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Abstract

Reaction networks are commonly used to model the dynamics of populations subject to

transformations that follow an imposed stoichiometry.

This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction

Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic

transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a

given DRN has immediate implications for any concrete stochastic model based on that DRN,

independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic

kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing

probability to each reaction if the required number of interacting substrates is present), then

reachability properties are equivalent in the two settings.

The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e.,

the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return

to any initial state. Our results consider both the verification of such properties when species are

present in a large copy number, and in the general case. The necessary and sufficient conditions

obtained involve algebraic conditions on the network reactions which in most cases can be

verified using linear programming.

Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of

stochastic and continuous models of reaction networks is discussed.

1 Introduction

Reaction networks describe the possible transformations between species in a system,

subject to stoichiometry constraints (e.g. 2A + B → C + D). They are widely used for fine-

grained modelling of various complex dynamical systems, and in particular biochemical

dynamical systems. Typically, reaction network models are equipped with kinetic laws in

order to take into account the influence of the various speeds and propensities of the

reactions involved on the overall dynamics. Depending on the nature of the systems and

interacting species, those kinetics may follow different laws. These reaction networks and

kinetic rules are then generally interpreted either in continuous frameworks, such as ODEs

(Feinberg, 1979; Craciun et al., 2006; Shinar and Feinberg, 1987), which relates the

dynamics of the concentration of the species; or in stochastic frameworks, such as
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continuous-time Markov chains (Wilkinson, 2006; Anderson et al., 2010), which precisely

track the population (copy number) of each species along time.

In practice, such modelling techniques face two challenges: the actual kinetics are most

often unknown and may substantially vary between systems sharing the same reaction

network; and formal analysis of the emerging dynamical properties is computationally

intractable for large-scale continuous and stochastic models.

In this paper, we propose a more abstract level of interpretation of reaction networks, by

focusing on the nondeterministic discrete evolution of the population of the species. Given

the population of each species (discrete state), the system can evolve due to the application

of any reaction, if the minimum required amount of each substrate species for that reaction

is present. We consider that only one discrete reaction can be applied at a time. Such

nondeterministic systems can be formally considered as the discrete underlying dynamics of

stochastic models of reaction networks (Fages and Soliman, 2008).

In such a setting, dynamics of Discrete Reaction Networks (DRNs) naturally delimit the

dynamics of concrete stochastic systems, whatever the kinetic laws and constants: if a

reachability is proved impossible in a DRN, it is also impossible for any particular stochastic

model of the network. In the case where the rate (or probability) of a reaction in the

stochastic model never becomes zero, the (discrete) reachability properties of the stochastic

model are equivalent with the corresponding properties of the underlying DRN. In general,

one can think of a DRN as underlying any discrete stochastic model of the reaction network.

Here, we demonstrate that some general dynamical reachability properties can be efficiently

derived from a DRN: the capacity to reach any discrete state from any other state

(irreducibility); and the reversibility of the reachability properties (recurrence). Such

properties are both considered in the case where species are present in a large copy number

as well as in the general case. These results help provide an understanding of the possible

global dynamics of reaction networks, and give a direct relationship between the structure of

the set of reactions and the verification of the dynamical properties mentioned, without any

assumption on kinetic laws.

The main objects and results presented in this paper are summarised below.

Notations

For any a, b in ℤ, [a; b] denotes the set of integers between a and b, i.e., {a, a + 1,…,b}. For

any x, x′ in ℤd, we say that x is greater than x′, denoted x ≥ x′, if every component of x is

greater or equal than the corresponding component in x′, i.e., for any i in [1; d], we have

. The set of matrices of elements in some set G ⊆ ℝ having n rows and d columns is

denoted by Gn×d. If the matrix  is in Gn×d, then for any j ∈ [1; n], j is the jth row, and j is

in Gd. Given a set F ⊆ ℝ, and a matrix  ∈ Gn×d, the span of  over F is denoted by spanF 

≜ { λ  | λ∈Fn } and is a subset of ℝd. Finally, the null vector in ℝd is denoted 0.

Discrete Reaction Networks We consider a set of reactions between d species Ai, i ∈ [1; d]

of the form
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(1)

where for any i in [1; d] the numbers ci and  are in ℤ≥0. Such a reaction can be applied as

soon as the population of species Ai is at least ci, for any i in [1;d]. Its application decreases

the population of species Ai by ci and then increases it by . Such a reaction can be

summarised by two vectors of dimension d: , the drift vector

describing the population changes after application of the reaction; and o = (c1,…,cd), the

origin of the reaction, i.e., the minimum required population for applying the reaction.

