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Abstract

In this paper we present a new software toolkit for generating and optimizing surface and
volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based
finite element analysis of some biomedical activities in a single material domain. Our toolkit
includes a series of geometric processing algorithms including surface re-meshing and quality-
guaranteed tetrahedral mesh generation and optimization. All methods described have been
encapsulated into a user-friendly graphical interface for easy manipulation and informative
visualization of biomedical images and mesh models. Numerous examples are presented to
demonstrate the effectiveness and efficiency of the described methods and toolkit.
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1. Introduction

Computer simulations have been widely used to study various activities in biomedical
systems, ranging from molecular, cellular to organ scales [10, 36, 60]. Many of these
biological activities can be formulated as partial differential equations (PDESs), which often
do not admit analytical solutions and have to be numerically solved. Among a variety of
numerical approaches, the finite element method (FEM) has become popular for solving
PDEs. One of the challenges in using the FEM, however, is to generate high-quality meshes
on which the simulations are performed. In order to obtain more accurate simulation results,
it is also practically important to incorporate realistic biological structures into geometric
mesh models [11, 14, 29, 48, 49, 56]. To this end, the goal of the present paper is to
construct high-quality geometric mesh models from 3D biomedical imaging data.
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In bridging the gap between images and meshes, the following steps are typically involved:
(1) from images to surface models, (2) from surface models to tetrahedral meshes, and (3)
tetrahedral mesh smoothing to further improve the mesh quality. Below we shall give a brief
summary of the related work on these topics.

From Images to Surface Models

To construct surface mesh models from images, we need to extract the boundaries of the
feature of interest. Various computational algorithms have been proposed for image
boundary segmentation. Commonly used methods include edge detection [22], region
growing and/or region merging [64], active curve/surface motion [41, 51], watershed
immersion method [9, 58], normalized graph cut [53] and eigenvector analysis [16]. As
image processing is not the focus of the current paper, we assume that the feature boundaries
have been segmented either manually or automatically. If the segmentation is applied to 2D
images, as commonly seen in manual segmentation, each slice of a given 3D image
produces one or multiple contours and the contours found on different slices are connected
together to form a 3D triangular surface mesh [1]. As shown below, these surface meshes
are often very noisy and corrupted with badly-shaped triangles and sometimes wrong
topologies. Therefore, it is often necessary to regenerate a new surface mesh with much
higher quality to approximate the original surface shape [57, 62].

From Surface Models to Tetrahedral Meshes

There has been an extensive study on tetrahedral mesh generation from surface models [21,
45]. The related techniques can be classified as Delaunay-based, advancing-front-based, and
octree-based methods. The Delaunay-based method usually generates and refines the
Delaunay triangulation of a set of progressively inserted vertices inside/on a given surface
domain (e.g., see [52, 54]). This technique is very successful in 2D mesh generation but may
not work well in generating high-quality tetrahedral meshes, where some nearly degenerate
elements known as s/ivers often occur. The advancing front-based method starts from the
boundary of a domain and then inserts new points inside the domain so that the generated
tetrahedra have acceptable shapes and conform to the desired sizing function [2, 8, 19].
However, poorly-shaped surface triangles often give rise to very low quality tetrahedra. The
octree-based method recursively subdivides the domain containing the given mesh until
some stopping criteria are reached [4, 43, 63, 67]. In all the above approaches, however, the
dihedral angles are not guaranteed in the resulting tetrahedra especially those near the
surfaces. More recently, Labelle and Shewchuk [34] presented an iso-surface stuffing
algorithm to generate tetrahedral meshes, where the dihedral angles are bounded by [10.7°
164.8°]. However, when non-uniform tetrahedra on the surface boundary are preferred, the
range of dihedral angles becomes [1.66°, 174.72°].

Tetrahedral Mesh Quality Improvement

Typical methods of tetrahedral mesh quality improvement include: (1) fopology
optimization, which modifies the connectivity between mesh vertices while keeping vertex
positions unchanged. The edge- or face-swapping methods are commonly used in topology
optimization [18, 30]. (2) vertex insertion/deletion, which inserts/deletes vertices to/from the
mesh [7, 13, 44]. (3) vertex smoothing, which repositions the coordinates of the vertices
while keeping the connectivity unchanged [3, 17]. Despite the wide use of the first two
methods in mesh quality improvement, the third method remains an active research topic in
this area. There has been a lot of work on vertex relocation for mesh quality improvement,
including Lapl/acian smoothing [15, 23, 25], angle-based methods [61, 65, 71], methods
based on centroid VVoronoi tessellation (CVT) [12], and more recently optimization-based
methods utilizing optimal Delaunay triangulation (ODT) [6]. Most of these methods perform
well for internal tetrahedral nodes. In many real-world mesh models, however, badly-shaped
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tetrahedra often occur near or on the boundaries of a domain [34, 69]. Therefore, how to
simultaneously smooth internal and boundary vertices is of great interest in tetrahedral mesh
smoothing.

