. We then
demonstrate how the dynamics of sensemaking processes in
a cognitive architecture can give rise to cognitive biases in an
emergent way.

The structure of this paper is as follows. Section 2 defines
the AHA (Abducting Hotspots of Activity) experiment con-
sisting of a suite of six sensemaking tasks of increasing com-
plexity. Section 3 outlines our cognitive modeling approach
to sensemaking: it describes the ACT-R architecture, how it
is used to prototype neuralmodels, which cognitive functions
compose the model, and how four cognitive biases can be
accounted for by the model. Section 4 presents the measures
used to assess the cognitive biases in the AHA framework
and then compares human and model results. Section 5
presents a test of the model’s generalization on a data set

that was unavailable at the time of initial model development.
Finally, Section 6 summarizes our account of cognitive biases
centered around themechanisms and limitations of cognitive
architectures, the heuristic that these mechanisms use to
adapt to the structure of the task, and their interaction with
the task environment.

2. The Task Environment

The AHA experiment consists of a series of six tasks
developed as part of the IARPA (Intelligence Advanced
Research Projects Activity), ICArUS (Integrated Cognitive-
neuroscience Architectures for the Understanding of Sense-
making) program, whose goal is to drive the development
of integrated neurocognitive models of heuristic and biases
in decision-making in the context of intelligence analysis.
The AHA tasks can be subdivided into two classes: the first
focusing on learning the statistical patterns of events located
on a map-like layout and generating probability distribu-
tions of category membership based on the spatial location
and frequency of these events (Tasks 1–3) and the second
requiring the application of probabilistic decision rules about
different features displayed on similar map-like layouts in
order to generate and revise probability distributions of
category membership (Tasks 4–6).

The AHA tasks simulate the analysis of artificial geospa-
tial data presented in a manner consistent with and informed
by current intelligence doctrine (Geospatial Intelligence
Basic Doctrine; http://www.fas.org/irp/agency/nga/doctrine
.pdf). The tasks involve the presentation of multiple features
consistent with intelligence data, which are presented in aGIS
(Geographic Information System) display not unlike Google
maps (https://maps.google.com). These features include

HUMINT: information collected by human sources
such as detecting the location of events,
IMINT: information collected from imagery of build-
ings, roads, and terrain elements,
MOVINT: analysis of moving objects such as traffic
density,
SIGINT: analysis of signals and communications,
SOCINT: analysis of social customs and attitudes of
people, communities, and culture.

The display (see Figure 2) includes access to the mission
tutorial and instructions (the top-right corner), a legend
to understand the symbols on the map (the left pane), the
map (the center pane), and participants’ current and past
responses (the right pane).

For Tasks 1–3, the flow of an average trial proceeds
according to the following general outline. First, participants
perceive a series of events (SIGACTs; SIGnals of ACTivity)
labeled according to which category the event belonged.
Categorieswere both color- and shape-coded,with the appro-
priate label {Aqua,Bromine,Citrine, or Diamond} listed in
the legend. After perceiving the series of events, a probe event
is displayed (represented as a “?” on the display). Participants
were asked to generate a center of activity (e.g., prototype)
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Figure 2: The image is a sample of the display in Task 4. To the left is a legend explaining all the symbols on the map (center). To the right
are the probability distributions for the four event categories (both for the current and prior layer of information). The panel across the top
provides step-by-step instructions for participants.

for each category’s events, reflect on how strongly they
believed the probe belonged to each category, and generate
a probability estimate for each category (summed to 100%
across all groups) using the sliders or by incrementing the
counters presented on the right side of the Task interface.
As an aid, the interface automatically normalized the total
probability such that the total probability summed across
each category equaled 100%. Participants were not provided
feedback at this step. Scoring was determined by comparing
participants distributions to an optimal Bayesian solution
(see Section 4 for a detailed description of how the probability
estimate scores are calculated). Using these scores it was
possible to determine certain biases. For instance, partici-
pants’ probability estimates that exhibited lower entropy than
an optimal Bayes model would be considered to exhibit a
confirmation bias, while probability estimates having higher
entropy than an optimal Bayes model would be considered to
exhibit an anchoring bias.

After finalizing their probability estimates, participants
were then asked to allocate resources (using the same right-
side interface as probability estimates) to each category with
the goal of maximizing their resource allocation score, which
was the amount of resources allocated to the correct category.
Participants would receive feedback only on their resource

allocation score. For Tasks 1–3, the resource allocation
response was a forced-choice decision to allocate 100% of
their resources to a single category. If that category produced
the probe event, then the resource allocation score was 100
out of 100 for choosing the correct category, otherwise 0
out of 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.

For Tasks 4–6, the flow of an average trial was structurally
different as intelligence “features,” governed by probabilistic
decision rules (see Table 1), were presented sequentially as
separate layers of information on the display. These Tasks
required reasoning based on rules concerning the relation
of observed evidence to the likelihood of an unknown event
belonging to each of four different categories. Participants
updated their beliefs (i.e., likelihoods) after each layer of
information (i.e., feature) was presented, based on the prob-
abilistic decision rules described in Table 1.

For instance, in Task 4, after determining the center
of activity for each category (similar in mechanism to
Tasks 1–3) and reporting an initial probability estimate, the
SOCINT (SOCial INTelligence) layer would be presented by
displaying color-coded regions on the display representing
each category’s boundary. After reviewing the information
presented by the SOCINT layer, participants were required
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Table 1: Rules for inferring category likelihoods based on knowl-
edge of category centroid location and an observed feature.

Features Rules

HUMINT
If an unknown event occurs, then the likelihood of
the event belonging to a given category decreases as
the distance from the category centroid increases.

IMINT

If an unknown event occurs, then the event is four
times more likely to occur on a Government versus
Military building if it is from category A or B. If an
unknown event occurs, then the event is four times
more likely to occur on aMilitary versus Government
building if it is from category C or D.

MOVINT

If an unknown event occurs, the event is four times
more likely to occur in dense versus sparse traffic if it
is from category A or C. If an unknown event occurs,
the event is four times more likely to occur in sparse
versus dense traffic if it is from category B or D.

SIGINT

If SIGINT on a category reports chatter, then the
likelihood of an event by that category is seven times
as likely as an event by each other category.
If SIGINT on a category reports silence, then the
likelihood of an event by that category is one-third as
likely as an event by each other category.

SOCINT

If an unknown event occurs, then the likelihood of
the event belonging to a given category is twice as
likely if it is within that category’s boundary
(represented as a colored region on the display).

to update their likelihoods based on this information and the
corresponding probabilistic decision rule.

When all the layers have been presented (two layers in
Task 4, five layers in Task 5, and four layers in Task 6),
participants were required to generate a resource allocation.
In these Tasks, the resource allocation response was pro-
duced using the same interface as probability estimates. For
instance, assuming that resources were allocated such that
{A = 40%,B = 30%,C = 20%,D = 10%} and if the probe
belonged to category A (i.e., that A was the “ground truth”),
then the participant would receive a score of 40 out of 100,
whereas if the probe instead belonged to category B, they
would score 30 points.The resource allocation score provided
the means of measuring the probability matching bias. The
optimal solution (assuming one could correctly predict the
right category with over 25% accuracy) would be to always
allocate 100% of one’s resources to the category with the
highest probability. Allocating anything less than that could
be considered an instance of probability matching.

Finally, participants were not allowed to use any assistive
device (e.g., pen, paper, calculator, or other external devices),
as the intent of the Task was tomeasure howwell participants
were able to make rapid probability estimates without any
external aids.

2.1. Task 1. In Task 1, participants predicted the likelihood
that a probe event belonged to either of two categories
{Aqua or Bromine}. Categories were defined by a dispersion
value around a centroid location (e.g., central tendency),
with individual events produced probabilistically by sampling

Figure 3: Sample output fromTask 1. Participants must generate the
likelihood that a probe event (denoted by the “?”) was produced by
each category and then perform a forced-choice resource allocation
to maximize their trial score. Likelihoods are based on the distance
from each category’s centroid and the frequency of events. For
instance, Aqua has a higher likelihood because its centroid is closer
to the probe and it has a higher frequency (i.e., more events) than
Bromine.

in a Gaussian window using a similar function as seen in
prototype distortion methodologies from dot pattern catego-
rization studies [13]. The interface was presented spatially on
a computer screen (see Figure 3) in a 100 × 100 grid pattern
(representing 30 square miles; grid not shown).

Participants were instructed to learn about each cate-
gory’s tendencies according to three features: the category’s
center of activity (i.e., centroid), the dispersion associated
with each category’s events, and the frequency of events
for each category. Using these three features, participants
determined the likelihood that the probe event belonged to
each category.

A trial consisted of 10 events, with 9 events presented
sequentially at various locations about the interface, with par-
ticipants required to click “next” after perceiving each event.
The 10th event was the probe event, which was presented as
a “?” on the interface. Each participant completed 10 trials,
with events accumulating across trials such that 100 events
were present on the interface by the end of the task.

After perceiving the probe event, participants were
instructed to generate likelihoods that the probe event
belonged to each category based on all the events that they
have seen not just the recent events from the current trial.
These likelihoods were expressed on a scale from 1 to 99% for
each category and summing to 100% across both categories.
If necessary, the interface would automatically normalize all
likelihoods into probabilities summing to 100%.

Finally, participants entered a forced-choice resource
allocation response, analogous to a measure of certainty.
Resource allocation was a forced-choice decision to allocate
100% of their resources to a single category. If that category
produced the probe event, then the participant would receive
feedback that was either 100 out of 100 for choosing the
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Figure 4: Sample output from Task 2. Participants must generate
the likelihood that a probe event (denoted by the “?”) was produced
by each category and then do a forced-choice resource allocation to
maximize their trial score. In addition, participants had to draw a 2-
to-1 boundary for each category whose boundary encapsulates 2/3
of that category’s events and whose center represents the center of
activity for that category. Likelihoods are based on the distance from
each category’s centroid and the frequency of events. For instance,
Citrine has the highest likelihood because it has a higher frequency
than the other categories, while Diamond has a marginally higher
likelihood than Aqua and Bromine because it has the closest
distance.

correct category or 0 out of 100 for choosing an incorrect
category. Following this feedback, the next trial commenced.

2.2. Task 2. In Task 2, participants predicted the likeli-
hood that a probe event belonged to either of four cate-
gories {Aqua,Bromine,Citrine, or Diamond}. The interface
and procedure were similar to Task 1, with the following
differences. A trial consisted of 20 events, with 19 events pre-
sented sequentially at various locations about the interface.
The 20th event was the probe event, which was presented as a
“?” on the interface. Each participant completed 5 trials, with
events accumulating across trials such that 100 events were
present on the interface by the end of the task. Participants
were further required to estimate each category’s centroid and
dispersion by drawing a circle for each category representing
a 2-to-1 boundary with 2/3 of the category’s events inside
the circle and 1/3 outside (see Figure 4). Participants clicked
with the mouse to set the centroid and dragged out with
the mouse to capture the 2-to-1 boundary, releasing the
mouse to set the position. It was possible to adjust both the
position and dispersion for each category after their initial
set. Estimating category centroids and dispersion preceded
generating likelihoods.

Finally, participants entered a similar forced-choice
resource allocation response as in Task 1. Resource alloca-
tion was a forced-choice decision to allocate 100% of their
resources to a single category. If that category produced the
probe event, then the participant would receive feedback that
was either 100 out of 100 for choosing the correct category or

Figure 5: Sample output from Task 3. Participants must generate
the likelihood that a probe event (denoted by the “?”) was produced
by each category and then do a forced-choice resource allocation
to maximize their trial score. Likelihoods are based on the road
distance from each category’s centroid and the frequency of events.
For instance, Citrine has the highest likelihood because it is the
closest category.

0 of out 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.

2.3. Task 3. In Task 3, participants predicted the likelihood
that a probe event belonged to either of four categories
similar to Task 2, with the following differences. Instead of the
interface instantiating a blank grid, it displayed a network of
roads. Events were only placed along roads, and participants
were instructed to estimate distance along roads rather than
“as the crow flies.” In addition, participants no longer had
to draw the 2-to-1 boundaries but instead only identify the
location of the category centroid.