In this setting, a Discrete Reaction Network (DRN) of n reactions between d species can be

defined by a couple ( , ) of two matrices having d columns and n rows: ( , ) gathers the

drift vectors of the n reactions and  gathers their origins (Def. 1.1). The definition considers

only reactions that can be applied at least once from their origin, i.e. ∀i ∈ [1; n], i + i ≥ 0.

Definition 1.1 (Discrete Reaction Network). A Discrete Reaction Network (DRN) is a

couple ( , ), where  ∈ℤn×d, , and ∀i ∈ [1; n], i + i ≥ 0. The number n is the

size and d is the dimension of the DRN.

Example. Fig. 1 shows two examples of DRNs with 3 reactions between 2 species.

•

Example (a). reactions: .

•

Example (b). reactions: .

We will see in Sect. 3 and 4 that these similar-looking DRNs have different dynamical

properties.

Discrete transitions The population of the d species of the DRN forms a discrete state (or

point) of the DRN, and is represented as a vector x in . At state x, only the reactions j in

[1; n] such that x ≥ j can occur. The occurrence of a single reaction leads to the state x′ = x

+ j, with necessarily x′ in .The transition relation → (see Def. 1.2) is defined such that x

→ x′ if and only if x′ can be reached by the occurrence of a single reaction from x. The

binary relation →* extends the binary relation → by considering the successive occurrence

of any finite number of reactions. Hence for any x, x′ in , x →* x′ if and only if there

exists a sequence of reaction occurrences from x leading to exactly x′, which never causes

the population of any species to become negative.

Definition 1.2 (Transition relation →). Given a DRN ( , ) and two points x, , we

write x →( , ) x′ if and only if Σi ∈ [1; n] such that x ≥ i and x + i = x′. We denote
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by→*( , ) the transitive closure ofthe binary relation →( , ). When clear from context,

→( , ) is written as →.

DRNs may be regarded as discrete Petri nets (Petri, 1962; Murata, 1989), where the places

are the species, the transitions are the reactions, and arc multiplicites reflect the

stoichiometry. This connection has been used previously for the study of ODE models of

chemical networks (Angeli et al., 2007; Shiu and Sturmfels, 2010).

Irreducibility and Recurrence In this paper, we focus on two dynamical properties of

DRNs:

• Irreducibility: a DRN is irreducible if and only if one can reach any point x′ ∈ ℤ≥0

from any point x ∈ ℤ≥0 (Def. 1.3).

• Recurrence: a DRN is recurrent if and only if one can always reverse the

application of any sequence of reactions (Def. 1.4).

It is worth noticing that any irreducible DRN is recurrent (Remark 1).

Definition 1.3 (Irreducibility). DRN ( , ) is irreducible if and only if ∀x, , x →* x

′ and x′ →* x.

Definition 1.4 (Recurrence). DRN ( , ) is recurrent if and only if ∀x, , x →* x′ ⇒

x′ →* x.

Remark 1. Irreducibility ⇒ Recurrence.

The terms irreducibility and recurrence have the same meaning as in the Markov chain

literature (Lawler, 2006). The term irreducibility is motivated by the fact that is not possible

to reduce the state space of the network by ignoring the states that are not reachable from a

given initial state x, or states that cannot reach x. Hence, if the reachability class of x

(composed of all states y such that y →* x and x →* y) is , we say the DRN is

irreducible. The term recurrence comes from the fact that if we leave a state along some

path, it is always possible for that state to occur again (i.e., to recur). In the Petri net

literature, recurrence is usually referred to as reversibility.

In addition to considering irreducibility and recurrence from any possible population of

species of the DRN, we also investigate a less restrictive version of these dynamical

properties, when assuming the species are present at a Large Copy Number (LCN). This

basically restricts the above dynamical properties to population of species greaterthan a

certain threshold M0 in . We refer to these less restrictive properties as LCN

irreducibility (Def. 1.5) and LCN recurrence (Def. 1.6). Note that the inclusion relationship

between irreducibility and recurrence still holds (Remark 2).

Definition 1.5 (LCN Irreducibility). DRN ( , ) is LCN irreducible if and only if

 such that ∀x,  with x ≥ M0 and x′ ≥ M0, x →* x′ and x′ →* x.
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Definition 1.6 (LCN Recurrence). DRN ( , ) is LCN recurrent if and only if 

such that ∀x,  with x ≥ M0 and x′ ≥ M0, x →* x′ ⇒ x′ →* x.

