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Abstract

Background: For complex financial systems, the negative and positive return-volatility correlations, i.e., the so-called
leverage and anti-leverage effects, are particularly important for the understanding of the price dynamics. However, the
microscopic origination of the leverage and anti-leverage effects is still not understood, and how to produce these effects in
agent-based modeling remains open. On the other hand, in constructing microscopic models, it is a promising conception
to determine model parameters from empirical data rather than from statistical fitting of the results.

Methods: To study the microscopic origination of the return-volatility correlation in financial systems, we take into account
the individual and collective behaviors of investors in real markets, and construct an agent-based model. The agents are
linked with each other and trade in groups, and particularly, two novel microscopic mechanisms, i.e., investors’ asymmetric
trading and herding in bull and bear markets, are introduced. Further, we propose effective methods to determine the key
parameters in our model from historical market data.

Results: With the model parameters determined for six representative stock-market indices in the world, respectively, we
obtain the corresponding leverage or anti-leverage effect from the simulation, and the effect is in agreement with the
empirical one on amplitude and duration. At the same time, our model produces other features of the real markets, such as
the fat-tail distribution of returns and the long-term correlation of volatilities.

Conclusions: We reveal that for the leverage and anti-leverage effects, both the investors’ asymmetric trading and herding
are essential generation mechanisms. Among the six markets, however, the investors’ trading is approximately symmetric
for the five markets which exhibit the leverage effect, thus contributing very little. These two microscopic mechanisms and
the methods for the determination of the key parameters can be applied to other complex systems with similar
asymmetries.
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Introduction

In recent years, the understanding of complex systems has been

undergoing rapid development. Financial markets are important

examples of complex systems with many-body interactions. The

possibility of accessing large amounts of historical financial data

has spurred the interest of scientists in various fields, including

physics. Plenty of results have been obtained with physical

concepts, methods and models [1–13].

There are several stylized facts in financial markets. Besides the

fat tail in the probability distribution of price returns, it is well-

known that the volatilities are long-range correlated in time, which

is the so-called volatility clustering [14]. However, our knowledge

on the dynamics of the price itself is still limited. Since the auto-

correlation of returns is extremely weak [2,3], nonzero higher-

order time correlations become important, especially the lowest-

order one among them. In financial markets, this lowest-order

nonzero correlation turns out to be the return-volatility correla-

tion, on which we lay emphasis in this paper. In 1976, a negative

return-volatility correlation is first discovered by Black [15]. This is

the so-called leverage effect, which implies that past negative

returns increase future volatilities. The leverage effect is actually

observed in various financial systems, such as stock markets,

futures markets, bank interest rates and foreign exchange rates

[6,15–21]. We have studied about thirty stock-market indices, and

all of them exhibit the leverage effect. To the best of our

knowledge, the leverage effect exists in almost all stock markets in

the world. In Chinese stock markets, however, a positive return-

volatility correlation is detected, which is called the anti-leverage

effect [6,19]. This effect is also observed in other economic

systems, such as bank interest rates of early years and spot markets

of non-ferrous metals.

The leverage and anti-leverage effects are crucial for the

understanding of the price dynamics [6,15,19,20], and important

for risk management and optimal portfolio choice [22,23].

However, the origination of the return-volatility correlation is still

disputed, even at the macroscopic level [19,20,24–29]. According

to Black, the leverage effect arises because a price drop increases
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the risk of a company to go bankrupt and leads the stock to

fluctuate more. So far, various macroscopic models have been

proposed to understand the return-volatility correlation [4,19,30–

33]. The retarded volatility model is an enlightening one, which

can produce both the leverage and anti-leverage effects [4].

However, it is a model with only one degree of freedom, and both

the initial time series of returns and the function of the feedback

return-volatility interaction, are actually input. Hence, the model

is phenomenological in essence, and the generation mechanism of

the leverage and anti-leverage effects is macroscopic. In very

recent years, many researches have been devoted to the return-

volatility correlation, but how to produce the return-volatility

correlation with a microscopic model remains open.