A trial consisted of 20 events, with 19 events presented
sequentially at various locations about the interface.The 20th
event was the probe event, which was presented as a “?”
on the interface. Each participant completed 5 trials, with
events accumulating across trials such that 100 events were
present on the interface by the end of the task. Participants
were further required to estimate each category’s centroid by
placing a circle for each category (see Figure 5). Participants
clicked with the mouse to set the centroid. It was possible to
adjust the position for each category after the initial set. Based
on the requirement to judge road distance, Task 3 (and Task
4) involved additional visual problem solving strategies (e.g.,
spatial path planning and curve tracing) [14].

Finally, participants entered a similar forced-choice
resource allocation response as in Task 2. Resource alloca-
tion was a forced-choice decision to allocate 100% of their
resources to a single category. If that category produced the
probe event, then the participant would receive feedback that
was either 100 out of 100 for choosing the correct category or
0 out of 100 for choosing an incorrect category. Following this
feedback, the next trial commenced.
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Figure 6: Sample output from Task 4. Participants must generate
the likelihood that a probe event (denoted by the Diamond) was
produced by each category (1–4), first by the HUMINT layer
(distance from category centroids to probe event) and then by the
SOCINT layer (likelihoods are doubled for the category in whose
region the probe event falls). Finally, participants allocate resources
tomaximize their trial score. For instance, category 4 has the highest
likelihood because it is the closest category and the probe falls within
its boundary.

2.4. Task 4. Beginning with Task 4, instead of gathering
information from a sequence of events, participants instead
generated and updated likelihoods after being presented with
a number of features as separate layers of information. These
features were governed by probabilistic decision rules [15]
described previously in Table 1. In Task 4, two features
were presented to participants in a fixed order. The first
layer was HUMINT (HUMan INTelligence), which revealed
the location of the category centroid for each category. The
second layer was SOCINT (SOCial INTelligence), which
revealed color-coded regions on the display representing each
category’s boundary (see Figure 6). If a probe event occurred
in a given category’s boundary, then the probability that the
probe belonged to that category was twice as high as the event
belonging to any of the other categories.

Participants were instructed that the feature layers pro-
vided “clues” revealing intelligence data (called INTs) and the
probabilistic decisions rules (called PROBs rules) provided
means to interpret INTs. Participants were instructed to refer
to the PROBs handbook (based on Table 1; see the appendix
for the complete handbook), which was accessible by clicking
on the particular layer in the legend on the left side of the
display or by reviewing the mission tutorial in the top-right
corner. They were further instructed that each feature layer
was independent of other layers.

The same simulated geospatial display from Task 3 was
used in Task 4; however, instead of a trial consisting of a series
of individual events, a trial instead consisted of reasoning
from category centroids to a probe event by updating likeli-
hoods after each new feature was revealed. A trial consisted of
two features presented in sequence (HUMINT and SOCINT,
resp.). The HUMINT layer revealed the centroids for each

category along with the probe event. Participants reported
likelihoods for each category {1, 2, 3, or 4} based on the road
distance between the probe and each category’s centroid.
Similar to previous tasks, likelihoods were automatically nor-
malized to a probability distribution (i.e., summing to 100%).
After this initial distribution was input, the SOCINT feature
was presented by breaking the display down into four colored
regions representing probabilistic category boundaries. Using
these boundaries, participants applied the SOCINT rule and
updated their probability distribution.

Once their revised probability distribution was entered,
participants were required to generate a resource allocation.
The resource allocation response was produced using the
same interface as probability estimates. For instance, assum-
ing that resources were allocated such that {1 = 40%, 2 =
30%, 3 = 20%, 4 = 10%} and if the probe belonged to category
1 (i.e., that 1 was the “ground truth”), then the participant
would receive a score of 40 out of 100, whereas if the probe
instead belonged to category 2, they would score 30 points.
After completing their resource allocation, the display was
reset and a new trial started.

Participants completed 10 trials. Unlike Tasks 1–3, each
trial was presented on a unique road network with all four
category locations presented in a unique location.

2.5. Task 5. In Task 5, all five features were revealed to partici-
pants in each trial, with theHUMINT feature always revealed
first (and the rest presented in a randomorder).Thus, partici-
pants began each trial with each category’s centroid presented
on the interface and the Bayesian optimal probability distri-
bution already input on the right-side response panel (see
Figure 7).The goal of Task 5 was to examine how participants
fused multiple layers of information together. Unlike Task
4, the correct probability distribution for HUMINT was
provided to participants. This was done both to reduce the
variance in initial probabilities (due to the noisiness of spatial
road distance judgments) and also to reduce participant
fatigue. After perceiving HUMINT and being provided the
correct probability distribution, each of the four remaining
features (SOCINT, IMINT, MOVINT, and SIGINT on a
single category) was revealed in a random order. After each
feature was revealed, participants updated their probability
distribution based on applying the corresponding decision
rules. Similar to Task 4, after the final feature was revealed,
participants allocated resources.

The same methodology was used as for Task 4, only with
five layers of features presented instead of two. Participants
reported likelihoods for each category {Aqua, Bromine,
Citrine, or Diamond} based on the information revealed
by the feature at each layer according to the rules of the
PROBs handbook. Likelihoods were automatically normal-
ized to a probability distribution (i.e., summing to 100%).
After HUMINT was revealed, four other features (SOCINT,
MOVINT, IMINT, and SIGINT) were revealed in random
order. The SOCINT feature was presented by breaking the
display down into four colored regions representing proba-
bilistic category boundaries. The IMINT (IMagery INTelli-
gence) feature was presented by showing either a government
or military building at the probe location. The MOVINT
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Figure 7: Sample output fromTask 5. Participantsmust generate the
likelihood that a probe event (denoted by the probe event “1”) was
produced by each category. The HUMINT layer is always displayed
first, and the initial probability distribution based on road distance
is provided to participants. Participants must update this initial
distribution as new features are revealed. In the current example, the
likelihoods of categories A and C are increased due to theMOVINT
layer revealing sparse traffic at the probe event location (see PROBs
rules in Table 1).

(MOVement INTelligence) feature was presented by showing
either sparse or dense traffic at the probe location. Finally,
the SIGINT (SIGnal INTelligence) feature was presented
by showing either the presence or absence of chatter for a
specific category at the probe location. After each feature was
revealed, participants applied the relevant PROBs rule and
updated their probability distribution.

After all feature layers were revealed and probability
distributions were revised, participants were required to gen-
erate a resource allocation. The resource allocation response
was produced using the same interface as in Task 4. After
completing their resource allocation, the display was reset
and a new trial started. Participants completed 10 trials. Note
that participants needed to update likelihoods four times per
trial (thus 40 times in total) in addition to a single resource
allocation per trial (10 total). Similar to Task 4, each trial was
presented on a unique road network with all four category
locations presented in a unique location.

2.6. Task 6. In Task 6, participants were able to choose three
of four possible features to be revealed, in addition to the
order in which they are revealed (see Figure 8). The goal of
Task 6 was to determine participants’ choices and ordering in
selecting features (which we refer to as layer selection). This
methodology determined whether participants were biased
to pick features whose corresponding decision rule con-
firmed their leading hypothesis or possiblymaximized poten-
tial information gain. Participants were instructed to choose
layers thatmaximized information at each step to increase the
likelihood of a single category being responsible for the event.

As for Task 5, a trial began by perceiving the HUMINT
layer and being provided the correct probability distribution.

Figure 8: Sample output fromTask 6. Participantsmust generate the
likelihood that a probe event (denoted by the probe event “1”) was
produced by each category. The HUMINT layer is always displayed
first, and the initial probability distribution based on road distance
is provided to participants. Participants must update this initial
distribution as new features are revealed. In the current example, the
likelihoods of categories A and C are increased due to theMOVINT
layer revealing sparse traffic at the probe event location.

Participants must then choose a feature to be revealed
(SOCINT, IMINT, MOVINT, or SIGINT on a single cat-
egory). When participants chose the SIGINT layer, they
needed to further specify which category they were inspect-
ing (listening for chatter). After the chosen feature was
revealed, participants updated their probability distribution
based on applying the corresponding decision rules. This
process was repeated twice more with different features, for
a total of three layers being chosen. Participants must update
category likelihoods {Aqua,Bromine,Citrine, or Diamond}
after each layer was revealed based on the information pro-
vided by the corresponding feature at each layer according to
the rules of the PROBs handbook. As in the other tasks, like-
lihoods were automatically normalized to sum to 100% across
categories. Note that with only three layer selection choices,
participants were not able to reveal one feature on each trial.

After participants completed the process of choosing
a feature and updating their likelihoods for each of three
iterations, participants were required to generate a resource
allocation. The resource allocation response was produced
using the same interface as in Tasks 4-5. After completing
their resource allocation, the display was reset and a new
trial commenced. Participants completed 10 trials. Note that,
with three layer selections, participants actually updated
probabilities 30 times (3 times per trial), in addition to
allocating resources once for each trial. Similar to Tasks 4-
5, each trial was presented on a unique road network with all
four category locations presented in a unique location.

3. An ACT-R Model of Sensemaking

3.1. Overview of ACT-R. Our aim has been to develop a
functional model of several core information-foraging and
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hypothesis-updating processes involved in sensemaking. We
do this by developing ACT-R models to specify how ele-
mentary cognitive modules and processes are marshaled to
produce observed sensemaking behavior in a set of complex
geospatial intelligence Tasks. These tasks involve an iterative
process of obtaining new evidence from available sources
and using that evidence to update hypotheses about potential
outcomes. One purpose of the ACT-R functional model is
to provide a roadmap of the interaction and sequencing of
neural modules in producing task performance (see next
section). A second purpose is to identify and understand a
core set mechanisms for producing cognitive biases observed
in the selection and weighting of evidence in information
foraging (e.g., confirmation bias).

TheACT-R architecture (see Figure 9) is organized as a set
of modules, each devoted to processing a particular kind of
information, which are integrated and coordinated through
a centralized production system module. Each module is
assumed to access and deposit information into buffers
associated with the module, and the central production
system can only respond to the contents of the buffers not the
internal encapsulated processing of the modules. Each mod-
ule, including the production module, has been correlated
with activation in particular brain locations [1]. For instance,
the visual module (occipital cortex and others) and visual
buffers (parietal cortex) keep track of objects and locations in
the visual field. The manual module (motor cortex; cerebel-
lum) and manual buffer (motor cortex) are associated with
control of the hands. The declarative module (temporal lobe;
hippocampus) and retrieval buffer (ventrolateral prefrontal
cortex) are associated with the retrieval and awareness of
information from long-term declarative memory. The goal
buffer (dorsolateral prefrontal cortex) keeps track of the
goals and internal state of the system in problem solving.
Finally, the production system (basal ganglia) is associated
with matching the contents of module buffers and coordinat-
ing their activity. The production includes components for
pattern matching (striatum), conflict resolution (pallidum),
and execution (thalamus). A production rule can be thought
of as a formal specification of the flow of information from
buffered information in the cortex to the basal ganglia and
back again [16].

The declarative memory module and production system
module, respectively, store and retrieve information that
corresponds to declarative knowledge and procedural knowl-
edge [17]. Declarative knowledge is the kind of knowledge
that a person can attend to, reflect upon, andusually articulate
in some way (e.g., by declaring it verbally or by gesture).
Procedural knowledge consists of the skills we display in our
behavior, generally without conscious awareness. Declarative
knowledge in ACT-R is represented formally in terms of
chunks [18, 19]. The information in the declarative mem-
ory module corresponds to personal episodic and semantic
knowledge that promotes long-term coherence in behavior.
In this sense a chunk is like a data frame, integrating
information available in a common context at a particular
point in time in a single representational structure. The goal
module stores and retrieves information that represents the
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Figure 9:ACT-R functions as a production system architecturewith
multiple modules corresponding to different kinds of perception,
action, and cognitive information stores. Modules have been identi-
fied with specific brain regions. In addition to those shown above,
the Imaginal module has been associated with posterior parietal
activation.

internal intention and problem solving state of the system and
provides local coherence to behavior.