Remark 2. LCN Irreducibility ⇒ LCN Recurrence.

Note that a reaction network that has any conservation laws cannot be irreducible or LCN

irreducible.

Main Results

In Sect. 3 we prove that LCN irreducibility is equivalent to having both the strictly positive

real span of drift vectors being ℝd and the integer span of drift vectors being ℤd.

Theorem (3.4). DRN ( , ) is LCN irreducible if and only if span ℝ>0  = ℝd and spanℤ 

= ℤd.

Verifying spanℝ>0  = ℝd can be done using linear programming, and verifying spanℤ  =

ℤd can be also efficiently done by computing, for instance, the Hermite normal form of .

Then, we point out additional properties that characterize full irreducibility: self-starting

(capability to reach a strictly positive point from 0) and self-stopping (capability to reach 0
from a strictly positive point).

Theorem (3.8). DRN ( , ) is irreducible if and only if ( , ) is LCN irreducible, self-

starting and self-stopping.

Self-starting and self-stopping properties can be decided using a backtracking algorithm

combined with linear programming to find a particular order of reactions

In Sect. 4, we prove that LCN recurrence is equivalent to the presence of 0 in the strictly

positive real span of drift vectors. This property is also considered in a different context,

where it was called positive dependence of drift vectors (Feinberg, 1987). Surprisingly, no

integer constraints need to be checked for LCN recurrence, so this property can be easily

decided using only linear programming.

Theorem (4.2). DRN ( , ) is LCN recurrent if and only if 0 ∈ spanℝ>0 .

Sect. 5 applies those results to DRNs modelling biological systems. The results and their

relationships with stochastic and continuous models of reaction networks are discussed in

Sect. 6. For example, we show how we can use the theorems above to check that common

phosphorylation chain networks are LCN recurrent and some circadian clock networks are

LCN irreducible.

2 Additional definitions and basic properties

2.1 Set of points and paths manipulation

We introduce the following notations to manipulate sets of points and paths (sequences of

reactions):
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lowerpoint Given a set of m points {x1,…,xm} ⊂ ℤd, we denote by lowerpoint({x1,…,xm})

the largest point that is lower than all the given points:

orderings Given  with , we denote by orderings(λ) all the mappings π:

[1;ℓ] → [1; n] which map exactly λi distinct values to i, ∀i ∈ [1; n]:

where #S denotes the cardinality of the finite discrete set S.

Hereafter, we use such mappings π: [1;ℓ] → [1; n] to refer to paths, i.e., sequences of

reactions. In such a context,  should be understood as the vector giving the number

of times each reactions in [1; n] has to be used in a path; and orderings(λ) as all the possible

realizations of such paths.

path application (x • π) Given a DRN ( , ) of size n and dimension d, a path π: [1;ℓ] →

[1; n], and an initial point x ∈ ℤd, x • π is the set of points resulting from the sequential

application of π from x:

We remark that lowerpoint(x • π) = x + lowerpoint(0 • π).

2.2 Inverse DRN

The inverse DRN (Def. 2.1) is defined by the negative drift vectors and the origins shifted by

the original drift vector. For instance, the inverse of the reaction described in Eq. (1) results

in:

(2)

Definition 2.1 (Inverse DRN). Given a DRN ( , ), then ( , )−1 ≜ (− ,  + ) is the

inverse DRN.

Lemma 2.2. x →( , ) x′ ⇔ x′ →( , )−1x.

2.3 Basic properties

From the definition of transitions between the discrete states of the DRN (Def. 1.2), one can

easily derive that if x →* x′ then any succession of reactions from x to x′ can be applied
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from x (positively) shifted by any , leading to x′ + δ (Lemma 2.3). In the particular

case when 0 →*x′, one can instantiate the latter property with δ = x′, which by transitivity of

→* leads to 0 →* αx′ with α ∈ ℤ>0 (Lemma 2.4).

Lemma 2.3. Given x, .

Lemma 2.4. 0 →* x′ ⇒ ∀α∈ ℤ>0, 0 →*αx′.

3 Deciding Irreducibility

DRN ( , ) is irreducible if any point in  can be reached from any other point in 

(Def. 1.3). We first address the LCN irreducibility, and then exhibit supplementary

properties that lead to full irreducibility.

3.1 LCN Irreducibility

Recall that DRN ( , ) is LCN irreducible if and only if any point above a certain

 can be reached from any other point above M0 (Def. 1.5).