Agent-based modeling is a powerful simulation technique,

which is widely applied in various fields [34–41]. More recently,

an agent-based model is proposed for reproducing the cumulative

distribution of empirical returns and trades in stock markets [41].

It is a outstanding model with key parameters determined from

empirical findings rather than from being set artificially. In this

paper, we construct an agent-based model with asymmetric

trading and herding to explore the microscopic origination of the

leverage and anti-leverage effects. In the past decades, although

the asymmetric trading and herding behaviors may have been

touched macroscopically, they have not been taken into account in

the microscopic modeling yet. Especially, we propose effective

methods to determine the key parameters in our model from

historical market data.

Methods

To study the microscopic origination of the return-volatility

correlation in stock markets, we take into account the individual

and collective behaviors of investors, and construct a microscopic

model with multi-agent interactions. Further, we determine the

key parameters in our model from historical market data rather

than from statistical fitting of the results.

Our model is basically built on agents’ daily trading, i.e.,

buying, selling and holding stocks. Empirical studies indicate that

investors make decisions according to the previous stock perfor-

mance of different time windows [42], which suggests that their

horizons of investment vary. This investment horizon is introduced

to our model for a better description of agents’ market behavior.

Most crucially, two important behaviors of investors are taken into

account for understanding the return-volatility correlation.

1. Two Important Behaviors of Investors

(a) Investors’ asymmetric trading in bull and bear markets.

There are various definitions of bull and bear markets

[43,44]. The usual definition is that in stock markets, bull

and bear markets correspond to the periods of generally

increasing and decreasing stock prices respectively [43]. In

this paper we adopt this definition, and simply define a

market to be bullish on one day if the price return is positive,

and bearish if the price return is negative. The asymmetric

trading in bull and bear markets is an individual behavior,

which is induced by investors’ different trading desire when

the price drops and rises. To be more specific, an investor’s

willingness to trade is affected by the previous price returns,

leading the trading probability to be distinct in bull and bear

markets.

(b) Investors’ asymmetric herding in bull and bear markets.

Herding, as one of the collective behaviors, is that investors

cluster in groups when making decisions, and these groups

can be large in financial markets [45–51]. Actually, the

herding behavior in bull markets is not the same as that in

bear ones [47,52,53]. For instance, previous study has shown

that in the recent US market, the herding behavior in bear

markets appears much more significant than that in bull

ones [47]. Generally, investors may cluster more intensively

in either bull or bear markets, leading the herding to be

asymmetric.

2. Microscopic Model with Multi-agent Interactions
The stock price on day t is denoted as Y (t), and the logarithmic

price return is R(t)~ ln½Y (t)=Y (t{1)�. In stock markets, the

information for investors is highly incomplete, therefore an agent’s

decision of buy, sell or hold is assumed to be random. Since intraday

trading is not persistent in empirical trading data [54], we consider

that only one trading decision is made by each agent in a single

day. In our model, there are N agents, and each operates one

share every day. On day t, each agent i makes a trading decision

Si(t),

Si(t)~

1 buy

{1 sell

0 hold

0
B@ , ð1Þ

and the probabilities of buy, sell and hold decisions are denoted as

Pbuy(t), Psell(t) and Phold (t), respectively. The price return R(t) in

Table 1. The values of Vz=V{, dbull , dbear, a, Dr and DR for the six indices.