Chunks are retrieved from long-termdeclarativememory
by an activation process (see Table 2 for a list of retrieval
mechanisms in ACT-R). Each chunk has a base-level acti-
vation that reflects its recency and frequency of occurrence.
Activation spreads from the current focus of attention,
including goals, through associations among chunks in
declarative memory. These associations are built up from
experience, and they reflect how chunks cooccur in cognitive
processing. The spread of activation from one cognitive
structure to another is determined by weighting values on
the associations among chunks. These weights determine the
rate of activation flow among chunks. Chunks are compared
to the desired retrieval pattern using a partial matching
mechanism that subtracts from the activation of a chunk
its degree of mismatch to the desired pattern, additively for
each component of the pattern and corresponding chunk
value. Finally, noise is added to chunk activations to make
retrieval a probabilistic process governed by a Boltzmann
(softmax) distribution.While themost active chunk is usually
retrieved, a blending process [20] can also be applied which
returns a derived output reflecting the similarity between the
values of the content of all chunks, weighted by their retrieval
probabilities reflecting their activations and partial-matching
scores. This blending process will be used intensively in
the model since it provides both a tractable way to learn
to perform decisions in continuous domains such as the
probability spaces of the AHA framework and a direct
abstraction to the storage and retrieval of information in
neural models (see next section).
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Table 2: The list of sub-symbolic mechanisms in the ACT-R architecture.

Mechanism Equation Description

Activation 𝐴
𝑖
= 𝐵
𝑖
+ 𝑆
𝑖
+ 𝑃
𝑖
+ 𝜀
𝑖

𝐵
𝑖
: base-level activation reflects the recency and frequency of use of

chunk i
𝑆
𝑖
: spreading activation reflects the effect that buffer contents have on

the retrieval process
𝑃
𝑖
: partial matching reflects the degree to which the chunk matches

the request
𝜀
𝑖
: noise value includes both a transient and (optional) permanent

components (permanent component not used by the integrated
model)

Base level 𝐵
𝑖
= ln(

𝑛

∑
𝑗=1

𝑡
−𝑑

𝑗
) + 𝛽

𝑖

𝑛: the number of presentations for chunk i
𝑡
𝑗
: the time since the jth presentation
𝑑: a decay rate (not used by the integrated model)
𝛽
𝑖
: a constant offset (not used by the integrated model)

Spreading activation
𝑆
𝑖
= ∑
𝑘

∑
𝑗

𝑊
𝑘𝑗
𝑆
𝑗𝑖
,

𝑘: weight of buffers summed over are all of the buffers in the model
𝑗: weight of chunks which are in the slots of the chunk in buffer k
𝑊
𝑘𝑗
: amount of activation from sources j in buffer k

𝑆
𝑗𝑖
: strength of association from sources j to chunk i

𝑆
𝑗𝑖
= 𝑆 − ln (fan

𝑗𝑖
)

𝑆: the maximum associative strength (set at 4 in the model)
fan
𝑗𝑖
: a measure of how many chunks are associated with chunk j

Partial matching 𝑃
𝑖
= ∑
𝑘

𝑃𝑀
𝑘𝑖

𝑃: match scale parameter (set at 2) which reflects the weight given to
the similarity
𝑀
𝑘𝑖
: similarity between the value k in the retrieval specification and

the value in the corresponding slot of chunk i
The default range is from 0 to −1 with 0 being the most similar and −1
being the largest difference

Declarative retrievals 𝑃
𝑖
=

𝑒
𝐴𝑖/𝑠

∑
𝑗
𝑒𝐴𝑗/𝑠

𝑃
𝑖
: the probability that chunk 𝑖 will be recalled
𝐴
𝑖
: activation strength of chunk 𝑖

∑𝐴
𝑗
: activation strength of all of eligible chunks 𝑗

𝑠: chunk activation noise

Blended retrievals 𝑉 = min∑
𝑖

𝑃
𝑖
(1 − Sim

𝑖𝑗
)
2 𝑃

𝑖
: probability from declarative retrieval

Sim
𝑖𝑗
: similarity between compromise value 𝑗 and actual value 𝑖

Utility learning

𝑈
𝑖
(𝑛) = 𝑈

𝑖
(𝑛 − 1) + 𝛼 [𝑅

𝑖
(𝑛) − 𝑈

𝑖
(𝑛 − 1)]

𝑈
𝑖
(𝑛 − 1): utility of production i after its 𝑛 − 1st application

𝑅
𝑖
(𝑛): reward production received for its nth application

𝑈
𝑖
(𝑛): utility of production i after its nth application

𝑃
𝑖
=

𝑒
𝑈𝑖/𝑠

∑
𝑗
𝑒𝑈𝑗/𝑠

𝑃
𝑖
: probability that production i will be selected
𝑈
𝑖
: expected utility of the production determined by the utility

equation above
𝑈
𝑗
: the expected utility of the competing productions j

Production rules are used to represent procedural knowl-
edge inACT-R.That is, they specify procedures that represent
and apply cognitive skill (know-how) in the current context
and how to retrieve and modify information in the buffers
and transfer it to other modules. In ACT-R, each production
rule has conditions that specify structures that arematched in
buffers corresponding to information from the externalworld
or other internal modules. Each production rule has actions
that specify changes to be made to the buffers.

ACT-R uses a mix of parallel and serial processing. Mod-
ules may process information in parallel with one another.
So, for instance, the visual modules and the motor modules
may both operate at the same time. However, there are two
serial bottlenecks in process. First, only one production may
be executed during a cycle. Second, each module is limited
to placing a single chunk in a buffer. In general, multiple
production rules can be applied at any point. Production

utilities, learned using a reinforcement learning scheme, are
used to select the single rule that fires. As for declarative
memory retrieval, production selection is a probabilistic
process.

Cognitive model development in ACT-R [21] is in part
derived from the rational analysis of the task and information
structures in the external environment (e.g., the design of
the tasks being simulated or the structure of a graphical user
interface), the constraints of the ACT-R architecture, and
guidelines frompreviousmodels of similar tasks. A successful
design pattern in specifying cognitive process sequencing in
ACT-R [21] is to decompose a complex task to the level of
unit tasks [22]. Card et al. [22] suggested that unit tasks
control immediate behavior.Unit tasks empirically take about
10 seconds. To an approximation, unit tasks are where “the
rubber of rationality meets the mechanistic road.” To an
approximation, the structure of behavior above the unit task
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level largely reflects a rational structuring of the task within
the constraints of the environment, whereas the structure
within and below the unit task level reflects cognitive and
biological mechanisms, in accordance with Newell’s bands
of cognition [23]. Accordingly, in ACT-R, unit tasks are
implemented by specific goal types that control productions
that represent the cognitive skills for solving those tasks.

ACT-R has been the basis for several decades of research
on learning complex cognitive tasks such as algebra and
programming [24, 25]. In general, the long-run outcome of
learning such tasks is a large set of highly situation-specific
productions whose application is sharply tuned by ACT-R
utility mechanisms (a form of reinforcement learning). How-
ever, it is also generally assumed that achieving such expert
levels of learning requires 1000s of hours of experience. We
assume that the participants in the AHA tasks will not have
the opportunity to achieve such levels of expertise. Instead,
we hypothesize that participants will rely on direct recogni-
tion or recall of relevant experience from declarativememory
to guide their thinking or, failing that, will heuristically inter-
pret and deliberate through the rules and evidence provided
in the challenge tasks. This compute-versus-retrieve process
is another design pattern that typically structures ACT-R
models [21]. The notion that learners have a general-purpose
mechanism whereby situation-action-outcome observations
are stored and retrieved as chunks in ACT-R declarative
memory is derived from instance-based learning theory
(IBLT) [26, 27]. Gonzalez et al. [26] present arguments
that IBLT is particularly pertinent to modeling naturalistic
decisionmaking in complex dynamic situations, andmany of
those arguments would transfer to making the case that IBLT
is appropriate for sensemaking.

Relevant to the Bayesian inspiration for the AHA
tasks, ACT-R’s subsymbolic activation formula approximates
Bayesian inference by framing activation as log-likelihoods,
base-level activation (𝐵

𝑖
) as the prior, the sum of spreading

activation and partial matching as the likelihood adjustment
factor(s), and the final chunk activation (𝐴

𝑖
) as the posterior.

The retrieved chunk has an activation that satisfies the
maximum likelihood equation. ACT-R provides constraint
to the Bayesian framework through the activation equation
and production system. The calculation of base levels (i.e.,
priors) occurs within both neurally and behaviorally con-
sistent equations (see Table 2) providing for behaviorally
relevantmemory effects like recency and frequencywhile also
providing a constrainedmechanism for obtaining priors (i.e.,
driven by experience).

In addition, the limitations on matching in the produc-
tion system provide constraints to the Bayesian hypothesis
space and, as a result, the kinds of inferences that can be
made. For instance, there are constraints on the kinds of
matching that can be accomplished (e.g., no disjunction,
matching only to specific chunk types within buffers), and,
while user-specified productions can be task-constrained, the
production system can generate novel productions (through
proceduralization of declarative knowledge) using produc-
tion compilation. In addition, the choice of which production
to fire (conflict resolution) also constrains which chunks

(i.e., hypotheses) will be recalled (limiting the hypothesis
space) and are also subject to learning via production utilities.

It has been argued that ACT-R’s numerous parameters
do not provide sufficient constraint on modeling endeav-
ors. However, the use of community and research-justified
default values, the practice of removing parameters by
developing more automatized mechanisms, and the devel-
opment of common modeling paradigms—such as instance-
based learning theory—mitigate these criticisms by limiting
degrees of freedom in the architecture and thus constraining
the kinds of models that can be developed and encouraging
their integration.

3.2. ACT-R Prototyping for Neural Models. ACT-R can be
used in a prototyping role for neural models such as
Emergent, which uses the Leabra learning rule [28]. In ACT-
R, models can be quickly developed and tested, and the
results of thesemodels then help informmodeling efforts and
direct training strategies in Emergentmodels [29, 30]. ACT-R
models can be created quickly because ACT-Rmodels accept
predominantly functional specifications, yet they produce
neurally relevant results. The ACT-R architecture is also flex-
ible enough that innovations made in neurocomputational
models can be implemented (to a degree of abstraction)
within new ACT-R modules [31].

There are several points of contact between ACT-R and
Emergent, the most tangible of which is a commitment to
neural localization of architectural constructs in both archi-
tectures (see Figure 9). In both architectures a central control
module located in the basal ganglia collects inputs from a
variety of cortical areas and outputs primarily to the frontal
cortex, which maintains task relevant information [16, 32].
Additionally, both include a dedicated declarative/episodic
memory system in the hippocampus and associated cortical
structures. Lastly, both account for sensory and motor pro-
cessing in the posterior cortex.

The architectures differ in that the brain regions are
explicitly modeled in Emergent, whereas they are implicit
in ACT-R. In ACT-R the basal ganglia are associated with
the production system; the frontal cortex with the goal
module; the parietal cortex with the imaginal module; the
hippocampus with the declarative memory module; and
finally the posterior cortices with the manual, vocal, aural,
and vision modules. This compatibility of ACT-R and Emer-
gent has been realized elsewhere by the development of
SAL (Synthesis of ACT-R and Leabra/Emergent), a hybrid
architecture that combinesACT-R andEmergent and exploits
the relative strengths of each [33]. Thus, ACT-R connects to
the underlying neural theory of Emergent and can provide
meaningful guidance to the development of neural models of
complex tasks, such as sensemaking.

In effect, ACT-Rmodels provide a high-level specification
of the information flows that will take place in the neural
model between component regions implemented in Emer-
gent. Since ACT-R models have been targeted at precisely
this level of description, they can provide for just the right
level of abstraction while ignoring many implementational
details (e.g., number of connections) at the neural level.
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Conceptually, the ACT-R architecture provides a bridge
between the rational Bayesian level and the detailed neural
level. In terms of Marr [34] levels of analysis, the Bayesian
characterization of the task solutions is situated at the com-
putational level, describing the computations that should be
performed without specifying how. AnACT-R account of the
tasks is at the algorithmic/representational level, specifying
what representations are created, whichmechanisms are used
to manipulate them, and which structure constrains both
representations and processes. Finally, a neural account is sit-
uated at the physical/implementational level, fully specifying
all the details of how the computations are to be carried out in
the brain. Thus, just as in Marr’s analysis it would not make
sense to try to bridge directly the highest and lowest levels;
a functional cognitive architecture such as ACT-R provides
a critical link between abstract computational specifications
such as Bayesian rational norms and highly detailed neural
mechanisms and representations.