The main goal of the current work is to integrate several of our newly-developed algorithms
into a user-friendly toolkit, called BIMoS (or Biomedical | mage-based M odeling and
Simulation), to create high-quality tetrahedral mesh models from biomedical imaging data.
Fig. 1 shows a flowchart of the mesh generation and optimization algorithms available in
BIMoS. Compared to some existing software tools on tetrahedral mesh generation and
improvement, such as Tetgen [54], CGALMesh [47], LBIE [67], and Stellar [30], the
described BIMoS is the first publicly available toolkit that guarantees a lower bound of
dihedral angles in tetrahedral mesh generation, which is vital in finite element methods. In
addition, the accompanying graphical user interface (GUI) provides various ways to pre-
process and visualize the meshes (e.g., local refinement, hole-filling, mesh quality
measurement, cross sectioning of meshes at arbitrary views and depths, etc.). While the
present methods and tools are applicable to a wide range of biomedical images, we shall
consider as examples the electron microscopic (EM) images of subcellular structures in
cardiac myocytes (or muscle cells) and aim to produce tetrahedral meshes suitable for finite
element analysis of cardiac cell dynamics [26, 38]. The current version of the present toolkit
can only generate meshes in a single material domain. For domains with multiple materials,
the reader is referred to some published work such as the method described in [69].

The remainder of the present paper is organized as follows. In Section 2 we describe the
computational approaches on mesh generation and smoothing. We outline our software
toolkit in Section 3. Some experimental results are presented in Section 4, followed by the
conclusion in Section 5.

2. Mesh Generation and Smoothing

2.1. Biological Imaging Data

2.2. Surface

While the mesh generation and smoothing algorithms described below are applicable to a
variety of biological data, including images and molecules as shown in Section 4, we are
particularly interested in 3D volumetric images of sub-cellular structures, namely,
transverse-tubules (or T-tubules) and the surrounding junctional sarcoplasmic reticulum (or
jSR), in ventricular muscle cells (or myocytes). The t-tubular and jSR membrane-bound
organelles are coupled together to form so-called calcium release units (CRUSs), which are
fundamental in controlling calcium dynamics in cardiac myocytes [24, 55]. Fig. 2(a) shows
a cropped sample slice of such a coupled unit that is three-dimensionally reconstructed by
using the electron microscopic tomography. Segmentations of membrane organelles in 3D
volume reconstructions were performed manually in IMOD [32]. Fig. 2(b) shows the
segmented t-tubular (green) and jSR (yellow) structures. Finally, the objects of scientific
interest outlined with contours were reconstructed (or tiled) into surface meshes using
modules built in IMOD, as shown in Fig. 2(c).

Mesh Regeneration

As one can see in Fig. 2(c), the surface mesh generated by “tiling” individual 2D contours is
noisy and contains extremely low-quality angles. In order to better visualize and quantify the
structures of interest and generate quality tetrahedral meshes, it is essential to improve the
surface mesh quality. Given the low-quality in these original surface meshes, traditional
mesh smoothing methods (e.g., by vertex-repositioning and edge-swapping) would find
difficulties in processing these meshes. We hence utilize mesh regeneration (or remeshing)
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to improve the quality of the meshes. The algorithm we adopted is a modified marching
method as briefly summarized below:

»  Constructing background cubic grids. We first embed the given surface mesh
into 3D uniform cubic grids. Then we compute a signed distance value for each
grid point relative to the given mesh: positive/negative/zero for grids points inside/
outside/on the surface mesh, respectively.