Index Vz=V{ dbull dbear a Dr p-value DR

S&P 500 (1950–2012) 1.03 0.993 1.127 1.0160.01 0.06760.007 6.761024 3

Shanghai (1991–2006) 1.21 0.533 0.447 1.0960.01 20.04360.005 1.061023 22

Nikkei 225 (2003–2012) 1.01 0.729 0.807 1.0160.01 0.03960.005 1.561023 2

FTSE 100 (2004–2012) 0.98 0.673 0.729 0.9960.01 0.02860.003 7.361024 2

Hangseng (2001–2012) 1.04 0.966 1.029 1.0260.2 0.03260.003 4.461024 2

DAX (2008–2012) 0.96 0.797 0.822 0.9860.02 0.01360.002 2.961023 1

Vz=V{ , dbull and dbear are determined from the historical data for each index. We calculate a from azb~2 and a=b~Vz=V{ , and Dr from Dr~ 1
2

(dbear{dbull ).

Student’s t-test is performed to analyze the statistical significance of Dr. A p-value less than 0.05 is considered statistically significant. We compute DR from the linear
relation between Dr and DR for all these indices. As DR for the Shanghai Index is negative, it is rounded down to the nearest integer, while DR for other indices are
positive, and each of them is rounded up to the nearest integer.
doi:10.1371/journal.pone.0079531.t001
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our model is defined by the difference of the demand and supply of

the stock, i.e., the difference between the number of buy agents

and sell ones,

R(t)~
XN

i~1

Si(t): ð2Þ

The volatility is defined as the absolute return jR(t)j.
The investment horizon is introduced since agents’ decision

makings are based on the previous stock performance of different

time horizons. It has been found that the relative portion ci of

agents with i days investment horizon follows a power-law decay,

ci!i{g with g~1:12 [18]. The maximum investment horizon is

denoted as M, thus imax~M. With the condition of
PM

i~1 ci~1,

we normalize ci to be ci~i{g=
PM

i~1 i{g. Agents’ trading

decisions are made according to the previous price returns. For

an agent having investment horizon of i days,
Pi{1

j~0 R(t{j)

represents a simplified investment basis for decision making on day

tz1. We introduce a weighted average return R0(t) to describe the

integrated investment basis of all agents. Taking into account that

ci is the weight of
Pi{1

j~0 R(t{j), R0(t) is defined as

R0(t)~k:
XM
i~1

ci

Xi{1

j~0

R(t{j)

" #
, ð3Þ

where k is a proportional coefficient. We set

k~1=(
PM

i~1

PM
j~i cj), such that jR0(t)jmax~N~jR(t)jmax to

ensure that the fluctuation scale of R0(t) remains consistent with

the one of R(t) (see Appendix S1). If M~1, R0(t) is just identical

to R(t). Actually, M varies from market to market, and from time

period to time period for a market. According to Ref. [42], the

investment horizons of investors range from a few days to several

months. We estimate the maximum investment horizon M to be

150 in our model. For M between 50 and 500, the simulated

results remain qualitatively robust.

(i) Asymmetric trading. In Ref. [41], investors’ probabilities

of buy and sell are assumed to be equal, i.e., Pbuy~Psell~p, and p

is a constant. In our model, we adopt the value of p estimated in

Ref. [41], p~0:0154. We assume Pbuy(t)~Psell(t) as well, but

Figure 1. The relation of DR and Dr. With DR set to be 24, 23, 22, 21, 0, 1, 2, 3 and 4 respectively, time series R(t) is simulated 100 times for
a~1:0. The corresponding Dr is computed and averaged for each DR. This plot shows a linear relation of DR and Dr, i.e., DR~38:2Dr, and this result
remains robust for a between 0.9 and 1.1.
doi:10.1371/journal.pone.0079531.g001
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now Pbuy(t) and Psell(t) evolve with time since the agents’ trading

is asymmetric in bull and bear markets. As the trading probability

Ptrade(t)~Pbuy(t)zPsell(t), we set its average over time

SPtrade(t)T~2p. From the investors’ behavior (a) described in

Subsec. 1 in Sect. Methods, we define the market performance of

the previous M days to be bullish if R0(t)w0, and bearish if

R0(t)v0. The investors’ asymmetric trading in bull and bear

markets gives rise to the distinction between Ptrade(tz1)jR0(t)w0

and Ptrade(tz1)jR0(t)v0. Thus, Ptrade(tz1) should take the form

Ptrade(tz1)~2p:a R0(t)w0

Ptrade(tz1)~2p R0(t)~0

Ptrade(tz1)~2p:b R0(t)v0

0
B@ : ð4Þ

Here a and b are constants, and SPtrade(t)T~2p requires

azb~2, i.e., a and b are not independent.