Moreover, ACT-R does not just provide any intermediate
level of abstraction between computational and implemen-
tational levels in a broad modular sense. Rather, just as the
ACT-R mechanisms have formal Bayesian underpinnings,
they also have a direct correspondence to neural mecha-
nisms and representations. The fundamental characteristics
of modern neural modeling frameworks are distributed
representations, local learning rules, and training of networks
from sets of input-output instances [35].

Distributed representations are captured in ACT-R
through similarities between chunks (and other sets of values
such as number magnitudes) that can be thought of as
corresponding to the dotproduct between distributed repre-
sentations of the corresponding chunks. The generalization
process operates over distributed representations in neural
networks, effectively matching the learned weights from the
input units resulting in a unit containing the representation of
the current input.This is implemented in ACT-R using a par-
tial matching mechanism that combines a chunk’s activation
during the memory retrieval process with its degree of match
to the requested pattern as determined by the similarities
between chunk contents and pattern [36].

Local learning rules in neural networks are used to
adjust weights between units based on information flowing
through the network. The base-level and associative learning
mechanisms in ACT-R perform a similar function in the
same manner. Both have Bayesian underpinnings [37] but
also direct correspondence to neural mechanisms. Base-level
learning is used to adjust the activation of a chunk based
on its history of use, especially its frequency and recency
of access. This corresponds to learning the bias of a unit
in a network, determining its initial activation which is
added to inputs from other units. Associative learning adjusts
the strengths of association between chunks to reflect their
degree of coactivation. While the original formulation was
Bayesian in nature, a new characterization makes the link
to Hebbian-like learning explicit, in particular introducing
the same positive-negative learning phases as found in many
connectionist learning algorithms including Leabra [31].

Neural models are created by a combination of modeler-
designed structure and training that adjusts the network’s

weights in response to external inputs. The instance-based
learning approach in ACT-R similarly combines a repre-
sentational structure provided by the modeler with content
acquired from experience in the form of chunks that repre-
sent individual problem instances. The set of chunks stored
in declarative memory as a result can be thought of as the
equivalent to the set of training instances given to the neural
network. While the network compiles those instances into
weights during training, ACT-R can instead dynamically
blend those chunks together during memory retrieval to
produce an aggregate response that reflects the consensus of
all chunks, weighted by their probability of retrieval reflecting
the activation processes described above [20].

Thus, ACT-R models can be used to prototype neural
models because they share both a common structure of infor-
mation flow as well as a direct correspondence from themore
abstract (hence tractable) representations andmechanisms at
the symbolic/subsymbolic level and those at the neural level.

3.3. Cognitive Functions Engaged in the AHA Tasks. The
integrated ACT-R model of the AHA tasks has been used to
prototype many cognitive effects in neural models including
generating category prototypes of centroids from SIGACT
events (centroid generation) [29], spatial path planning
along road networks [30], adjusting probabilities based on
incoming information [29], choosing how many resources
to allocate given a set of probabilities and prior experience
[29], and selecting additional intelligence layers (see Table 3
for an overview). The model’s output compared favorably
with human behavioral data and provides a comprehensive
explanation for the origins of cognitive biases in the AHA
framework, most prominently the anchoring and adjustment
bias. All the functions described below were integrated in a
singleACT-Rmodel that performed all 6AHA tasks using the
same parameters. That model was learned across trials and
tasks. We will describe later in details how its performance
in the later trials of a task can depend critically upon its
experience in the earlier trials (even just the first trial), in
particular leading to a distinct conservatism bias. Similarly,
its performance in the later tasks depends upon its experience
in earlier tasks, leading directly to probability matching bias
in resource allocation.

The model performs the task in the same manner as
human subjects. Instructions such as the probabilistic deci-
sion rules are represented in declarative memory for later
retrieval when needed. The model perceives the events,
represents them in the imaginal buffer, and then stores
them in declarative memory where they influence future
judgments. In Tasks 1–3, the model uses those past events
in memory to generate the category centroid when given a
probe. In Tasks 3-4, the model programmatically parses the
map to represent the road network declaratively and then
uses that declarative representation to generate paths and
estimate road distances. In all tasks, probability adjustment
is performed using the same instance-basedmechanism,with
experience from earlier tasks accumulated inmemory for use
in later tasks. Resource allocation is also performed in all
tasks using the same instance-based approach, with results
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Table 3: Overview of cognitive functions of ACT-R model.

Cognitive function Overview of operation

Centroid generation
Tasks: 1–3

Buffers implicated: blending, imaginal, and goal
Biases instantiated: base-rate neglect, anchoring and adjustment
The model generates a category centroid by aggregating overall of the perceived events (SIGACTs) in memory
via the blended memory retrieval mechanism. Judgments are based on generating a centroid-of-centroids by
performing a blended retrieval over all previously generated centroids, resulting to a tendency to anchor to early
judgments. Because there is an equal number of centroids per category, this mechanism explicitly neglects base
rate

Path planning
Tasks: 3-4

Buffers implicated: retrieval, imaginal, and goal
Biases instantiated: anchoring and adjustment
The model parses the roads into a set of intersections and road segments. The model hill-climbs by starting at
the category centroid and appends contiguous road segments until the probe event is reached. Road segment
lengths are perceived veridically; however, when recalled the lengths are influenced by bottom-up perceptual
mechanisms (e.g., curve complexity and length) simulated by a power law with an exponent less than unity. This
leads to underestimation of longer and curvier segments, resulting in a tendency to anchor when perceiving
long segments

Probability adjustment
Tasks: 1–6

Buffers implicated: blending, imaginal, and goal
Biases instantiated: anchoring in weighing evidence, confirmation bias
The model represents the prior probability and multiplicative factor rule and then attempts to estimate the
correct posterior by performing a blended retrieval over similar chunks in memory in a form of instance-based
learning. The natural tendency towards regression to the mean in blended retrievals leads to anchoring bias in
higher probabilities and confirmation bias in lower probabilities. The partial matching mechanism is used to
allow for matches between the prior and similar values in DM

Resource allocation
Tasks: 1–6

Buffers implicated: blending, imaginal, and goal
Biases instantiated: probability matching
The model takes the probability assigned to a category and then estimates an expected outcome by performing a
blended retrieval using the probability as a cue. The outcome value of the retrieved chunk is the expected
outcome for the trial. Next, an additional blended retrieval is performed based on both the probability and
expected outcome, whose output is the resources allocation
After feedback, the model stores the leading category probability, the resources allocated, and the actual
outcome of the trial. Up to two counterfactuals are learned, representing what would have happened if a
winner-take-all or pure probability matching resources allocation had occurred. Negative feedback on forced
winner-take-all assignments in Tasks 1–3 leads to probability matching in Tasks 4–6

Layer selection
Task: 4–6

Buffers implicated: blending, goal
Biases instantiated: confirmation bias
In Task 6, the model uses partial matching to find chunks representing past layer-selection experiences that are
similar to the current situation (the distribution of probabilities over hypotheses). If that retrieval succeeds, the
model attempts to estimate the utility of each potential layer choice by performing a blended retrieval over the
utilities of past layer-choice outcomes in similar situations. The layer choice that has the highest utility is
selected. If the model fails to retrieve past experiences similar to the current situations, it performs a
“look-ahead” search by calculating the expected utility for some feature layers. The number of moves mentally
searched will not often be exhaustive
The blended retrieval mechanism will tend to average the utility of different feature layers based on prior
experiences from Tasks 4 and 5 (where feature layers were provided to participants), in addition to prior trials
on Task 6

from forced-choice selections in Tasks 1–3 fundamentally
affecting choices in later Tasks 4–6. Finally, layer selection in
Task 6 uses experiences in Tasks 4-5 to generate estimates of
information gain and select the most promising layer. Thus
the integrated model brings to bear constraints from all tasks
and functions.

3.3.1. Centroid Generation. The ACT-R integrated model
generates category centroids (i.e., the prototype or central
tendency of the events) in Tasks 1–3 by aggregating overall of
the representations of events (e.g., spatial-context frames) in
memory via the blended memory retrieval mechanism. The

goal buffer maintains task-relevant top-down information
while the blending buffer creates/updates centroids from
both the set of perceived SIGACTs to date and prior created
centroids. Centroid generation approximates a stochastic
least-MSE derived from distance and based on the 2D Carte-
sian coordinates of the individual SIGACTs. Specifically, the
mismatch penalty (𝑃

𝑖
) used in the blended retrieval is a linear

difference:

𝑃
𝑖
=

2 ⋅
𝑑1 − 𝑑2



∗max range∗
, (1)

where 𝑑 is the perceived distance and ∗max range∗ is the
size of the display (100 units).The imaginal buffer (correlated
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with parietal activity) is used to hold blended chunks before
being committed to declarative memory. When centroids
are generated directly from SIGACTs, the blending process
reflects a disproportionate influence of the most recent
events given their higher base-level activation. A strategy
to combat this recency bias consisted of generating a final
response by performing a blended retrieval over the current
and past centroids, thereby giving more weight to earlier
SIGACTs.This is because the influence of earlier centroids has
been compounded over the subsequent blended retrievals,
essentially factoring earlier SIGACTs into more centroids.
This second-order blended retrieval is done for each category
across their prior existing centroids, which we refer to as the
generation of a centroid-of-centroids.This blending over cen-
troids effectively implements an anchoring-and-adjustment
process where each new centroid estimate is a combination
of the previous ones together with the new evidence. A
fundamental difference with traditional implementation of
anchoring-and-adjustment heuristic is that this process is
entirely constrained by the architectural mechanisms (espe-
cially blending) and does not involve additional degrees of
freedom. Moreover, because there are an equal number of
centroid chunks (one per category created after each trial),
there is no effect of category base rate on the model’s later
probability judgments, even though the base rate for each
category is implicitly available in the model based on the
number of recallable events.

3.3.2. Path Planning. The ACT-R model uses the declarative
memory and visual modules to implement path planning,
which simulate many of the parietal functionalities that were
later implemented in a Leabra model [30]. Two examples
include

(1) perceptually segmenting the road network so that
the model only attends to task-relevant perceptual
elements,

(2) implementing visual curve tracing to model the psy-
chophysics of how humans estimate curved roads.

The model segments the road network in Tasks 3-4 into
smaller elements and then focuses perceptual processes such
as curve tracing, distance estimation, and path planning on
these smaller road segments [38]. Specifically, the model
identifies the intersections of different roads as highly salient
HUMINT features and then splits the road network into road
segments consisting of two intersections (as the ends of the
segment), the general direction of the road and the length of
road. Intersections are generally represented as a particular
location on the display in Cartesian𝑋-𝑌 coordinates.

For each trial, the probe location is also represented as a
local HUMINT feature, and, in Task 3, the individual events
are represented as local HUMINT features for the purposes
of calculating category centroids. At the end of each trial,
the probe is functionally removed from the path planning
model, although a memory trace of the previous location still
remains in declarative memory.

We have implemented a multistrategy hill-climber to
perform path planning. The model starts with a category

centroid and appends contiguous road segments until the
probe location is reached (i.e., the model is generating
and updating a spatial-context frame). The path planning
“decision-making” is a function of ACT-R’s partial matching.
In partial matching, a similarity is computed between a
source object and all target objects that fit a set of matching
criteria. This similarity score is weighted by the mismatch
penalty scaling factor. The hill-climber matches across mul-
tiple values such as segment length and remaining distance
to probe location. In general, for all road segments adjoining
the currently retrieved intersection or category centroid,
the model will tend to pick the segment where the next
intersection is nearest to the probe. This is repeated until the
segment with the probe location is retrieved.These strategies
are not necessarily explicit but are instead meant to simulate
the cognitive weights of different perceptual factors (e.g.,
distance, direction, and length) guiding attentional processes.
The partial matching function generates probabilities from
distances and calculates similarity between distances using
the same mismatch penalty as in Tasks 1 and 2.