e Snapping cutting points. The original marching cube algorithm [37] is able to
produce smooth triangular meshes but very small angles often occur when an
intersection point between the input and background meshes is too close to a grid
point. To eliminate skinny triangles, we adopt a “snapping” scheme by moving the
intersection point to the nearest grid point so that the skinny triangles would
disappear. Specifically, for a cutting (or intersection) point 2on an edge e of the
background mesh, where the distance from Pto the closer end point of eis less than
a preset constant A multiplied by the length of ¢, the corresponding end point (or
grid point of the background mesh) is re-assigned with a zero distance value. The
original marching cube algorithm is then executed on the modified distance
function. Note that a smaller A would generate a smoother mesh but the mesh
quality would be lower. On the other hand, a larger A can guarantee a higher mesh
quality but the resulting mesh is bumpier and thus significant post-processing of the
mesh (see below) is necessary, which may cause large errors between the original
and regenerated meshes. In the present paper, A is chosen as 0.2, to have a good
balance between mesh quality and surface accuracy.

»  Post-processing the mesh. Although the snapping strategy can generate much
better triangles, the resulting surface mesh is not as smooth as the one generated by
the original marching cube algorithm. We thus utilize the normal-based surface
smoothing technique [65] to reduce the bumpiness on the surface mesh. To retain
the good angles already achieved, we restrict the smoothing (or vertex-moving) to
where no worse angles are introduced.

Fig. 2(d) shows the regenerated triangular mesh. We can see a significant improvement of
mesh quality, as compared to Fig. 2(c). In order to generate tetrahedral meshes (see below
for algorithmic details) and to perform subsequent numerical simulations (not discussed in
the present paper), we have closed both ends of the t-tubule before the mesh in Fig. 2(c) was
regenerated.

2.3. Tetrahedral Mesh Generation

In this subsection, we summarize the key steps of tetrahedral mesh generation using the
body-centered cubic (BCC) lattice and octree-based data structure. More details can be
found in [59]. For simplicity of description, we consider only tetrahedral mesh generation
inside a given surface mesh, although our algorithms can be readily modified to generate
tetrahedra outside a domain surface, as demonstrated in the Result section below.

2.3.1. BCC Lattice Construction—A cubic bounding box of the input surface mesh is
first generated. We then take advantage of the top-down octree-based strategy to subdivide
the bounding box. To make non-uniform tetrahedral meshes on the surface, some geometric
criteria, such as curvature and the size of triangles inside an octree node, are considered as
well. In addition, a conforming condition is enforced so that the depth-disparity between two
face-adjacent octree leaf nodes is never greater than 1. As a result, we have two cases to
consider.

*  0O-depth-disparity. For the common face of two adjacent leaf nodes, we consider
the four edges of the face. If all four edge-adjacent leaf nodes of one edge have the
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same depth, we use the traditional way to construct the BCC tetrahedron; that is,
using the center points of the two face-adjacent nodes and two end points of this
edge to form a tetrahedron (see Fig. 3(a)). Otherwise, two BCC tetrahedra are
constructed by using the middle point of the edge (see Fig. 3(b)).

» 1-depth-disparity. We split the common quadrilateral face of two adjacent leaf
nodes into two triangular faces along its diagonal. The center point of each leaf
node, together with three vertices of each split triangular face, comprises one BCC
tetrahedron (see Fig. 3(c)).

2.3.2. Marching Tetrahedron Algorithm—After the construction of BCC tetrahedra,
we compute a scalar value for each vertex of the tetrahedra using the Euclidean distance
relative to the input surface mesh S. Each vertices is associated with a sign: positive (inside
S), negative (outside S), or zero (on S). For interior tetrahedra (completely inside S), where
all vertices are labeled with a positive sign, we consider them as the final tetrahedra.
Tetrahedra completely outside S, with all vertices labeled with a negative sign, are removed.
Then, the remaining problem is to deal with the BCC tetrahedra crossing the surface mesh.
To this end, we borrow the idea of the marching cube technique [37], which we refer to as
the marching tetrahedron algorithm, to split a boundary tetrahedron into inside and outside
polyhedra. The outside part is removed, while the inside polyhedron is further decomposed
into tetrahedra (described below). Fig. 4 lists all possible cutting stencils.

2.3.3. Decomposing Boundary Polyhedra—There are different ways to decompose a
polyhedron into tetrahedra. Note that ambiguous cases occur at a quadrilateral face of the
polyhedron. Taking the dihedral quality of tetrahedra into consideration, we employ an
optimal scheme as follows. Suppose a triangular face with vertices (g, 6, ¢) and two cutting
points py, p» on edges aband ac, respectively (see Fig. 5a). The quadrilateral face of the
polyhedron is composed of vertices 6, cand cutting points py, p». We calculate the values

_Ip—al, [[p2—al , . .
\ [o—a] [c—al for py, po. If Aq is less than A, we then split the quadrilateral
face along the dlagonal b, otherwise, the face is divided along the diagonal py ¢ (see Fig.