(ii) Asymmetric herding. The herding behavior implies that

investors can be divided into groups. Here a herding degree D(t) is

introduced to quantify the clustering degree of the herding

behavior,

D(t)~nA(t)=N, ð5Þ

where nA(t) is the average number of agents in each group on day

t. Herding should be related to previous volatilities [46,55], and we

set nA(tz1)~jR0(t)j. Hence the herding degree on day tz1 is

D(tz1)~jR0(t)j=N: ð6Þ

This herding degree is symmetric for R0(t)w0 and R0(t)v0.

According to the investors’ behavior (b) described in Subsec. 1 in

Sect. Methods, however, investors’ herding behaviors in bull and

bear markets are asymmetric, i.e., herding is stronger in either bull

markets or bear ones. More specifically, D(tz1) is not symmetric

for R0(t)w0 and R0(t)v0, and should be redefined to be

D(tz1)~jR0(t){DRj=N: ð7Þ

Here DR is the degree of asymmetry, and as DR grows, herding

becomes more asymmetric. According to Eq. (5),

Figure 2. The return-volatility correlation functions for the S&P 500 and Shanghai indices, and for the corresponding simulations.
The S&P 500 and Shanghai indices are simulated with (a,DR)~(1:0,3) and (a,DR)~(1:1,{2), respectively. Dashed lines show an exponential fit
L(t)~c:exp({t=t) with (c,t)~({0:36,19) and (0:61,8) for the S&P 500 Index and the Shanghai Index.
doi:10.1371/journal.pone.0079531.g002
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D(tz1)~nA(tz1)=N . Therefore N:D(tz1) is the average

number of agents in a same group. Thus we randomly divide N

agents into 1=D(tz1) groups on day tz1. Everyday, the agents in

a group make a same trading decision (buy, sell or hold) with the

same probability (Pbuy, Psell or Phold ).

3. Determination of a and DR
This is the key step in the construction of our model. We

emphasize that a and DR are determined from the historical

market data rather than from statistical fitting of the simulated

results. Six representative stock-market indices are studied with

our model, including the S&P 500, Shanghai, Nikkei 225, FTSE

100, Hangseng and DAX indices. We collect the daily data of

closing price and trading volume, both of which are from 1950 to

2012 with 15775 data points for the S&P 500 Index, from 1991 to

2006 with 3928 data points for the Shanghai Index, from 2003 to

2012 with 2367 data points for the Nikkei 225 Index, from 2004 to

2012 with 1801 data points for the FTSE 100 Index, from 2001 to

2012 with 2787 data points for the Hangseng Index and from

2008 to 2012 with 1016 data points for the DAX Index. These

data are obtained from ‘‘Yahoo! Finance’’ (http://finance.yahoo.

com). For comparison of different time series of returns, the

normalized return r(t) is introduced,

r(t)~½R(t){SR(t)T�=s, ð8Þ

where S � � � T represents the average over time t, and

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2(t)T{SR(t)T2

q
is the standard deviation of R(t).