Human performance data on mental curve tracing [14]
show that participants take longer to mentally trace along a
sharper curve than a relatively narrower curve.This relation is
roughly linear (with increased underestimation of total curve
length at farther curves) and holds along the range of visual
sizes of roads that were seen in the AHA tasks.This modeling
assumption is drawn from the large body of the literature on
visuospatial representation and mental scanning [39]. When
road network is parsed, a perceived length is assigned to
each road segment. This length is more or less represented
veridically in declarative memory. The dissociation between
a veridical perceived magnitude of distance and a postpro-
cessed cognitive distance estimate is consistent with prior
literature [40]. We represent a cognitive distance estimate
using Stevens’ Power Law [41]. Stevens’ Power Law is a well-
studied relationship between themagnitude of a stimulus and
its perceived intensity and serves as a simple yet powerful
abstraction of many low-level visual processes not currently
modeled in ACT-R.

The function uses the ratio of “as the cow walks” distance
to “as the crow flies” distance to create an estimate of curve
complexity [41].The higher the curve complexity, the curvier
the road. To represent the relative underestimation of dis-
tance for curvier segments, this ratio is raised to an exponent
of .82 [41–43]. The effect of this parameter is that, for each
unit increase in veridical distance, the perceived distance is
increased by a lesser extent. The closer the exponent to 1,
the more veridical the perception, and the closer to zero,
the more the distance will be underestimated. This value for
curve complexity is then multiplied by a factor representing
straight-line distance estimation performance (1.02) [43–45]:

𝐷 = {1.02 (
CowWalk
CrowFlies

) + CrowFlies }
.82

, (2)

where 𝐷 is the cognitive judgment of distance for the road
segment, CowWalk is the veridical perception of the curvature
of the road, and CrowFlies is the veridical perception of the
Euclidean distance between the source and target locations.
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Figure 10: Results from an ACT-R model of probability adjustment with linear (a) and ratio (b) similarities.

The factor of 1.02 represents a slight overestimation of smaller
straight-line distances. Similar to the exponent, any factor
above unity represents an overestimation of distance and any
factor below unity represents an underestimation of distance.

3.3.3. Probability Adjustment. Lebiere [20] proposed amodel
of cognitive arithmetic that used blended retrieval of arith-
metic facts to generate estimates of answers without explicit
computations. The model was driven by number of sim-
ilarities that correspond to distributed representations for
number magnitudes in the neural model and more generally
to our sense of numbers [46]. It used partial matching to
match facts related to the problem and blended retrievals
to merge them together and derive an aggregate estimated
answer. The model reproduced a number of characteristics
of the distribution of errors in elementary school children,
including both table and nontable errors, error gradients
around the correct answer, higher correct percentage for tie
problems, and, most relevant here, a skew toward under-
estimating answers, a bias consistent with anchoring and
adjustment processes.

To leverage this approach for probability adjustment, the
ACT-R model’s memory was populated with a range of facts
consisting of triplets: an initial probability, an adjustment
factor, and the resulting probability. These triplets form the
building blocks of the implementation of instance-based
learning theory [47] and correspond roughly to the notion of
a decision frame [3, 4]. In the AHA framework, the factor is
set by the explicit rules of the task (e.g., an event in a category
boundary is twice as likely to belong to that category). The
model is then seeded with a set of chunks that correspond
to a range of initial probabilities and an adjustment factor
together with the posterior probability that would result from
multiplying the initial probability by the adjustment factor,

then normalizing it. When the model is asked to estimate the
resulting probability for a given prior and multiplying factor,
it simply performs a blended retrieval specifying prior and
factor and outputs the posterior probability that represents
the blended consensus of the seeded chunks. Figure 10
displays systematic results of this process, averaged over a
thousand runs, given the variations in answers resulting from
activation noise in the retrieval process. When provided
with linear similarities between probabilities (and factors),
the primary effect is an underestimation of the adjusted
probability for much of the initial probability range, with an
overestimate on the lower end of the range, especially for
initial values close to 0.The latter effect is largely a result of the
linear form of the number similarities function. While linear
similarities are simple, they fail to scale both to values near
zero and to large values.

A better estimate of similarities in neural representations
of numbers is a ratio function, as reflected in single cell
recordings [1]. This increases dissimilarities of the numbers
near zero and scales up to arbitrarily large numbers. When
using a ratio similarity function, the effects from the lin-
ear similarity function are preserved, but the substantial
overestimate for the lower end of the probability range is
considerably reduced. While the magnitude of the biases
can be modulated somewhat by architectural parameters
such as the mismatch penalty (scaling the similarities) or
the activation noise (controlling the stochasticity of memory
retrieval), the effects themselves are a priori predictions of
the architecture, in particular its theoretical constraints on
memory retrieval.

Particular to the integrated model of the AHA tasks, the
mismatch penalty (𝑃

𝑖
) was computed as a linear difference:

𝑃
𝑖
= 2 ∗


𝑀
𝑘
−𝑀
𝑗


, (3)
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where 𝑀
𝑘
is the possible target probability and 𝑀

𝑗
is the

probability in the blended retrieval specification. As will be
described below, this linear differencematches extremely well
to human behavioral data.

The results of the ACT-R mechanism for probability
adjustment provided a benchmark against which neural
models were evaluated and were used to generate training
instances for the neural model which had already embodied
the proper bias. In our opinion, this constitutes a novel way
to use functional models to quickly prototype and interpret
neural models.

3.3.4. Resource Allocation. The resource allocation mecha-
nism in the model makes use of the same instance-based
learning paradigm as the probability adjustment mechanism.
This unified mechanism has no explicit strategies but instead
learns to allocate resources according to the outcomes of
past decisions. The model generates a resource allocation
distribution by focusing on the leading category and deter-
mining how many resources to allocate to that category. The
remaining resources are divided amongst the remaining three
categories in proportion to their assigned probabilities. This
instance-based learning not only occurs during Tasks 4–6 but
also inTasks 1–3 for forced-choice allocations. Because of this,
the model has some prior knowledge to draw upon in Task 4
when it first has the opportunity to select howmany resources
to assign to the leading category.

As mentioned above, this instance-based model has
the same structure as the model of probability adjustment.
Representation of a trial instance consists of three parts: a
decision context (in this case, the probability of the leading
category), the decision itself (i.e., the resource allocation to
the leading category), and the outcome of the decision (i.e.,
the payoff resulting from the match of that allocation to the
ground truth of the identity of the responsible category).This
representation is natural because all these pieces of infor-
mation are available during a resource allocation instance
and can plausibly be bound together in episodic memory.
However, the problem is how to leverage it tomake decisions.

Decision-making (choice)models based on this instance-
based learning approach iterate through a small number of
possible decisions, generating outcome expectancies from
the match of context and decision, and then choose the
decision with the highest expected outcome [47, 48]. Control
models apply the reverse logic: given the current context and
a goal (outcome) state, they match context and outcome to
generate the expected action (usually a control value from a
continuous domain) that will get the state closest to the goal
[49, 50]. However, our problem does not fit either paradigm:
unlike choice problems, it does not involve a small number
of discrete actions but rather a range of possible allocation
values, and, unlike control problems, there is no known goal
state (expected outcome) to be reached.

Our model’s control logic takes a more complex hybrid
approach, involving two steps of access to experiences in
declarative memory rather than a single one. The first step
consists of generating an expected outcome weighted over
the available decisions given the current context. The second

step will then generate the decision that most likely leads
to that outcome given to the context. Note that this process
is not guaranteed to generate optimal decisions, and indeed
people do not. Rather, it represents a parsimonious way to
leverage our memory of past decisions in this paradigm that
still provides functional behavior. A significant theoretical
achievement of our approach is that it unifies control models
and choice models in a single decision-making paradigm.

When determining how many resources to apply to the
lead category, the model initially has only the probability
assigned to that category. The first step is to estimate an
expected outcome. This is done by performing a blended
retrieval on chunks representing past resource allocation
decisions using the probability as a cue. The outcome value
of the retrieved chunk is the expected outcome for the
trial. Next, based on the probability assigned to the leading
category and the expected outcome, an additional blended
retrieval is performed. The partial matching mechanism is
leveraged to allow for nonperfect matches to contribute to
the estimation of expected outcome and resource quantity.
The resource allocation value of this second blended allocate
chunk is the quantity of resources that the model assigns to
the leading category. After feedback is received, the model
learns a resource allocation decision chunk that associates
the leading category probability, the quantity of resources
assigned to the leading category, and the actual outcome of
the trial (i.e., the resource allocation score for that trial).
Additionally, up to two counterfactual chunks are committed
to declarative memory. The counterfactuals represent what
would have happened if a winner-take-all resource assign-
ment had been applied and what would have happened if
a pure probability-matched resource assignment (i.e., using
the same values as the final probabilities) had been applied.
The actual nature of the counterfactual assignments is not
important; what is essential is to give the model a broad
enough set of experience representing not only the choices
made but also those that could have been made.

The advantage of this approach is that the model is not
forced to choose between a discrete set of strategies such
as winner-take-all or probability matching; rather, various
strategies could emerge from instance-based learning. By
priming the model with the winner-take-all and probability
matching strategies (essentially the boundary conditions), it
is possible for the model to learn any strategy in between
them, such as a tendency to more heavily weigh the leading
candidate (referred to as PM+), or even suboptimal strategies
such as choosing 25% for each of the four categories (assuring
a score of 25 on the trial) if the model is unlucky enough
to receive enough negative feedback so as to encourage risk
aversion [47].

3.3.5. Layer Selection. Layer selection in Task 6 depends
on learning the utilities of layer choices in Tasks 4-5 and
relies on four processes: instance-based learning (similar to
probability adjustment and resource allocationmechanisms),
difference reduction heuristic, reinforcement learning, and
cost-satisfaction. During Tasks 4–6 participants were asked
to update probability distributions based on the outcome of
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each layer (i.e., feature and relevant decision rule). In Tasks 4-
5, participants experienced 20 instances of the SOCINT rule
and 10 instances each of the IMINT, MOVINT, and SIGINT
rules. They also had a variable number of instances from
Task 6 based on their layer selections. Some of the layers
and outcomes might support their preferred hypothesis, but
some of them might not. Based on the results of each layer’s
outcome, the gain towards the goal of identifying a single
category might vary, and those experiences affect future layer
selection behavior through reinforcement learning.

A rational Bayesian approach to Tasks 4–6 might involve
the computation of expected information gains (EIGs) com-
puted overall possible outcomes that might result from the
selection of a feature layer. Under such a rational strategy,
SIGINT and SOCINT layers would require more calculation
cost than IMINT andMOVINT. In particular, the calculation
of EIG for SIGINT requires considering four categories with
two outcomes each, and the calculation of EIG for SOCINT
requires four outcomes; however, the calculation of EIG
for an IMINT or MOVINT layer requires consideration of
only two outcomes. We assume participants might consider
the cognitive costs of exploring layer selection outcomes in
preferring certain layer selection.

We chose to use a difference reduction heuristic (i.e., hill-
climbing) because we assume that an average person is not
able to compute and maintain the expected information gain
for all layers. A hill-climbing heuristic enables participants
to focus on achieving states that are closer to an ideal goal
state with the same requirement for explicit representation,
because all that needs to be represented is the difference
between the current state and a preferred (i.e., goal) state.

In Task 6, all prior instances were used to perform
evaluations of layer selection. First, the model attends to the
current problem state, including the distribution of likelihood
of attacks, as represented in the goal (Prefrontal Cortex;
PFC) and imaginal (Parietal Cortex; PC) buffers. Then, the
model attempts to retrieve a declarative memory chunk
(Hippocampus/Medial Temporal Lobe; HC/MTL) which
encodes situation-action-outcome-utility experiences of past
layer selections. This mechanism relies on partial matching
to retrieve the chunks that best match the current goal
situation and then on blending to estimate the utility of layer-
selectionmoves based on past utilities. If the retrieval request
fails, then themodel computes possible layer-selectionmoves
(i.e., it performs a look-ahead search) using a difference-
reduction problem-solving heuristic. In difference reduction,
for each mentally simulated layer-selection action, the model
simulates and evaluates the utility of the outcome (with
some likelihood of being inaccurate). Then the model stores
a situation-action-outcome-utility chunk for each mentally
simulated move. It is assumed that the number of moves
mentally searched will not often be exhaustive.This approach
is similar to the use of counterfactuals in the resource
allocation model.