5(b), (c))-

2.3.4. Snapping Cutting Points—Similar to the marching cubes for surface mesh
regeneration as described in Section 2.2, the original marching tetrahedron algorithm is able
to produce smooth triangular meshes but very small angles are frequently encountered.
Consequently, the decomposed tetrahedra often contain small dihedral angles too. With a
similar snapping strategy, we change the distance value of a BCC tetrahedral node Pto zero
if there is a cutting point very close to A. The original marching tetrahedral algorithm
described above is then applied to the modified distance function. Similar to the snapping
method for surface mesh regeneration, the resulting tetrahedral mesh is often very bumpy on
surfaces and the normal-based surface smoothing technique [65] is again utilized to smooth
the surface of the tetrahedral mesh. To keep the good dihedral angles already achieved, we
also restrict the smoothing (or vertex-moving) to where no worse dihedral angles are
introduced.

2.3.5. Mesh Adaptivity—Mesh adaptivity is important in balancing the computational
time and simulation accuracy in finite element analysis. As the top-down octree subdivision
is used in our method, we are able to generate tetrahedra that are dense near the boundary
and gradually become coarse towards the interior of the domain. To further achieve adaptive
meshes on the domain boundary, we consider two criteria: triangle size of the input mesh
and the flatness of the surface. First, we determine whether there is at least one triangular
face contained in each octron during the subdivision. If there is only a single triangle in the
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octron, then we stop subdividing this octron. Second, we approximate the curvature metric
as the maximal angle between the normal vectors of all triangular faces contained in an
octron. If the curvature is smaller than a pre-defined threshold, we further subdivide the
octron; otherwise, we stop the subdivision. The resulting tetrahedra are thus denser in high
curvature areas of the input mesh and sparser elsewhere.

We have shown in [59] that the method outlined above can produce adaptive tetrahedral
meshes with a minimal dihedral angle of 5.71°. The resulting tetrahedral mesh quality can
be further improved by using a tetrahedral mesh smoothing technique, as described below.

2.4, Tetrahedral Mesh Smoothing

The goal of tetrahedral mesh smoothing is to improve the mesh quality by relocating the
vertices, where the mesh quality is often measured by minimal and maximal dihedral angles
in the resulting mesh. Consider a vertex X in a tetrahedral mesh .7 and the neighborhood of
Xg is Qq consisting of a set of tetrahedra { 7}. Let x=be the smoothing result of xy and 2« the
neighborhood of x (or the union of tetrahedra incident to x=) in 7. In the optimal Delaunay
triangulation (ODT) scheme [5, 6], the following objective function is defined as the .#*
interpolation error between the paraboloid function £x) = ||x - xo||2 and its linear
approximation f{x) over 2, where f(x) is constructed by lifting the vertices of 2« onto fx):

E=|f-1 ”Ll :fzegz* f(x)—f, (2)|de. N

Minimizing the above objective function would result in an optimal position of x. For an
inner vertex Xy, its optimal position x« can be explicitly computed by the following ODT
formula [5]:

1 1 3 )
*— 3 § _S‘r ‘r§ T )
Tx=To 2| (3 " i:1H A ” ) @

XS

where | () is the volume of ( and x; ;are the (three) vertices except xp of the incident
tetrahedron 7. Syand nyare the area and unit normal vector of 5 which is the opposite
triangle of xg in 7. npoints to the inside of 7. Fig. 6 illustrates some of the notations. One of
the incident tetrahedra (7= 1) of xg is considered and indicated in red. The opposite triangle
4 is formed by the three vertices X 1, X 2, and X 3 and its area and unit normal vector are
given by S; and nq, respectively.

It is important to note that the original ODT approach cannot be directly used to optimize
boundary vertices. Eq. (2) is derived from Eq. (1) by assuming that the neighborhoods Qg
and Q are identical, which is true for an inner vertex xg but not for a boundary vertex. To
design an ODT-based algorithm that works for both inner and boundary vertices, we need to
find a vertex-moving scheme by minimizing Eq. (1) on a boundary vertex. For simplicity,
we shall adopt a local vertex-by-vertex smoothing strategy, meaning that the optimization
problem is restricted to the neighborhood of xxwhile all other vertices are fixed.