Before using the LCN hypothesis, we remark that the DRN is irreducible if (and only if) one

can reach each elementary point ei,∀i ∈ [1;d] from 0 and vice-versa (Lemma 3.1). Here ei is

the d-dimensional vector having 0 at each of its component, except the ith component being

1.

Lemma 3.1. DRN ( , ) is irreducible if and only if ∀i ∈ [1; d], 0 →* ei and ei →* 0.

Note that a necessary condition for LCN irreducibility is that spanℤ≥0( , ) = ℤd. This

property is actually sufficient for LCN irreducibility (Lemma 3.2) by choosing M0 big

enough such that for any i ∈ [1; d] at least one reachability path from M0 to M0 ± ei never

goes outside , and such that M0 is greater than all the reaction origins.

Remarking that spanℚ>0  = ℚd ⇔ spanℝ>0  = ℝd (Lemma 3.3), Theorem 3.4 establishes

that verifying spanℤ≥0  = ℤd is equivalent to verifying both spanℤ  = ℤd and spanℝ>0  =

ℝd.

While the verification of spanℤ≥0  = ℤd involves integer programming techniques,

verifying if spanℝ>0  = ℝd and spanℤ  = ℤd can be done more efficiently: the former can

be decided using linear programming, for instance by first checking whether 0 ∈ spanℝ>0 

and then whether spanℝ≥0  = Rd; the latter can be decided, for instance, by computing the

Hermite normal form of  (Cohen, 1993).

Lemma 3.2. DRN ( , ) is LCN irreducible ⇔ spanℤ≥0  = ℤd.

Proof. spanℤ≥0  = ℤd ⇒ ∀i ∈ [1; d], Σλi,+, λi,− ∈ : λi,+  = ei and λi,−  = −ei.

For each i ∈ [1; d] and s ∈ {+, −}, we pick an arbitrary ordering πi,s ∈ orderings(λi,s).
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If M0 is defined such that ∀i ∈ [1; d], ∀s ∈ {+, −},∀j ∈ [1; n], M0 + lowerpoint(0 • πi,s) ≥ j,

then it is clear that ∀i ∈ [1; d], M0 →* M0 + ei and M0 + ei →* M0.

Lemma 3.3. spanℝ>0  = ℝd ⇔ spanℚ>0  = ℚd.

Proof. (⇒) Let us consider  such that λ  = w, where w ∈ ℚd.

Consider a basis (βα)α∈I of ℝ over ℚ such that βα0 = 1 (i.e. ∀r ∈ ℝ, ∃ a unique choice of rα

∈ ℚ:r = Σα∈Irαβα). Then

 with λα ∈ ℚn. On the

other hand, w = wβα0 + Σα∈I\{α0} 0βα. Hence,  and ∀ α ∈ I, α ≠ α0,

.

(⇐) Because spanℚ>0  = ℚd, ℚd ⊆ spanℝ≥0 . This implies that the convex hull of ℚd is a

subset of spanℝ≥0 , hence ℝd ⊆ spanℝ≥0  which implies spanℝ≥0  = ℝd. Finally, we

conclude that spanℝ≥0  =spanℝ>0  because, from hypothesis, 0 is a positive linear

combination of elements rows of : 0 ∈ spanℚ>0  ⇒ ∃ λ̃ ∈ : λ ˜  = 0. Hence, for any

w ∈ ℝd, there exists  such that w = w + 0 = λ  + λ̃  = (λ + λ̃) , with (λ + λ̃) ∈

ℝ>0.

Theorem 3.4. spanℤ≥0  = &ℤd ⇔ spanℝ>0  = ℝd and spanℤ  = ℤd. Therefore, DRN ( ,

) is LCN irreducible if and only if spanℝ>0  = ℝd and spanℤ  = ℤd.

Proof. (⇐) spanℝ>0  = ℝd ⇔ spanℚ>0  = ℚd (Lemma 3.3). Therefore,  such

that λ  = 0 and ∃α ∈ ℤ>0 such that . Moreover, ∀i ∈ [1; d] and ∀s ∈ {+, −}, ∃λi,s

∈ ℤn such that λi,s  = sei. Hence, there exists β ∈ ℤ>0 such that λ* = βαλ + λi,s with

, resulting in λ*  = sei. (⇒) use the fact that spanℤ≥0  = ℤd ⇒ spanℤ>0  = ℤd,

which follows from − j ∈ spanℤ≥0 .

Example. One can check that both examples of Fig. 1 verify spanℝ>0  = ℝd. However, the

computation of Hermite normal forms shows that only example (b) verifies the second

necessary condition spanℤ  = ℤd. Hence, example (a) is not LCN irreducible whereas

example (b) is LCN irreducible.