TheACT-Rmodel of Task 6 relies on the use of declarative
chunks that represent past Tasks 4, 5, and 6 experiences. This
is intended to capture a learning process whereby participants
have attended to a current probability distribution, chosen a
layer, revised their estimates of the hypotheses, and finally

assessed the utility of the layer selection they just made.
The model assumes that chunks are formed from these
experiences each representing the specific situation (proba-
bility distribution over groups), selected intelligent layer, and
observed intelligence outcome and information utility, where
the utilities are computed by the weighted distancemetric (𝑑)
below:

𝑑 = ∑
𝑖∈Hypotheses

𝑝
𝑖
(1 − 𝑝

𝑖
) , (4)

where, each𝑝 is a posterior probability of a group attack based
on rational calculation, and zero is the optimum. The ACT-
R model uses this weighted distance function and assumes
that the participant’s goal is to achieve certainty on one of the
hypotheses (i.e., 𝑝

𝑖
= 1).

At a future layer selection point, a production rule will
request a blended/partial matching retrieval from declar-
ative memory based on the current situation (probability
distribution over possible attacking groups). ACT-R will use
a blended retrieval mechanism to partially match against
previous experience chunks and then blend across the stored
information utilities for each of the available intelligence layer
choices. For each layer, this blending over past experience
of the information utilities will produce a kind of expected
information utility for each type of intelligence for specific
situations. Finally, the model compares the expected utility
of different intelligence layers and selects the one with the
highest utility.

The ACT-R model performs reinforcement learning
throughout Tasks 4 to 6. After updating probability distribu-
tion based on a layer and its outcomes, the model evaluates
whether it has gained or lost information by comparing
the entropy of the prior distribution with the posterior
distribution. If it has gained information, the production for
the current layer receives a reward if it has lost, it receives a
punishment. This reinforcement learning enables the model
to acquire a preference order for the selection of intelligence
layers, and this preference order list was used to determine
which layer should be explored first in the beginning of the
layer selection process.

3.4. Cognitive Biases Addressed. Anchoring and confirmation
biases have been long studied in cognitive psychology and
the intelligence communities [9, 51–55]. As we have already
mentioned, these biases emerge in several ways in the ACT-R
model of AHA tasks (see Table 4 for an overview). In general,
our approach accounts for three general sources of biases.

The first source of bias is the architecture itself, both
in terms of mechanisms and limitations. In our model, a
primary mechanistic source of bias is the ACT-R blending
mechanism that is used to make decisions by drawing
on instances of similar past problems. While it provides
a powerful way of aggregating knowledge in an efficient
manner, its consensus-driven logic tends to yield a regression
to themean that often (but not always) results in an anchoring
bias. Limitations of the architecture such as workingmemory
capacity and attentional bottlenecks can lead to ignoring
some information that can result in biases such as base-rate
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Table 4: Source of cognitive biases in the ACT-R integrated model of the AHA tasks.

Cognitive bias Mechanism Source of bias in functional model (ACT-R)

Confirmation bias

Attentional effect (seeking) Feature selection behavior such as selecting SIGINT too early. Blended
retrieval during layer choice using stored utilities.

Overscaling in rule application
(weighing)

Bias in blended retrieval of mappings from likelihood factor to revised
probability (low value). Weighted-distance utilities used for layer selections
shows confirmation bias in weighing.

Anchoring in learning
Underscaling in rule application Bias in blended retrieval of mappings from likelihood factor to revised

probability (high values)

Centroid computation Inertia from centroid estimates to consolidated values to DM. Productions
encoding thresholds in distance for centroid updating

Representativeness Base-rate neglect
Base rate not a cue for matching to a category. Compute distance to category
centroid rather than cloud of events. Blended retrievals ignore number of
events

Probability matching Resource allocation
Use of instance-based learning leads to tendency of risk aversion against
winner-take-all instances, leading to the tendency for the blended retrieval of
instances between pure probability matching and winner-take-all

neglect (ignoring background frequencies when making a
judgment of conditional probabilities).

The second source of bias is the content residing in
the architecture, most prominent strategies in the form of
procedural knowledge. Strategies can often lead to biases
when they take the form of heuristic that attempt to conserve
a limited resource, such as only updating a subset of the
probabilities in order to save time and effort, or overcome
a built-in architectural bias, such as the centroid-of-centroid
strategy intended to combat the recency effect in chunk
activations that in turn leads to an anchoring bias.

The third and final source of biases is the environment
itself, more specifically its interaction with the decision-
maker. For instance, the normalization functionality in the
experimental interface can lead to anchoring bias if it results
in a double normalization. Also, the feedback provided by
the environment, or lack thereof, can lead to the emergence
or persistence of biases. For instance, the conservatism bias
that is often seen in the generation of probabilities could
persist because subjects do not receive direct feedback as to
the accuracy of their estimates.

In the next subsections we discuss in detail the sources of
the various biases observed.

3.4.1. Anchoring and Adjustment. Anchoring is a cognitive
bias that occurswhen individuals establish some beliefs based
on some initial evidence and then overly rely on this initial
decision in their weighting of new evidence [54]. Human
beings tend to anchor on some estimates or hypotheses, and
subsequent estimates tend to be adjustments that are influ-
enced by the initial anchor point—they tend to behave as if
they have an anchoring + adjustment heuristic. Adjustments
tend to be insufficient in the sense that they overweight the
initial estimates and underweight new evidence.

Anchoring and adjustment in learning (AL) can occur in
the first three tasks due to the nature of the task, specifically
the iterative generation of the centroids of each category
across each trial. For each trial, participants estimate a
centroid for the events, perceived to date by that category,

then observe a new set of events and issue a revised estimate.
This process of issuing an initial judgment and then revising
might lead to anchoring and adjustment processes. Thus,
in Tasks 1–3, anchoring can occur due to the centroid-of-
centroid strategy to prevent being overly sensitive to themost
recent events.

Tasks 4–6 can also elicit anchoring biases. Anchoring
bias in weighing evidence might be found when participants
revise their belief probabilities after selecting and interpreting
a particular feature. The estimates of belief probabilities that
were set prior to the new feature evidence could act as an
anchor, and the revised (posterior) belief probabilities could
be insufficiently adjusted to reflect the new feature (i.e., when
compared to some normative standards). Insufficient adjust-
ment may happen because the blended retrieval mechanism
tends to have a bias towards the mean.

The model also updates only the probabilities corre-
sponding to the positive outcomes of the decision rules.
For example, if it is discovered that the probe occurs on a
major road, the model would update the probabilities for
categories A and B and neglect to adjust downward the
probabilities for categories C and D. This neglect is assumed
to result from a desire to save labor by relying on the interface
normalization function and by the difficulty of carrying out
the normalization computations mentally. In turn, this is a
cause of an underestimation of probabilities (anchoring) that
results from the normalization of the probabilities in the
interface.

3.4.2. Confirmation Bias. Confirmation bias is typically
defined as the interpretation of evidence in ways that are
partial to existing beliefs, expectations, or a hypothesis in
hand [53], the tendency for people to seek information and
cues that confirm the tentatively held hypothesis or belief
and not seek (or discount) those that support an opposite
conclusion or belief [56], or the seeking of information
considered supportive of favored beliefs [53]. Studies [57–59]
have found evidence of confirmation bias in tasks involving
intelligence analysis, and there is a common assumption that
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many intelligence failures are the result of confirmation bias
in particular [9, 60].

Confirmation bias in weighing evidence might occur in
the probability adjustment process in Tasks 4–6. For example,
we have seen that the probability adjustment process applied
to small probability values sometimes resulted in over-
adjustment. Certain strategies for probability adjustment
might also result in confirmation bias. When applying a
particular feature, such as IMINT (which supports two
hypotheses), participants may only apply the adjustment to
the preferred hypothesis while neglecting the other category
that is also supported by evidence or weight the evidence too
strongly in favor of the preferred category.

Confirmation bias can also occur in the evidence seeking
process in Task 6 as the participants might select intelligence
layers that maximize information gains about the current
preferred category. For instance, when applying the IMINT
and MOVINT rules, one could only apply the adjustment
to the preferred hypothesis (assuming it is one of the two
receiving favorable evidence from that layer) while neglecting
the other categories also supported by the evidence. This
strategic decision could reflect the desire both to minimize
effort and to maximize information gain.

A significant difference in layer selection features is the
SIGINT feature, which requires the selection of one particular
category to investigate. If that feature is applied to the leading
category and chatter is detected, then the category likelihood
gains considerable weight (by a factor of 7). However, if no
chatter is detected, then the category likelihood is strongly
downgraded, which throws considerable uncertainty over the
decision process.Thus the decision to select the SIGINT layer
too early (before a strong candidate has been isolated) or
to apply it to strictly confirm the leading category rather
than either confirm or invalidate a close second might be
construed as a form of confirmation bias in layer selection.

3.4.3. Base-Rate Neglect. Base-rate neglect is an error that
occurs when the conditional probability of a hypothesis is
assessed without taking into account the prior background
frequency of the hypothesis’ evidence. Base-rate neglect can
come about from three sources.

(1) Higher task difficulties and more complex environ-
ments can lead to base-rate neglect due to the sheer
volume of stimuli to remember. To reduce memory
load, some features may be abstracted.

(2) Related to the above, there can be base-rate neglect
due to architectural constraints. For instance, short-
termmemory is generally seen to have a capacity of 7±
2 chunks of information available. Oncemore chunks
of information need to be recalled, some information
may either be abstracted or discarded.

(3) Finally, there can be explicit knowledge-level strategic
choices made from an analysis of (1) and (2) above.

The strategic choice (3) of the ACT-R model leads to
base-rate neglect in calculating probabilities for Tasks 1–
3. In particular, the fact that the ACT-R model generates

probabilities based on category centroids leads to base-
rate neglect. This is because base-rate information is not
directly encoded within the category centroid chunk. The
information is still available within the individual SIGACTs
stored in the model, but it is not used directly in generating
probabilities.

3.4.4. Probability Matching. We endeavored to develop a
model that leveraged subsymbolic mechanisms that often
give rise naturally to probability matching phenomena [61].
Subsymbolic mechanisms in ACT-R combine statistical mea-
sures of quality (chunk activation for memory retrieval,
production utility for procedural selection) with a stochastic
selection process, resulting in behavior that tends to select a
given option proportionately to its quality rather than in a
winner-take-all fashion.This approach is similar to stochastic
neural models such as the Boltzmann Machine [35].

In our model, resource allocation decisions are based
not on discrete strategies but rather on the accumulation of
individual decision instances. Strategies then are an emergent
property of access to those knowledge bases. Moreover, to
unify our explanation across biases, we looked to leverage
the same model that was used to account for anchoring (and
sometimes confirmation) bias in probability adjustment.

Results also approximate those seen by human partic-
ipants: a wide variation between full probability matching
and winner-take-all, several individual runs tending towards
uniform or random distributions, and the mean falling
somewhere between probability matching and winner-take-
all (closer to matching).

Probability matching in resource allocation occurs due
to the trade-off inherent in maximizing reward versus mini-
mizing risk. A winner-take-all is the optimal strategy overall;
however there are individual trials with large penalties (a zero
score) when a category other than the one with the highest
probability is the ground truth. When such an outcome
occurs prominently (e.g., in the first trial), it can have a
determinant effect on subsequent choices [47].

4. Data and Results

The results of the ACT-R model on the AHA tasks were
compared against 45 participants who were employees of the
MITRE Corporation. All participants completed informed
consent and debriefing questionnaires that satisfied IRB
requirements. To compare the ACT-R model to both human
participants and a fully Bayesian rational model, several met-
rics were devised by MITRE [62–64], which are summarized
below.