For a boundary vertex xg, the two neighborhoods Qg and Q ~are generally different from
each other. According to [6], Eq. (1) can be rewritten as follows:

1 2 2
B=1 Y (lex—wo Plerl) = freq.ll 2 =20 [Pde g

T EQx
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where xj denotes one of the vertices of O, wyis x;’s neighborhood restricted in @, and |wy]
is its volume. Note that x« is also a vertex in «, we rewrite Eq. (3) into the following
equation:

3
R 1 (B LA W (B PRy
TeQ \ i=1 Q)

- 2
—Ja.llz == |"dz

As X is a boundary vertex, we let x= move on the tangent plane of the boundary surface at
Xo (see Fig. 6 for illustration). Specifically, let x»—xp = s+ 1, where sand t are two
orthogonal vectors on the tangent plane and vand vare the corresponding shifting distances.
It is worthy noting that moving on the tangent plane guarantees that the volumes of 2« and
Oy are equal [20], hence the approach described here can preserve the volume of the original
mesh. The interested reader is referred to [27, 28, 33, 50, 687?] for some other techniques on
volume-preserving mesh smoothing.

By using the constraint x- = xg + ts+ U, the first two terms on the right-hand side of Eq. (4)
become:

2 — 2o [P|Qu]= (u®+0%) ||

3
|7'|21H Tr; — Xo ||2= %ST (0., ustottzg — c;)
1=

©®)

3 9
Sl zri— o ||
=1

where Srand nyare defined the same as in Eq. (2). ¢ is any vertex in the triangle . Here
we take cras the barycenter of £ (-, -) is the inner product operation.

The remaining term in Eq. (4) is the integral [ || = — zo [|dz. Suppose {y:}", are the
neighboring vertices of xy on the boundary of the tetrahedral mesh .77, The order of y;is

determined in the following way: for any /=1, ..., m, the cross product of -, and =y,

points to the outside of Qg (let y/;+1 = y1). The integral [, || £ — xo ||dz: can be rewritten
as:

[ocall © =z |Pdo=[,cq ||z — zo||*dz
m
%Zl(Xfﬂ?ﬂﬁl+Xm+Xm+1+m+1) (6)
e

xdet (X.,Y;,Yi 1)

Here X« = X« — Xy, Y = Vi~ Xg, and det(:) is the determinant operation. Note that x« is
limited on the tangent plane at x, hence Eqg. (6) is equivalent to:

2 2
Joca llz =20 ["dz=[,cq |l  — 20 ||"d=
m
a5 2 [WPHUHYREHYE A+ (ustot, YitYia) ()
1=

1
+ (Y3, Yigq)] x det (us+ot, Yy, i)
Eq. (7) appears as a cubic function of u, v. However, we can prove that the coefficients of all

cubic terms are actually zero (see [20]). Therefore, the objective function in Eq. (4) is in fact
a quadratic function of v, v. By setting the gradient of Eq. (4) as zero, we geta 2 x 2 linear
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system and the solution of this system corresponds to the minimization of Eq. (4). The
interested reader is referred to [20] for the implementation detail.

It is worthwhile pointing out that, when vertices move around in the three mesh smoothing
steps (one in surface mesh regeneration and two in tetrahedral mesh generation and
improvement), the mesh validity may be violated resulting in self-intersection. The mesh
validity is enforced in the current work in two different ways. (1) For surface meshes,
consider a vertex vand its adjacent vertices ordered as v, W,...Vy, where vy, = 1. In order
for the new position of v, denoted by V', to be valid, the projection of v’ onto the plane
formed by each pair of edges (v}, vi—1) and (v, V1) must lie inside the fan-like partial plane
enclosed by the two edges. Otherwise, the vertex vremains unchanged. (2) For tetrahedral
meshes, a vertex vis allowed to move to its new position V' if and only if the volume of
each of the adjacent tetrahedra of v does not change its sign.