The stock market is assumed to be bullish if r(t)w0, and bearish

if r(t)v0. To determine a, we first define an average trading

volume Vz for the bull markets, and V{ for the bear ones,

Vz~½
P

r(t)w0 V (t)�=nr(t)w0

V{~½
P

r(t)v0 V (t)�=nr(t)v0

(
: ð9Þ

Here nr(t)w0 and nr(t)v0 represent the number of positive and

negative returns respectively, and V (t) is the trading volume on

day t. As displayed in Table 1, the ratio Vz=V{ is 1.03 for the

S&P 500 Index and 1.21 for the Shanghai Index. In our model,

since the average trading volumes for bull markets (R0(t)w0) and

bear markets (R0(t)v0) are N:Ptrade(tz1)jR0(t)w0 and

N:Ptrade(tz1)jR0(t)v0, the ratio of these two average trading

volumes is

Ptrade(tz1)jR0(t)w0

Ptrade(tz1)jR0(t)v0

~a=b~Vz=V{: ð10Þ

Together with the condition azb~2, we determine a~1:01
from Vz=V{ for the S&P 500 Index and a~1:09 for the

Shanghai Index. Table 1 also shows the values of Vz=V{ and a
for the Nikkei 225, FTSE 100, Hangseng and DAX indices.

Several data series of different time periods are sampled from the

historical market data, and the error is given for a in this table.

Student’s t-test is performed to analyze the statistical significance

for a deviating from 1:0, and a p-value less than 0.05 is considered

statistically significant. The analysis shows that only the value

a~1:09 of the Shanghai Index is significantly deviating from 1.0,

with the p{value~8:4|10{4. In our simulation, for simplicity,

we approximate a to be 1.0 for the S&P 500, Nikkei 225, FTSE

100, Hangseng and DAX indices, and 1.1 for the Shanghai Index.

Now we turn to DR. In real markets, herding is related to

volatilities [46,55]. Thus we introduce the average jr(t)j with the

weight V(t) to describe the herding degree in a specific period.

Thus the herding degrees of bull markets (r(t)w0) and bear

markets (r(t)v0) are defined as

dbull(r(t))~
P

t,r(t)w0 ½V (t):r(t)�=
P

t,r(t)w0 V(t)

dbear(r(t))~
P

t,r(t)v0 ½V (t):jr(t)j�=
P

t,r(t)v0 V (t)

(
: ð11Þ

From empirical findings, the herding degrees of bull and bear

stock markets are not equal, i.e., dbull=dbear. In order to equalize

dbull and dbear, we introduce a shifting to r(t), denoted by Dr, such

that dbull(r
0(t))~dbear(r

0(t)) with r0(t)~r(t)zDr. From this

definition of Dr, we derive (see Appendix S2)

Dr~
1

2
½dbear(r(t)){dbull(r(t))�: ð12Þ

Thus we obtain Dr~0:067 for the S&P 500 Index and

Dr~{0:043 for the Shanghai Index. In our model, we similarly

compute the shifting to the time series R(t), which equalize the

herding degree D(tz1)~jR0(t){DRj=N in bull markets

(R0(t)w0) and bear markets (R0(t)v0). Actually, one may prove

that the shifting to R(t) is equivalent to the shifting to R0(t) (see

Appendix S3). If R0(t) is replaced by R00(t)~R0(t)zDR, D(tz1)
turns into D(tz1)~jR00(t){DRj=N~jR0(t)j=N , which is sym-

metric for bull and bear markets. Therefore, DR is the shifting to

R0(t), and it is just the shifting to R(t).

The time series of returns in different real markets and in our

model fluctuate at different levels. For comparison, we normalize

the returns with Eq. (8). Similarly, DR, the shifting to returns,

should also be normalized to Dr. However, in simulating the stock

markets with our model, the parameter we need is DR. Therefore,

we should first derive the relation of DR and Dr. With the

Table 2. The values of c and j of the exponential fit
L(t)~c:exp(jt) for the six indices and the corresponding
simulations.