As an overall measure of uncertainty across a set of
hypotheses, we employed a Negentropy (normalized negative
entropy) metric,𝑁, computed as

𝑁 =
(𝐸max − 𝐸)

𝐸max
, (5)

where 𝐸 is the Shannon entropy computed as

𝐸 = −∑
ℎ

𝑃
ℎ
∗ log
2
𝑃
ℎ
, (6)
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where the summation is over the probabilities, 𝑃
ℎ
, assigned

to hypotheses. Negentropy can be expressed on a scale of
0% to 100%, where 𝑁 = 0% implies maximum uncertainty
(i.e., maximum entropy or a uniform probability distribution
over hypotheses) and 𝑁 = 100% implies complete certainty
(i.e., zero entropy or a distribution in which one hypothesis
is assigned a maximum probability of 1). The normalization
is provided by 𝐸max = 2 in the case of four hypotheses (Tasks
2–6) and 𝐸max = 1 in the case of two hypotheses (Task 1).

Comparisons of human and normative (e.g., Bayesian)
assessments of certainty as measured by Negentropy permit
the evaluation of some cognitive biases. For instance, one
can compare human Negentropy 𝑁

𝐻
to Negentropy for a

rational norm 𝑁
𝑄

following the revision of probabilities
assigned to hypotheses after seeing new intelligence evidence.
If 𝑁
𝐻
> 𝑁
𝑄
, then the human is exhibiting a confirmation

bias because of overweighing evidence that confirms themost
likely hypothesis. On the other hand, if 𝑁

𝐻
< 𝑁
𝑄
, then the

human is exhibiting conservatism which might arise from an
anchoring bias.

In addition to measuring biases, we also compared the
probability estimation and resource allocation functions of
the model against both human participants and a Bayesian
rational model (i.e., an optimal model).The Kullback-Leibler
Divergence (𝐾) is a standard information-theoretic measure
for comparing two probability distributions like those of a
human (𝑃) and model (𝑀). 𝐾

𝑃𝑀
measures the amount of

information (in bits) by which the two distributions differ,
which is computed as follows:

𝐾
𝑃𝑀
= 𝐸
𝑃𝑀
− 𝐸
𝑃

= −∑
ℎ

𝑃
ℎ
∗ log
2
𝑀
ℎ
+ ∑
ℎ

𝑃
ℎ
∗ log
2
𝑃
ℎ
,

(7)

where, similar to the Negentropy measure, 𝐸
𝑃𝑀

is the cross-
entropy of human participants (𝑃) and theACT-Rmodel (𝑀)
and 𝐸

𝑃
is the entropy of human participants. It is important

to note that 𝐾
𝑃𝑀

= 0 when both distributions are the same,
and𝐾

𝑃𝑀
increases as the two distributions diverge.𝐾 ranges

from zero to infinity, but 𝐾 is typically less than 1 unless the
two distributions have large peaks in different hypotheses.

A normalizedmeasure of similarity (𝑆) on a 0–100% scale
similar to that of Negentropy can be computed from𝐾:

𝑆 = 100% ∗ 2−𝐾. (8)

As the divergence 𝐾 ranges from zero to infinity, the
similarity 𝑆 ranges from 100% to 0%. Thus 𝑆

𝑄𝑃
and 𝑆
𝑄𝑀

can
be useful for comparing the success of humans or models
in completing the task (compared by their success relative
against a fully rational Bayesian model). This measure will be
referred to as an S1 score.

To address the overall fitness of the model output com-
pared with human data, the most direct measure would be
a similarity comparing the human and model distributions
(𝑆
𝑃𝑀

) directly. However, this would not be a good measure
as it would be typically higher than 50% (𝐾 is typically
less than 1); thus we scaled our scores on a relative basis
by comparing against a null model. A null model (e.g., a
uniform distribution, 𝑅 = {0.25, 0.25, 0.25, 0.25}) exhibits

maximum entropy, which implies “random” performance in
sensemaking. Thus 𝑆

𝑃𝑅
was used to scale as a lower bound in

computing a relative success rate (RSR) measure as follows:

RSR =
(𝑆
𝑃𝑀
− 𝑆
𝑃𝑅
)

(100% − 𝑆
𝑃𝑅
)
. (9)

The model’s RSR was zero if 𝑆
𝑃𝑀

is equal to or less than
𝑆
𝑃𝑅
, because in that case a null model 𝑅 would provide the

same or better prediction of the human data as the model.
The RSR for a model𝑀 will increase as 𝑆

𝑃𝑀
increases, up to

a maximum RSR of 100% when 𝑆
𝑃𝑀

= 100%. For example, if
a candidate model 𝑀 matches the data 𝑃 with a similarity
score of 𝑆

𝑃𝑀
= 80% and the null model 𝑅 matches 𝑃 with

a similarity score of 𝑆
𝑃𝑅

= 60%, then the RSR for model 𝑀
would be (80 − 60)/(100 − 60) = (20/40) = 50%.

In Task 6, because each participant potentially receives
different stimuli at each stage of the trial as they choose
different INTs to receive, RSR was not appropriate. Instead,
the model was assessed against a relative match rate (RMR),
which is defined below.

After receiving the common HUMINT feature layer at
the start of each trial in Task 6, human participants have a
choice amongst four features (IMINT, MOVINT, SIGINT, or
SOCINT).Thenext choice is among three remaining features,
and the last choice is among two remaining features. Thus
there are 4 ∗ 3 ∗ 2 = 24 possible sequences of choices that
might be made by a subject on a given trial of Task 6. For
each trial, the percentage of subjects that chooses each of the
24 sequences was computed.Themodal sequence (maximum
percentage) was used to define a benchmark (𝑡, 𝑠max) for
each trial (𝑡), where 𝐹 is the percentage of a sequence and
𝑠max refers to the sequence with maximum 𝐹 for trial 𝑡. For
each trial, the model predicted a sequence of choices 𝑠mod,
and the percentage value of 𝐹(𝑡, 𝑠mod) for this sequence was
computed from the human data. In other words, 𝐹(𝑡, 𝑠mod) is
the percentage of humans that chose the same sequence as the
model chose, on a given trial 𝑡:

RMR (𝑡) =
𝐹 (𝑡, 𝑠mod)

𝐹 (𝑡, 𝑠max)
. (10)

For example, assume a model predicts a sequence of
choices 𝑠mod on a trial of Task 6. Assume also that 20% of
human subjects chose the same sequence, but a different
sequence was themost commonly chosen by human subjects,
for example, by 40% of subjects. In that case 𝐹(𝑡, 𝑠mod) = 20%
and 𝐹(𝑡, 𝑠max) = 40%, so RMR(𝑡) = 20%/40% = 50%.

Finally, a measure of resource allocation was derived by
assigning a value (S2) based on the resources allocated to the
category that was the ground truth. Thus if a participant (or
model) was assigned a resource allocation of {A% = 40,B% =
30,C% = 20,D% = 10} and the ground truth was category
B, then the S2 score for that trial would be 30%. Thus, to
maximize the score, an optimal model or participant would
need to assign 100% of their resources to the ground truth
(i.e., adopt a winner-take-all strategy to resource allocation).

4.1. Data. The integrated ACT-R AHAmodel performs (and
learns incrementally across) all 6 tasks using the same
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Table 5: S1, S2, RSR (RMR for Task 6), and linear regression (𝑟2) scores broken down by task and layer.

Task S1 score S2 score RSR/RMR
Model Human 𝑅

2 Model Human 𝑟
2

1 78.1 68.7 .929∗ 55.0 69.1 .219 .650
2 68.2 53.7 .313∗ 78.7 79.1 .990∗ .799
3 82.6 74.5 .001 45.2 45.3 .253∗ .595
4-1 92.2 75.6 .730∗ .761
4-2 92.7 76.2 .461∗ 47.7 44.0 .510∗ .906
5-1 96.6 68.1 .037 .856
5-2 91.5 77.4 .078 .776
5-3 85.3 69.8 .115 .780
5-4 82.3 66.3 .262∗ 40.4 45.2 .637∗ .618
6 91.2 91.0 .867∗ 34.8 31.2 .902∗ .788
∗P < .01.

knowledge constructs (production rules and chunks; other
than those it learns as part of executing the task) and param-
eters. The results comparing human and model performance
presented below are broken down by task and expanded
on trial-by-trial and layer-by-layer analyses. For instance,
while a similar instance-based representation is used across
all tasks for probability adjustment, resource allocation, and
layer selection, the output from the path planningmechanism
is only used in Tasks 3 and 4. Thus it is best to examine Task
3 and Task 4-1 (the first layer of Task 4) alone in determining
the efficacy of the path planning mechanism.

The model was run the same number of times as
participants in the dataset (45) with the average model
response were compared to the average human performance.
The natural variability in the model (stochastic elements
influencing instance-based learning) approximates some of
the individual differences of the human participants. While
the average distribution of the ACT-R model is slightly
peakier than the average human (the ACT-R model is closer
to Bayesian rational than humans are), the overall fits (based
on RSR/RMR) are quite high, with an overall score over .7
(a score of 1 indicates a perfect fit [63, 64]; see Table 5). In
addition, a linear regression comparing model and human
performance at each block of each layer indicates that the
model strongly and significantly predicts human behavior on
AHA tasks.

Supporting these results, the trial-by-trial performance of
the model (see Figure 11) predicted many of the variations
seen in users’ data.While the ACT-Rmodel tended to behave
more rationally than human participants (i.e., the model
exhibited a higher S1 score), the model tended to capture
much of the individual variation of humanparticipants across
trials (the S1 scores on Task 2 and S2 scores on Task 3 being
the exceptions).

In addition to the fit to human data based on probabilities
(S1/RSR) and resource allocation (S2), the model was also
compared to human participants in terms of the anchoring
and adjustment and confirmation biases (see Figure 12).
Whenever both the human behavioral data and model
exhibit a lower Negentropy than the Bayesian rational model,

they are both exhibiting anchoring bias (and conversely
they exhibit confirmation bias when they have a higher
Negentropy). As shownbelow, theACT-Rmodel significantly
predicts not only the presence or absence of a bias but also the
quantity of the bias metric, reflected in an overall 𝑅2 = .645
for Negentropy scores across all tasks.

4.1.1. Tasks 1 and 2. In Task 1, the ACT-R model produces
a probability distribution and forced-choice resource allo-
cation for each trial. The probability distribution is based
on the blended probability adjustments using instance-based
learning as described above and results in an increased
prevalence of anchoring (i.e., less peaky distributions) over
the normative solution in a manner similar to (yet stronger
than) human data.

Similar to Task 1, in Task 2 the model follows the general
trends of human participants for both S1 and especially S2
scores. With 4 groups to maintain in Task 2, we assume that
there is more base-rate neglect in humans (which results in
ACT-R from the centroid representation of groups that loses
base-rate information), which increases theRSR score to .799.
However, the 𝑅2 for S1 drops from .929 in Task 1 to .313 in
Task 2 because the ACT-R model does not capture the same
trial-by-trial variability despite being closer to mean human
performance.

In Task 1, the ACT-Rmodel exhibited ameanNegentropy
score (𝑁

𝑀
= .076), well below that of the Bayesian solution

(𝑁
𝑄

= .511); thus, there was an overall strong trend
towards anchoring and adjustment in learning (AL) for the
model. Humans exhibited a similar AL bias (𝑁

𝐻
= .113).

Additionally, on a trial-by-trial comparison of the model to
the Bayesian solution, both humans and the ACT-R model
showed AL for each individual trial.

In Task 2 the results were similar (𝑁
𝑄
= .791,𝑁

𝑀
= .206,

𝑁
𝐻
= .113) with both the model and humans exhibiting

anchoring and adjustment in learning in every trial.

4.1.2. Task 3. In Task 3 the ACT-R model was first required
to generate category centroids based on a series of events
and then was required to use the path planning mechanism
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Figure 11: (a) is the trial-by-trial (horizontal axis) fit between the ACT-R model and human data for Tasks 1–5 using the S1 metric (vertical
axis), which compares humans andmodel to Bayesian rational. (b) is the fit for the S2metric determining resource allocation score. For Tasks
4-5, the top tile is the fit for the first feature layer, and the bottom tile is the fit for the final feature layer.
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Figure 12: Trial-by-trial Negentropy scores for Tasks 1–5 (Δ Negentropy between layers for Tasks 4-2 and 5) for the fully rational Bayes
outcome, the ACT-R model, and human participants. Values less than normative (i.e., Bayesian rational) are considered an anchoring bias,
and values greater than normative are considered confirmation bias.

to estimate the distance between each category centroid and
a probe location. While the model captured average human
performance on the task, it was not able to capture individual
human behavior. This was in part due to wide variability
and negative skew in the raw human data and a difficulty in
the ACT-R model correctly placing category centroids when
events fell across multiple roads.