3.2 Full Irreducibility

In this subsection, we demonstrate that a DRN is totally irreducible if and only if it is LCN

irreducible and is both self-starting (Def. 3.5) and self-stopping (Def. 3.6). A DRN is self-

starting if at least one strictly positive point can be reached from 0, and is self-stopping if

there exists at least one strictly positive point from which 0 can be reached – which is

equivalent to the inverse DRN being self-starting.

Definition 3.5 (Self-starting DRN). DRN ( , ) is self-starting if and only if  such

that 0 →* x.
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Definition 3.6 (Self-stopping DRN). DRN ( , ) is self-stopping if and only if inverse DRN

( , )−1 is self-starting.

Lemma 3.7 establishes that a DRN is self-starting if and only if there exists a sequence of d

reactions (not necessarily unique) such that for each dimension at least one reaction of this

sequence has a positive drift along that dimension, and such that the origin of the kth

reaction belongs to the positive real span of the K − 1 preceding drift vectors (the first

reaction having necessarily 0 as origin). Therefore, one can derive a backtrack algorithm to

determine if such an ordering of reactions exists.

Then, Theorem 3.8 states that if an LCN irreducible DRN is both self-starting and self-

stopping then it is irreducible. Indeed, if the DRN is self-starting, then there exists a strictly

positive point x ∈ℤ>0 such that 0 →* x. From Lemma 2.4, the self-starting property implies

that there exists a point x′ ≥ M0 such that 0 →* x′. Then, if the DRN is self-stopping, one

can show similarly that there exists a point x″ ≥ M0such that x″ →* 0. Because the DRN is

LCN recurrent, we know that any pair of points above M0 is reversibly reachable. Hence, by

using Lemma 2.3, one can verify the existence of a reversible path from 0 to all ei, i ∈ [1;d].

Informally, the self-starting property allows to reach the LCN region, and the self-stopping

allows to reach any ±ei or 0 from any point in the LCN region. The LCN irreducibility

property finally ensures that those two paths can be connected. This is illustrated in Fig. 2.

Lemma 3.7.  a mapping σ: [1; d] → [1; n] with:

1. ∀k ∈ [1; d], ∃i ∈ [1; d], σ(i),k ≥ 1, and

2.

σ(1) = 0 and ∀k ∈ [2; d], .

Proof. (⇐) Let us define ∀k ∈ [1; d],  and xk such

that ∀i ∈ [1; d],  and . We show by induction that ∀k

∈ [1; d], ∃x′ ≥ xk s.t. 0 →* x′:

• k = 1: 0 → σ(1) with ∀j ∈ Ω1, σ(1),j ≥ 1.

• k + 1: by induction, (2), and Lemma 2.4, ∃α ∈ℤ>0 such that αxk ≥ σ(k+1) (with 0
→* αxk). Hence, αxk → αxk + σ(k+1). We remark that if ∃i ∈ Ωk+1 such that (αxk +

σ(k+1))i < 1, then necessarily i ∈ Ωk. Hence, ∃β ∈ℤ>0 such that (βαxk + σ(k+1)) ≥

xk+1. Therefore, 0 →* x′ with x′ ≥ xk+1.

Finally, as 

(⇒) 0 →* x ⇒ ∃ℓ ∈ℤ>0, ∃ a path π: [1;ℓ] → [1; n] with , and

. Let us define the mapping ς: [1; d] → [1;ℓ] iteratively,

starting with ς(1) ≜ 1 and ∀k ∈ [2; d]:
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• with wk ≜ {j ∈ [1; d] | ∄i ∈ [1; k − 1], πς(i)),j ≥ 1},

• if wk = ∅, ς(k) ≜ 1;

• otherwise, ς(k) ≜ min{m ∈ [ς(k−1) + 1; l] | ∃j ∈ wk, π(m),j ≥ 1}. We remark that

this minimum necessarily exists (otherwise ), and ∀m ∈ [ς(k−1); ς(k)−1],

.

From construction, σ ≜ ς ◦ π verifies (1) and (2).

Theorem 3.8. DRN ( , ) is irreducible if and only if ( , ) is LCN irreducible and

 and  (i.e. ( , ) is self-starting and self-

stopping).

Proof. (⇒) obvious.

(⇐) For any fixed M0, from Lemma 2.4, ∃α ∈ ℤ>0 such that αx ≥ M0 and αx′ ≥ M0, with

 and . Hence, ∀i ∈ [1; d], from Lemma 2.3,

•
, and

•
.