c j p-value

S&P 500 20.3660.02 20.05320.005 4.561024

simulation 20.3060.01 20.03260.001 5.761026

Shanghai 0.6160.12 20.13360.014 6.961024

simulation 0.3060.02 20.06660.004 7.961025

Nikkei 225 20.2560.01 20.03860.004 6.961024

simulation 20.2760.01 20.04260.001 1.961026

FTSE 100 20.3360.03 20.05560.007 1.461023

simulation 20.2660.01 20.3660.001 3.661024

Hangseng 20.5060.06 20.09860.001 1.261023

simulation 20.2260.01 20.02760.001 1.161025

DAX 20.2060.01 20.02660.002 2.061024

Simulation 20.2260.01 20.3160.001 6.561024

Student’s t-test is performed to analyze the statistical significance of j. A p-
value less than 0.05 is considered statistically significant.
doi:10.1371/journal.pone.0079531.t002
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normalization of the time series R(t), DR should be normalized to

Dr,

½DR{SR(t)T�=s~Dr, ð13Þ

where S � � � T represents the average over time t, and s is the

standard deviation of R(t). To determine the relation of DR and

Dr, DR is set to be 24, 23, 22, 21, 0, 1, 2, 3, 4, respectively, and

a is set to be 1.0 to produce time series R(t). With R(t) simulated

100 times for each DR, we compute Dr and average the results. As

displayed in Fig. 1, the relation of DR and Dr is linear, and

DR~38:2Dr. For a between 0.9 and 1.1, the results remain

robust. Thus, we determine DR~3 for the simulation of the S&P

500 Index and DR~{2 for the simulation of the Shanghai Index.

Table 1 shows the values of Dr and DR, as well as the error of Dr,

for the Nikkei 225, FTSE 100, Hangseng and DAX indices. Due

to the fluctuation of the empirical data, the error of Dr is about 10

percent. Since the sign of Dr determines that the simulation yields

the leverage or anti-leverage effect, we perform Student’s t-test to

analyze the statistical significance of Dr, and the corresponding p-

value is listed in Table 1. A p-value less than 0.05 is considered

statistically significant.

To further validate the methods for the determination of the key

parameters and the simulations for the leverage and anti-leverage

effects, eight more indices are studied (see Appendix S4). The

simulation of each index correctly produces the leverage or anti-

leverage effect.

4. Simulation
The number of agents in our simulations is 10000, i.e.,

N~10000. With a and DR determined for each index, our

model produces the time series of returns R(t) in the following

procedure. Initially, the returns of the first 150 time steps are set to

be 0. On day tz1, we calculate R0(t) according to Eq. (3), then

Ptrade(tz1) and D(tz1) according to Eq. (4) and Eq. (7),

respectively. Next, we randomly divide all agents into 1=D(tz1)
groups. The agents in a group make a same trading decision (buy,

sell or hold) with the same probability (Pbuy, Psell or Phold ). After

all agents have made their decisions, we calculate the return

R(tz1) with Eq. (1) and Eq. (2). Repeating this procedure, we

obtain the return time series R(t) . 20000 data points of R(t) are

Figure 3. The return-volatility correlation functions for the four indices and the corresponding simulations. The Nikkei 225, FTSE 100,
Hangseng and DAX indices are simulated with (a,DR)~(1:0,2), (1:0,2), (1:0,2) and (1:0,1), respectively. Dashed lines show an exponential fit
L(t)~c:exp({t=t) with (c,t)~({0:25,26) for the Nikkei 225 Index, ({0:33,18) for the FTSE 100 Index, ({0:50,10) for the Hangseng Index and
({0:20,39) for the DAX Index.
doi:10.1371/journal.pone.0079531.g003
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produced in each simulation, but the first 10000 data points are

abandoned for equilibration.

Results

To describe how past returns affect future volatilities, the

return-volatility correlation function L(t) is defined,

L(t)~½Sr(t0):jr(t0zt)j2T{L0�=Z, ð14Þ

with Z~Sjr(t0)j2T2 and L0~Sr(t0)TSjr(t0)j2T [8]. Here S � � � T
represents the average over time t0.

As displayed in Fig. 2, L(t) calculated with the empirical data of

the S&P 500 Index shows negative values up to at least 15 days,

and this is the well-known leverage effect [4,6,15]. On the other

hand, L(t) for the Shanghai Index remains positive for about 10

days. That is the so-called anti-leverage effect [6,19]. Fitting L(t)
to an exponential form L(t)~c:exp({t=t), we obtains t~19 and

8 days for the leverage and anti-leverage effects, respectively.