However, when examining bias metrics, the ACT-R
model exhibited both AL and confirmation biases as did
human participants. Both ACT-R and human participants
exhibited an AL bias on Trials 1, 3, and 5 and confirmation
bias on Trials 2 and 4. Overall, both the model and humans
exhibit a similar AL (𝑁

𝑄
= .412,𝑁

𝑀
= .372, and𝑁

𝐻
= .311).

Thus, while the model was not capturing the exact distance
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estimates of human participants, it was able to capture the
variability in the bias metrics.

4.1.3. Task 4. In Task 4, the issue with centroid generation
over multiple roads is avoided since centroids are provided
by the task environment, resulting in aHUMINT layer RSR =
.761 and 𝑅2 = .730. Thus, the path-planning mechanism itself
is functioning correctly and providing excellent fits to human
data. In addition, the model provided excellent fits to the
second layer (the SOCINT layer) in Task 4, with an RSR fit
of .905.

Beginning with Task 4, layer 2, the measure of anchoring
and adjustment (Delta Negentropy) is based on whether
category probabilities were revised sufficiently by following
the probabilistic decision rules. There was an overall trend
towards anchoring and adjustment in both learning and
inference, with a slight trend towards confirmation bias for
the humans. The main difference is when using SOCINT;
the ACT-R model tends to exhibit an anchoring bias while
human participants tended to exhibit a confirmation bias
when applying the SOCINT layer. We speculate that the
reason why humans would exhibit a confirmation bias on
SOCINT, which is the easiest of the rules to apply, might be
that it has a compelling visual interpretation that participants
are more likely to trust.

Also, beginning with Task 4, resource allocation judg-
ments are a distribution instead of a forced-choice.Themodel
learns the outcomes of probability matching (PM) versus
winner-take-all (WTA; forced-choice) through experience on
Tasks 1–3 in the formof IBL chunks. From this experience, the
model adopts a strategy (not a procedural rule but emergent
from blended retrieval of chunks) that is somewhere between
PM and WTA, with a bias towards PM. Based on the S2
fits for Tasks 4–6 (see Table 5), the resource allocation
mechanism, which also relies on the same instance-based
learning approach as the probability adjustment mechanism,
provides an excellent match to human data.

4.1.4. Task 5. In Task 5 the RSR fits for Layers 1–3 are quite
high (.856, .776, and .780, resp.) with some drop-off in Layer
4 (.618) due to human participants’ distributions being closer
to uniform and an RSR singularity (a near-uniform Bayesian,
human, and model distribution leading to all nonperfect fits
receiving a near-zero score since the random model near-
perfect predicts human behavior). It may also be the case
that humans, after getting several pieces of confirmatory
and disconfirmatory evidence, express their uncertainty by
flattening out their distribution in the final layer rather than
applying each layer mechanically.

As seen in the Delta Negentropy graphs for each layer
(see Figure 12), ACT-R correctly predicts the overall trend of
anchoring (𝑁

𝐻
< 𝑁
𝑄
and𝑁

𝑀
< 𝑁
𝑄
) for each layer:

Layer 1:𝑁
𝑞
= .080,𝑁

ℎ
= .016,𝑁

𝑚
= −.007

Layer 2:𝑁
𝑞
= .110,𝑁

ℎ
= .033,𝑁

𝑚
= .025

Layer 3:𝑁
𝑞
= .138,𝑁

ℎ
= .056,𝑁

𝑚
= .024

Layer 4:𝑁
𝑞
= .000,𝑁

ℎ
= −.007,𝑁

𝑚
= −.011
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Figure 13: Layer selection sequences both the ACT-R model and
human data (IM for IMINT, MO for MOVINT, SI for SIGINT, and
SO for SOCINT).

Across each layer, the model correctly predicts anchoring
on all 10 trials of Layer 2, correctly predicts anchoring on
8 trials of Layer 3 and correctly predicts the confirmation
on the other 2 trials, correctly predicts anchoring on 8 trials
of Layer 4 and correctly predicts confirmation on the other
2, and correctly predicts anchoring on 4 trials of Layer 5
and correctly predicts confirmation on 5 other trials. Over
40 possible trials, ACT-R predicts human confirmation and
anchoring biases on 39 of the trials (trial 10 of Layer 5 being
the only exception).

4.1.5. Task 6. In Task 6, both the model and participants
are able to choose 3 feature layers before specifying a final
probability distribution. Figure 13 shows the probability dis-
tribution of layer selection sequences for our ACT-R model
and human data. To measure the similarity of the probability
distribution of layer selection sequences between the ACT-
R model and human data, we performed Jensen-Shannon
divergence analysis, which is a method of measuring the
similarity between two distributions.The divergence between
the two distributions is .35, indicating that the ACT-R model
strongly predicts the human data patterns.

5. Generalization

To determine the generalizability of the integrated ACT-R
model of the AHA tasks, the same model that produced the
above results was run on novel stimuli in the same AHA
framework. The results of the model were then compared to
the results of a novel sample gathered from 103 students at
Penn State University. This new data set was not available
before the model was run, and no parameters or knowledge
structures were changed to fit this data set. Unlike the
original 45-participant dataset, the Penn State sample used
only people who had taken course credit towards a graduate
Geospatial Intelligence Certificate. Overall, the RSR and 𝑅2
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Table 6: Set of S1, S2, RSR (RMR in Task 6), and linear regression (𝑟2) scores broken down by task for novel dataset and participants.

Task S1 score S2 score RSR/RMR
Model Human 𝑅

2 Model Human 𝑟
2

1 81.7 80.7 .011 59.1 63.4 .141 .625
2 68.5 78.9 .347∗ 54.2 54.6 .765∗ .534
3 72.1 79.7 .121 34.7 73.8 .701∗ .692
4 94.4 87.6 .006 47.5 46.7 .992∗ .893
5 84.5 84.5 .000 42.0 45.5 .943∗ .864
6 85.3 88.3 .447∗ 48.4 44.6 .990∗ .854
∗P < .01.

fits on S2 scores improved while the 𝑅2 fits on S1 scores
dropped (see Table 6). The increase in RSR was mainly due
to the Penn State population behaving more rationally (i.e.,
higher S1 scores; see Figure 14) than the population from the
initial dataset.This is consistent with the increased education
and experience of the Penn State sample. That said, the Penn
State sample most likely utilized some different strategies in
solving the tasks, as the trial-by-trial S1 fits were not as close,
implying some difference in reasoning that the ACT-Rmodel
was not capturing.

Overall, the improved model fits indicate that the ACT-
R model of the AHA tasks is able to capture average human
performance at the task level for S1 scores and at the trial-by-
trial level for S2 scores. Conversely, this justifies the reliability
of the AHA tasks as a measure of human performance in a
sensemaking task environment.

Finally, the ACT-R model fits for anchoring and con-
firmation biases (see Figure 15) were also similar in the
Penn State dataset. The model correctly predicted both the
presence and degree of anchoring on every block in Tasks 1–3
and followed similar trial-by-trial trends for both anchoring
and confirmation in Tasks 4-5. 𝑅2 of Negentropy scores was
a similar .591 to the original dataset.

6. Conclusion

The decision-making literature has established a lengthy list
of cognitive biases under which human decision making
empirically deviates from the theoretical optimum. Those
biases have been studied in a number of theoretical (e.g.,
binary choice paradigms) and applied (e.g.,medical diagnosis
and intelligence analysis) settings. However, as the list of
biases and experimental results grows, our understanding
of the mechanisms producing these biases has not followed
pace. Biases have been formulated in an ad hoc, task- and
domain-specific manner. Explanations have been proposed
ranging from the use of heuristic to innate individual pref-
erences. What is lacking is an explicit, unified, mechanistic,
and theoretical framework for cognitive biases that provides a
computational understanding of the conditions under which
they arise and of themethods bywhich they can be overcome.

In this paper, we present such a framework by developing
unified models of cognitive biases in a computational cogni-
tive architecture. Our approach unifies results along a pair
of orthogonal dimensions. First, the cognitive architecture
provides a functional computational bridge from qualitative

theories of sensemaking to detailed neural models of brain
functions. Second, the framework enables the integration
of results across paradigms from basic decision making to
applied fields. Our basic hypothesis is that biases arise from
the interaction of three components: the task environment,
including the information and feedback available as well
as constraints on task execution, the cognitive architecture,
including cognitive mechanisms and their limitations, and
the use of strategies including heuristic as well as formal
remediation techniques. This approach unifies explanations
grounded in neurocognitive mechanisms with those assum-
ing a primary role for heuristic.The goal is to derive a unified
understanding of the conditions underwhich cognitive biases
appear as well as those under which they can be overcome
or unlearned. To achieve this unification, our model uses a
small set of architectural mechanisms, leverages them using a
coherent task modeling approach (i.e., instance-based learn-
ing), performs a series of tasks using the same knowledge
structures and parameters, generalizes across different sets of
scenarios andhumanparticipants, and quantitatively predicts
a number of cognitive biases on a trial-to-trial basis.

In particular, we showbiases to be prevalent under system
1 (automatic) processes [65] and that a unified theory of
cognition can provide a principled way to understand how
these biases arise from basic cognitive and neural substrates.
As system 2 (deliberative) processes make use of the same
cognitive architecture mechanisms in implementing access
to knowledge and use of strategies, we expect biases to also
occur, in particular as they relate to the interaction between
the information flow and the structure of the architecture.
However, at the same time, we show that system 2 processes
can provide explicit means to remediate most effects of
the biases, such as in the centroid-of-centroid generation
strategy, where a strong recency bias is replaced with an
(slight) anchoring bias.

Moreover, it is to be expected that a rational agent learns
and adapts its strategies and knowledge, its metacognitive
control (e.g., more deliberate processing of information), and
its use of the task environment (e.g., using tools to perform
computations or serve as memory aids) so as to at least
reduce the deteriorating effects of these biases. However,
biases are always subjective, in that they refer to an implicit
assumption about the true nature of the world. For instance,
the emergence of probability matching in the later tasks can
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Figure 14: (a) is the trial-by-trial fit between the ACT-R model and human data for Tasks 1–5 using the S1 metric, which compares humans
and model to Bayesian rational. (b) is the fit for the S2 metric determining resource allocation score. For Tasks 4-5, the graph represents the
final layer fit. These results are for the final Penn State dataset.
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Figure 15: Trial-by-trial Negentropy scores for Tasks 1–5 (Δ Negentropy between layers for Tasks 4-2 and 5) for the fully rational Bayes
outcome, the ACT-R model, and human participants. These results are for the Penn State dataset.

be seen as a response to the uncertainty of the earlier tasks and
the seemingly arbitrary nature of the outcomes. Thus, people
respond by hedging their bets, a strategy that can be seen as
biased in a world of exact calculations but one that has shown
its robust adaptivity in a range of real-world domains such as
investing for retirement. As is often the case, bias is in the eye
of the beholder.

Appendix

PROBs Handbook

Figures 16, 17, 18, 19, and 20 were the individual pages of the
PROBs (Probabilistic Decision Rules) handbook explaining
how to update category likelihoods based on the information
revealed by each feature.
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HUMINT: human intelligence

Figure 16:TheHUMINT feature, representing distance along a road
network between a category and a probe event.
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Figure 17:The IMINT feature, representing imagery of government
or military buildings located at a probe event location.
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Figure 18:TheMOVINT feature, representing vehicular movement
information located at a probe event location.
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SIGINT: SIGNAL intelligence

If SIGINT on a group reports chatter, then attack by

If SIGINT on a group reports silence, then attack by
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 that group is 7 times as likely as attack by each other group

that group is 1/3 as likely as attack by each other group

Figure 19: The SIGINT feature, representing chatter located at a
probe event location. Note that SIGINTmust be picked for a specific
category.

SOCINT: sociocultural intelligence
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Figure 20: The SOCINT feature, representing sociocultural infor-
mation about the region boundary for each category.
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