Example. One can easily show that the two examples in Fig. 1 are self-starting and self-

stopping. Using LCN irreducibility criteria from the previous subsection, we conclude that

example (b) is irreducible (recall that example (a) is not LCN irreducible, so it is not

irreducible).

4 Deciding Recurrence

Recall that DRN ( , ) is recurrent if and only if for all pair of points x, , x →* x′

implies x′ →* x (Def. 1.4). First, we show that the LCN recurrence is equivalent to the

presence of the null vector in the strictly positive real span of drift vectors. Then, we discuss

sufficient conditions to obtain the recurrence, and reduce the full recurrence property to a set

of reachability properties.

4.1 LCN Recurrence

Let us ignore reaction origins and population positivity constraints. If 0 ∈ spanℤ>0 , it is

clear that from any point x, one can undo any reaction application and then go back to x:

 such that λ  = 0. Hence ∀i ∈ [1; d], we obtain (λ − ei)  = − i.

By following the proof of Lemma 3.3, we remark in Lemma 4.1 that 0 ∈ spanℚ>0  (hence 0
∈ spanℤ>0 ) is equivalent to 0 ∈ spanℝ>0 . This can be verified with linear programming.

Lemma 4.1. 0 ∈ spanℚ>0  ⇔ 0 ∈ spanℝ>0 .
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Proof. (⇒) obvious. (⇐) same proof as for Lemma 3.3 with w = 0.

Finally, Theorem 4.2 establishes that LCN recurrence is equivalent to 0 ∈ spanℝ>0 . The

main difficulty is to prove that there exists a  such that it is possible to reverse all

the reactions connecting any pair of points above M0 by staying in . For that, we

consider a basis ℬ = {b1,…,bk} of the free ℤ-module generated by . It is worth noticing

that, because 0 ∈ spanℤ>0 , it follows that bi ∈ spanℤ>0 ,∀i ∈ [1; k]. Let us pick M0 large

enough such that there exists a sequence of reactions from M0 that can be successively

applied (i.e., never below their origins) and that goes to all the vertices of the fundamental

region formed by B that are adjacent to M0. Then any pair of points above M0 that is

connected can be reversibly reached from each other. Fig. 3 illustrates this reasoning.

The proof of Theorem 4.2 also indicates that the reachability graph above M0 becomes in a

sense maximal, or saturated: if x + δ→*x′ + δ when x ≥ M0, x′ ≥ M0, , then x →* x′.

This is stated by Corollary 4.3.

Theorem 4.2. ( , ) is LCN recurrent ⇔ 0 ∈ spanℝ>0 .

Proof. (⇒) straightforward.

(⇐) Let us consider ℬ = {b1,…, bk}, a basis of the free ℤ-module generated by .

From Lemma 4.1, 0 ∈ spanℤ>0 , which implies ±bi, ∈ spanℤ>0 , ∀i ∈ [1;k]. Hence, ∀i ∈

[1;k], ∀s ∈ {+, −}, ∃λ i,s ∈  such that λi,s  = bi,s ≜ sbi,. Let us pick an arbitrary ordering

πi,s ∈ orderings(λi,s).

Let us define  such that for any mapping Π: [1: 2k] → [1; k] × {+, − }, and ∀l, l′ ∈

[1; 2k], Π(l) = Π(l′) =>l = l′, then ∀l ∈ [1; 2k], ∀j ∈ [1; n], M0 + lowerpoint

.

From M0 construction, the set of lattice fundamental regions formed by b1,…,bk intersecting

 is connected and fits inside . Moreover, each edge of those fundamental regions

can be translated to a sequence of drift vectors v ∈  in . Therefore, ∀x, x′ ≥ M0 we have

x →′ x′ ⇒ x′ → x.

Corollary 4.3 (Reachability Graph Saturation). If 0 ∈ spanℤ>0  then there exists 

such that the reachability graph on the set  becomes constant in the sense that: if x

→* x′, and x − δ, x′ − δ ≥ M0 for some , then x − δ →* x′ − δ.

We refer to this property as “saturation” of the reachability graph, because it means that, for

M0 large enough, and any , the reachability graph in the region above  is

identical (up to a shift) to the reachability graph in the region above M0.
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Example. From the previous section we know that example (b) in Fig. 1 is irreducible hence

recurrent, but example (a) is not irreducible. Using the characterization above one can verify

that example (a) is LCN recurrent.