3. Software Toolkit

4. Results

All the algorithms described in Section 2 have been implemented in C++ and incorporated
into a user-friendly, OpenGL-based graphical toolkit called BIM oS (or Biomedical Image-
based Modeling and Simulation). As shown in Fig. 7, the BIMoS toolkit consists of four
modules for different applications: Molecule, Image, Mesh, and Simulation. With the first
two modules, the toolkit takes two common types of biomedical structures (i.e., bio-
molecules and images) as inputs to generate initial surface meshes that will be further
processed for a variety of biological simulation problems. To enhance the usability of the
toolkit, an advanced graphical interface is developed, including a main display window (Fig.
7A), a tree-like file-managing window (Fig. 7B) where users can interactively change the
property of a given data (such as mesh color), a non-editable information window (Fig. 7C),
and a number of icons for convenience of visualization (Fig. 7D-G).

Most related to the present work is the Mes/imodule in the BIMoS toolkit, which takes not
only the meshes directly generated from the molecule and image modules, but also other
user-provided surface and tetrahedral meshes in several popular formats. In addition to the
algorithms described in Section 2 (i.e., surface mesh regeneration, tetrahedral mesh
generation and smoothing), the Mes/ module also implements several other important
functions, such as feature-preserving surface mesh smoothing and improvement, mesh
refinement and coarsening, mesh editing (face deletion, hole-filling, normal correction, etc.),
and geometric quantifications (areas, volumes, mesh quality, etc.). The processed meshes
can be saved to disks for other applications or may be directly passed along to the
Simulation module for biological modeling (not included yet in the current version).

and Discussions

We have tested the algorithms and toolkit on many different types of input data and obtained
very encouraging results. Below we shall demonstrate some examples. All pictures shown
are generated by the BIMoS toolkit (Fig. 7).

We begin with mesh generation and smoothing on the two sub-cellular structures (t-tubule
and jSR) in cardiac myocytes. The input surface mesh models to our algorithms are
manually segmented from electron microscopy imaging data and reconstructed via 3D
contour-tiling tools, as provided in IMOD [32]. Fig. 8(a) shows the generated tetrahedral
mesh from the processed surface mesh (Fig. 2(d)) by using the method described in Section
2.3. To better visualize the mesh, all tetrahedra in front of a cross section have been
removed. The histogram of all angles on the domain surface (cyan in Fig. 8(a)) and the
histogram of all dihedral angles in the entire domain are shown in Fig. 8(b) (top and bottom,
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respectively). The minimal and maximal angles (or dihedral angles) are given in the
corresponding histograms too. In bio-simulations (e.g., molecular dynamics), it is common
to consider the activities outside a given structure, hence we may need to restrict ourselves
to the domain between the structure surface and a large bounding shape (mostly a sphere or
cube). To this end, we show in Fig. 8(c) an example of tetrahedral mesh generation between
the t-tubule and a sphere that is twice as big as the t-tubular structure. The corresponding
histograms of both triangular surface mesh and entire tetrahedral mesh are given in Fig.
8(d), together with the minimal and maximal angles (or dihedral angles). From Fig. 8(a&c),
we can see that the tetrahedral meshes gradually become denser as the elements approach
the structure surfaces, thanks to the octree data structure used. Also, because of the BCC
technique in our tetrahedral mesh generation, the majority of the resulting tetrahedra
constitute pyramid-like building blocks in the meshes. This observation is further confirmed
by the two peaks (at 60° and 90°) in the two histograms of the tetrahedral meshes in Fig.
8(b&d).

Note that the tetrahedral mesh in Fig. 8(a) may not be conforming with the mesh in Fig. 8(c)
because they are separately generated by the BIMoS toolkit and thus the octree subdivisions
are likely different in the interior and exterior domains of the given surface mesh. However,
our toolkit provides a third option which allows users to generate tetrahedral meshes in both
interior and exterior domains. In this case, the obtained meshes are conforming at the
interface of the two domains.

In Fig. 9, we demonstrate the application of our algorithms on the jSR structure. Fig. 9(a)
shows the original surface mesh reconstructed from the electron microscopic images of jSR.
The regenerated surface mesh is shown in Fig. 9(b). We can see that the original mesh is
very noisy and has extremely low angle quality, but the regenerated mesh is significantly
improved in terms of smoothness as well as angle quality. Fig. 9(c) further confirms the
quality improvement by angle histograms — the minimal angle increases from 0.06° to 16.8°
and the maximal angle decreases from 174.8° to 137.7°. The tetrahedral mesh generated
from the smoothed surface mesh is shown in Fig. 9(d).