Compared with the short correlating time of the returns, the order

of minutes [2,3], both the leverage and anti-leverage effects are

prominent. As the lowest-order nonzero correlations of returns,

the leverage and anti-leverage effects are theoretically crucial for

the understanding of the price dynamics [6,15,19,20]. In practical

application, these effects are important for risk management and

optimal portfolio choice [22,23]. After the time series R(t)
produced in our model is normalized to r(t), we compute the

return-volatility correlation function, and the result is in agreement

with that calculated from empirical data on amplitude and

duration for both the S&P 500 and Shanghai indices, as shown in

Fig. 2. This is the first time that the leverage and anti-leverage

effects are produced with a microscopic model.

For the Nikkei, FTSE 100, Hangseng and DAX indices, the

volume data of early years are not available to us. However, L(t) is

computed from only price data. In order to reduce the fluctuation

of L(t), we collect the price data of a longer period, which are from

1984 to 2012 with 7092 data points for the Nikkei 225 Index, from

1984 to 2012 with 7227 data points for the FTSE 100 Index, from

1988 to 2012 with 6181 data points for the Hangseng Index and

from 1990 to 2012 with 5514 data points for the DAX Index. As

displayed in Fig. 3, L(t) for the simulations is in agreement with

that for the corresponding indices. Table 2 shows the values of c

and j of the exponential fit L(t)~c:exp(jt) for the six indices and

Figure 4. The auto-correlation functions of volatilities for the S&P 500 and Shanghai indices, and for the corresponding
simulations. For clarity, the curves for the S&P 500 Index have been shifted down by a factor of 10.
doi:10.1371/journal.pone.0079531.g004
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the corresponding simulations. Since c is obviously non-zero, the

p-value of Student’s t-test is only listed for j.

Our model also produces other features of the real markets,

such as the long-term correlation of volatilities and the fat-tail

distribution of the returns. Here we take the S&P 500 and

Shanghai indices as examples. The auto-correlation function of

volatilities is defined as

A(t)~½Sjr(t0)jjr(t0zt)jT{Sjr(t0)jT2�=A0, ð15Þ

where A0~Sjr(t0)j2T{Sjr(t0)jT2 [19], and S � � � T represents the

average over time t0. As shown in Fig. 4, A(t) for the simulations is

consistent with that for the empirical data. The cumulative

distributions P(jr(t)jwx) of absolute returns are shown in Fig. 5,

where the fat tail in the distribution of empirical returns can be

observed in that of the simulated returns as well.

By the definitions, both a and Dr are not dependent on the

number of agents (denoted by N) in the model. However, the slope

of the linear relation between DR and Dr increases with N.

Therefore, the magnitude of DR becomes larger as N grows. For

the simulation results, the amplitude of L(t) increases with N, but

gradually converges for larger N (see Appendix S5). For A(t) and

P(jr(t)jwx), the cases are similar.

Discussion

In our model, the crucial generation mechanisms of the return-

volatility correlation are the agents’ asymmetric trading and

herding behaviors in bull and bear markets. Now we discuss how

these two mechanisms contribute to the leverage and anti-leverage

effects, and which one is more significant. According to Eq. (4) and

azb~2, Ptrade is symmetric about R0(t)~0 if a~1:0, and

asymmetric if a=1:0. On the other hand, D(tz1) in Eq. (7) is

asymmetric about R0(t)~0 if DR=0. In our model, the S&P 500

and Shanghai indices are simulated with (a,DR)~(1:0,3) and

(a,DR)~(1:1,{2), respectively. Therefore, Ptrade is symmetric in

the simulation of the S&P 500 Index, but asymmetric in the

simulation of the Shanghai Index. D(tz1) is asymmetric in the

simulation of both the S&P 500 and Shanghai indices. With other

parts of the model remain unchanged, we consider the following

controls: (a) Ptrade is replaced by a symmetric one in the simulation

of the Shanghai Index; (b) D(tz1) is replaced by a symmetric one

in the simulation of both the S&P 500 and Shanghai indices; (c)