4.2 Full Recurrence

Assume a DRN ( , ) is LCN recurrent. If ∃x* ∈  such that 0 →* x* →* 0, then ( , )

is recurrent (Lemma 4.4). Indeed, using Lemma 2.4, ∃α ∈ ℤ>0 such that αx* ≥ M0. Then, for

any pair of points x,  If x→* x′, then, by Lemma 2.3, x + αx* →* x′ + αx*. Because

the DRN is LCN recurrent, x′ + αx* →* x + αx*. Hence, x′ →* x. We remark however that,

to our knowledge, there is no efficient general method to verify if  such that 0 →*

x* →* 0. Moreover, this condition is sufficient but not necessary, in order to insure that an

LCN recurrent network is fully recurrent.

Lemma 4.4. If DRN ( , ) is LCN recurrent and  such that 0→*x* and x* → *

0, then ( , ) is recurrent.

Proof. Consider α ∈ ℤ>0 such that αx* ≥ M0. If x →* x′ then x′ →* x′ + αx* →* x + αx*

→* x.

In the general case, and independently of LCN recurrence, we notice that recurrence is

equivalent to the reachability of the origin of each reaction from the point that is its origin

plus drift vector (Lemma 4.5). Again, there is currently no efficient general method to verify

these reachability properties.

Lemma 4.5. DRN ( , ) is recurrent if and only if ∀j ∈ [1; n], j + j →* j.

Proof. (⇒) straightforward. (⇐) , ∀j ∈ [1; n]: x ≥ j, x → x + j →* x.

The above lemma allowsto conclude that any weakly reversible reaction network is

recurrent (Lemma 4.6). A reaction network is weakly reversible if each reaction is part of a

cycle of reactions Johnston et al. (2012); for instance X → Y; Y → Z; Z → X is a weakly

reversible reaction network.

Lemma 4.6. Any weakly reversible reaction network is recurrent.

Proof. A DRN models a weakly reversible reaction network if and only if each reaction is

part of a cycle of m ≤ n reactions where the origin of a reaction matches with the origin plus

the drift vector of the previous reaction, i.e. ∀j ∈ [1; n], ∃m ∈ [1; n] and a path π: [1; m] →

[1; n] such that ∀k ∈ [1; m], .

Therefore, ∀j ∈ [1; n], j + j →* j.

Example. The sufficient condition for recurrence depicted in Lemma 4.4 is verified by

example (a) of Fig. 1. Indeed, 0 →* (6, 6) →* 0 (applying 3 1 then 2 3 from 0 results in

(6,6), then applying 6 2 results in 0). Hence, example (a) is recurrent (but not irreducible),

whereas example (b) is irreducible (and recurrent).
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5 Biological Examples

This section applies the results of this paper to show that a model of circadian clock is LCN

irreducible, and a generic model of phosphorylation chain is LCN recurrent.

5.1 Circadian clock

We study here a model of PER and TIM circadian oscillations from Leloup and Goldbeter

(1999), extracted from the BioModels database (Le Novère et al., 2006). This model

involves 10 species and 26 reactions (including 6 reversible). The list of reactions is given in

Fig. 4

One can check that the necessary and sufficient conditions for LCN irreducibility of

Theorem 3.4 are verified by this DRN. Hence, there exists a threshold on the population of

species such that there exists a succession of reactions connecting any pair of states above

this threshold.

Because no reaction has an origin being 0, the DRN is not self-starting, hence not fully

irreducible; and because of the presence of degradation reaction, the DRN is not fully

recurrent (for instance, 0 is reachable from the state where all species are 0 except

PER_mRNA being 1, but the converse is false).

5.2 Phosphorylation chains

We consider a generic model of chains of phosphorylation, where an enzyme E can

progressively phosphorylate a protein up to a certain level k. In concurrence, a kinase F can

progressively de-phosphorylate this protein (Angeli et al., 2007).

Because of mass conservation properties (for example

 being constant), such a DRN is not irreducible – in

particular, spanℝ>0  ≠ ℝd.

Assuming LCN, one can notice that the irreversible reactions such as SmE → Sm+1 + E can

be undone using the chain of reaction Sm+1 + F → Sm+1F → Sm + F followed by Sm + E →

SmE. The undoing of Sm + F ← SmF irreversible reactions is achieved similarly. This shows

that the DRN is LCN recurrent as 0 ∈ spanℝ>0 . In addition, we remark that it is actually

sufficient that all the species are present with at least one copy in order to undo any

irreversible reaction of this network (i.e., M0 can be the vector having all its components

being 1).
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Removing the LCN hypothesis, and in particular considering that F is absent (0 copy), it

becomes impossible to revert the reaction S0E → S1 + E. Hence, the DRN is not fully

recurrent.