Fig. 10 shows a more complicated t-tubular structure. Fig. 10(a) and (b) show the original
and regenerated surface meshes, respectively. While the overall surface shape is very well
preserved, the mesh quality is largely improved by using the mesh regeneration approach.
Fig. 10(c) shows the generated tetrahedral mesh. The corresponding histograms of the
surface mesh and entire tetrahedral mesh are given in Fig. 10(d), where the minimal and
maximal angles (or dihedral angles) are indicated by the red vertical bars.

To demonstrate the performance of the tetrahedral mesh smoothing algorithm as described
in Section 2.4, the tetrahedral meshes in Fig. 8(a) and (c) are used as inputs and the
smoothed meshes are shown in Fig. 11(a) and (c), respectively. We can see that tetrahedra
near the domain surface are most affected by the smoothing algorithm, as the domain
surface is where the low quality often occur. To see how the tetrahedral mesh quality is
improved, we show the histograms of angles (or dihedral angles) of the domain surface
meshes (or entire tetrahedral meshes) in Fig. 11(b) and (d), corresponding to the two meshes
in Fig. 11(a) and (c) respectively. We can see that the quality (particularly, the minimal
dihedral angles) of both tetrahedral meshes have been significantly improved. The
algorithm, however, was unable to improve the surface mesh quality in these two examples,
as both surface meshes in Fig. 11(a) and (c) have already possessed decent quality.

Our toolKit is also capable of generating high-quality surface and tetrahedral meshes from
some other biological data. Fig. 12(a) gives an iso-surface mesh of the single particle cryo-
EM density map for GroEL [39]. Fig. 12(b) shows the tetrahedral mesh generated by BIMoS
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and the mesh qualities are given in Fig. 12(c). To demonstrate the capability of BIMoS in
molecular mesh generation, we consider a molecule (PDB-1D: 2HAO), as shown in Fig.
13(a). Fig. 13(b) show the high-quality surface mesh generated by our toolkit, where the
algorithm was outlined in [66]. The tetrahedral mesh generation algorithm described in
Section 2.3 is applied to the surface mesh and the tetrahedral mesh obtained is shown in Fig.
13(c). From the angle (or dihedral angle) histograms in Fig. 13(d), we can see that our
algorithm is able to retain the mesh quality on the surface and generate quality-guaranteed
tetrahedra in the entire domain.

It is worth noting that the mesh size increases significantly when the octree is refined. In our
software, we have a parameter for users to control the depth (or height) of the octree, which
is suggested to be 6-8 levels. However, the drawback of not using a high-enough octree is
that some fine details on a given surface mesh may not be captured in the generated
tetrahedral mesh. To capture surface details with a minimal number of elements, one may
have to sacrifice the mesh quality (e.g., by allowing more than 1-depth-disparity as
discussed in Section 2.3.1). While it is difficult to achieve all three goals simultaneously, we
decide to keep a guaranteed mesh quality in our software but let users to decide between
higher surface accuracy or smaller mesh sizes by using the provided parameter (i.e., height
of the octree). In general, the topology in the given surface mesh can be correctly preserved
if the octree is sufficiently refined. However, as mentioned above, too much refinement
usually yields an unacceptably large tetrahedral mesh. The described software tool currently
does not have the capability of exact topology preservation. Some recent techniques (such as
[70]) will be explored in the future to improve our tool.

5. Conclusion

We presented computational approaches to generating and improving tetrahedral mesh
models from very low-quality surface meshes that are originally reconstructed from 3D
electron microscopic imaging data. The guaranteed quality of the obtained tetrahedral
meshes provides good geometric models for finite element simulation. All these algorithms
have been implemented in C++ and encapsulated into a software toolkit called BIMoS with
a user-friendly graphical interface. The BIMoS toolkit is currently freely available in a
binary form at www.bimos.org. A new version with the source code wherever the copyright
permits will be made accessible on the same web-site. Although this paper is focused on the
application of cardiac subcellular structures, the algorithms and software toolkit described
are also applicable to other types of imaging data and mesh models.

Related to the current work are two problems we are working on. One is semi-automatic
image segmentation requiring a minimal amount of user intervention. This can significantly
reduce users’ burden on manual contour segmentation that our current work depends on.
The other problem in progress is to utilize the produced tetrahedral meshes to study calcium
dynamics and cell contraction in cardiac myocytes.
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Figure 1.