Figure 5. The cumulative distributions of absolute returns for the S&P 500 and Shanghai indices, and for the corresponding
simulations. For clarity, the curves for the S&P 500 Index have been shifted left by a factor of 8.5.
doi:10.1371/journal.pone.0079531.g005
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both Ptrade and D(tz1) are replaced by the symmetric ones in the

simulation of the Shanghai Index.

The simulations are performed 100 times for average. We

conclude that for the leverage and anti-leverage effects, both the

investors’ asymmetric trading and herding are essential generation

mechanisms. As displayed in Fig. 6, the anti-leverage effect is

weakened significantly and the leverage effect disappears after we

replace the asymmetric D(tz1) with the symmetric one. On the

other hand, the anti-leverage effect recedes after the asymmetric

Ptrade is replaced by the symmetric one. It is worth mentioning

that for the five stock markets exhibiting the leverage effect, the

S&P 500, Nikkei 225, FTSE 100, Hangseng and DAX, Ptrade is

approximately symmetric, thus contributing very little to the

leverage effect. The investors’ asymmetric trading in the Shanghai

market may result from the fact that the Shanghai market is an

emerging market. Investors are somewhat speculative, and rush for

trading as the stock price increases [6].

Conclusion

Based on investors’ individual and collective behaviors, we

construct an agent-based model to investigate how the return-

volatility correlation arises in stock markets. In our model, agents

are linked with each other and trade in groups. In particular, two

novel mechanisms, investors’ asymmetric trading and herding

behaviors in bull and bear markets, are introduced. There are four

parameters in our model, i.e., p, M, a and DR. We adopt p

estimated in Ref. [41], and estimate the only tunable parameter M

to be 150. a and DR, the key parameters, are induced by the

asymmetries in trading and herding, respectively. Specifically, we

determine a from the ratio of the average trading volume when

stock price is rising and that when price is dropping, and DR from

investors’ different herding degrees in bull and bear markets.

We collect the daily price and volume data of six representative

stock-market indices in the world, including the S&P 500,

Shanghai, Nikkei 225, FTSE 100, Hangseng and DAX indices.

With a and DR determined for these indices respectively, we

obtain the corresponding leverage or anti-leverage effect from the

Figure 6. The return-volatility correlation functions for the simulated results of the S&P 500 and Shanghai indices, and for those of
the controls. The S&P 500 and Shanghai indices exhibit the leverage and anti-leverage effects, respectively. For the leverage effect, we consider two
cases: D is asymmetric; D is symmetric. The latter is the control. For the anti-leverage effect, we consider the following cases: both Ptrade and D are
asymmetric; only D is asymmetric; only Ptrade is asymmetric; both Ptrade and D are symmetric. The last three cases are controls. For each case, the
simulation is performed for 100 times, and the average L(t) is displayed.
doi:10.1371/journal.pone.0079531.g006
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simulation, and the effect is in agreement with the empirical one

on amplitude and duration. Other features, such as the long-range

auto-correlation of volatilities and the fat-tail distribution of

returns, are produced at the same time. Further, it is quantitatively

demonstrated in our model that both the investors’ asymmetric

trading and herding are essential generation mechanisms for the

leverage and anti-leverage effects at the microscopic level.

However, the investors’ trading is approximately symmetric for

the five stock markets exhibiting the leverage effect, thus

contributing very little to the effect. These two microscopic

mechanisms and the methods for the determination of a and DR
can also be applied to other complex economic systems with

similar asymmetries in individual and collective behaviors, e.g., to

futures markets, bank interest rates, foreign exchange rates and

spot markets of non-ferrous metals.
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