LCN irreducibility depends both on stoichiometry properties (as highlighted by the two

examples in Fig. 1) and on the dimension of the lattice generated by : if the free ℤ-module

generated by  has a lower dimension than , the DRN is not LCN irreducible. This

typically occurs in the presence of mass conservation properties, as highlighted by the

example on phosphorylation chains.

In addition, as stated in Lemma 4.6, we recall that any weakly reversible reaction networks

is recurrent, as they verify necessarily 0 ∈ spanℝ>0 .

6 Discussion

Relationships between DRNs and stochastic models dynamics Markov chains are a

widely used modelling framework for analysing dynamics of biochemical reaction networks.

Typically, the discrete states of such Markov chains represent the population of each

biochemical species, and the transitions follow the drift vectors of reactions, when

applicable (population of species greater than the reaction origin). Then, Markov chains

associate either probabilities (DTMCs) or continuous rates (CTMCs) to transitions following

biochemical laws, for instance.

In that sense, a DRN can be considered as the underlying discrete dynamics of any Markov

chain modelling the same set of reactions (Fages and Soliman, 2008). If we assume that the

probabilities or rates associated to reactions are never null, we obtain the following

correspondence between DRNs and Markov chains dynamical properties:

• DRN is irreducible if and only if the associated Markov chain is irreducible.

• DRN is recurrent if and only if all states in the associated Markov chain are

recurrent.

In the case where probability or rates may become null, DRN irreducibility (resp.

recurrence) is still a necessary condition for Markov chain irreducibility (resp. recurrence).

We note that a DRN which is not recurrent implies that there exist some irreversible

reactions. On the other hand, weak reversibility allows, in some cases, an efficient

characterization of the stationary distribution in the associated Markov chain models

(Anderson et al., 2010).

Relationships between DRNs and continuous models dynamics Continuous models of

reaction networks, such as ODE systems, typically evolve in the continuous space of

concentrations of species and implicitly assume that species are present in large copy

numbers. In that way, we may want to relate dynamical properties of such continuous

models of reaction networks to LCN properties of DRNs.

In particular, one can remark that if a DRN is not LCN recurrent, i.e. 0 ∉ spanℝ>0 , then

there exists a hyperplane H in ℝd such that all reaction vectors point on the same side of this

Paulevé et al. Page 14

J Math Biol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hyperplane, and at least one reaction vector points strictly inside the corresponding half-

space. This implies that no oscillation is possible in the continuous dynamics, i.e. there

cannot exist any periodic solution. Indeed, if 0 ∉ spanℝ>0 , then there exists a vector vH

perpendicular to the hyperplane H which gives rise to the linear function L(x) = vHx which is

a strict Lyapunov function for the ODE model (there we assume that reaction rate functions

do not vanish if reactant concentrations are strictly positive).

Future work One possible future direction following the results presented is the derivation

of necessary or sufficient conditions for persistence of DRNs.

Informally, persistent dynamical systems are ones where no species “goes extinct”, i.e., if

we start with all species being present in the system, then no trajectory will wipe out some

species in the long run.

The notion of persistence for continuos systems has been of great interest recently (Angeli et

al., 2007; Craciun et al., 2012). It is not obvious how to define persistence for discrete

systems, but one possible definition is given in Def. 6.1. Note that recurrence is a particular

case of this notion of persistence (Remark 3).

Definition 6.1 (Persistence) DRN ( , ) is persistent if and only if 

such that ∃k ∈ [1; d] with ,  such that x′ → x″.

Remark 3. Recurrence ⇒ Persistence.

More generally, the study of DRNs may allow to efficiently prove the absence of certain

dynamical properties in a wide-range of concrete models, independent of rate laws or kinetic

parameters.
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Figure 1.
Two DRNs with 3 reactions involving 2 species A and B.
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Figure 2.
Illustration of the reasoning for Theorem 3.8 on irreducibility. If the DRN is self-starting, by

repeating the reactions, we eventually reach the LCN region from 0. In the same manner, if

the DRN is self-stopping, we eventually reach 0 from a point in the LCN region. If the DRN

is LCN irreducible, any point in the LCN region can be reached by any other point in the

LCN region. Therefore, one can construct a path from 0 to each elementary vector, and vice-

versa.
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Figure 3.
Black dots are the points of the lattice generated by . The lattice fundamental regions

(formed by the basis) are delimited by the gray lines.
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Figure 4. Reaction network of the PER/TIM circadian oscillations (Leloup and Goldbeter, 1999)
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