A flowchart of the mesh generation and optimization algorithms available in BIMoS. While
the present paper is focused on biomedical imaging data as input, BIMoS can also take
molecules (shown in gray) as input and generate and optimize meshes for molecular
surfaces. Discussed in detail in the current paper are the three mesh-processing steps
highlighted in blue: (1) surface mesh regeneration, (2) quality-guaranteed tetrahedral mesh

generation, and (3) tetrahedral mesh smoothing.
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From electron microscopic images to surface meshes. (a) A cropped sample slice of EM
tomography (scale bar: 100nm). (b) The manually segmented t-tubules (green) and jSR
(yellow) structures. (c) The surface mesh reconstructed from the segmented contours. The
numbers of vertices and triangles are 5, 993 and 11, 650 respectively. The minimal and
maximal angles are 0.18° and 175.4° respectively. (d) The regenerated surface mesh, with
35, 348 vertices and 70, 694 triangles. The minimal and maximal angles are 15.7° and 140°
respectively. Note that the holes on both ends of the structure have been closed for

subsequent tetrahedral mesh generation and numerical simulation.
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(c)

Figure 3.

INustration of the BCC lattice construction. (a) 0-depth-disparity, where the four faces
sharing an edge have the same depth in the octree. (b) 0-depth-disparity, where the four
faces sharing an edge have different depths in the octree. (c) 1-depth-disparity.
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Figure 4.

Cutting stencils for boundary BCC tetrahedra. Vertices of the BCC tetrahedra are labeled
with the corresponding signs (red “+” for positive, blue “~" for negative, and green dots for
zero). Cutting points are represented by white dots and inside polyhedra are colored in
yellow.
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Figure5.

Splitting the quadrilateral face of a polyhedron pybcp,. (a) Point py, p» are cutting points and
their lambda values are Aq, Ay, respectively. (b) When A, is greater than A4, then split the
face along pb. (c) Otherwise, split the face along pyc.
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Figure6.
. llustration of the optimal Delaunay triangulation (ODT) scheme and its variant.
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Figure7.

INlustration of our interactive toolkit on biomedical image-based modeling and simulation
(BIMO0S). (A) The main display window, which can show multiple models simultaneously.
Shown here is a meshed surface of the 3D cryo-electron microscopy (cryo-EM) map of the
RyR1 channel [40], downloaded from the EMDataBank (ID=1275, http://emdatabank.org/).
The surface mesh was first generated by marching cubes [37] followed by mesh quality
improvement provided in BIMoS. (B) The property window showing a tree-like file
structure with associated properties. The properties in this window are editable (for example,
users can hide, show, delete a model, or change the color properties of the model). (C) The
information window showing some general information about the objects and operations
(e.g., running time and size of the input image or mesh). This type of information is non-
editable. (D) Icons for different approaches to selecting specific regions of a mesh or image.
(E) Icons for several standard view directions. (F) Icons for model transformations (selective
zooming, scaling, translation, rotation). (G) Icons for different display modes (points, edges,
faces, flat or smooth shading, bounding box). In addition, there is a progress bar at the
bottom of the window, showing the progress (in percentage) of each running job.
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Figure 8.
Tetrahedral mesh generation for the t-tubular structure shown in Fig. 2(d). (a) Tetrahedral

mesh, consisting of 13, 013 vertices and 52, 040 tetrahedra, inside the given surface domain.
(b) The histograms of both domain surface mesh and entire tetrahedral mesh. The minimal
and maximal angles (for surface mesh, top) or dihedral angles (for tetrahedral mesh, bottom)
are indicated by red vertical bars. (c) Tetrahedral mesh, consisting of 9, 294 vertices and 42,
649 tetrahedra, outside the given surface domain. (d) The histograms of both domain surface
mesh and entire tetrahedral mesh.
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Surface remeshing and tetrahedral mesh generation for the jSR structure. (a) The original
surface mesh, consisting of 9, 695 vertices and 18, 817 triangles, is reconstructed from the
electron microscopic images of jSR. (b) The regenerated mesh, with 37, 527 vertices and 75,
046 triangles, has much smoother surface and higher quality. (c) The comparison between
the two angle histograms of the meshes in (a) and (b). The red vertical bars in both
histograms indicate the minimal and maximal angles. (d) The tetrahedral mesh, generated
from the mesh in (b), has 45, 597 vertices and 184, 936 tetrahedra. The minimal and
maximal angles on the domain surface are 10.9° and 129.9°, respectively. The minimal and
maximal dihedral angles of the entire tetrahedral mesh are 7.0° and 161.0°, respectively.
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Figure 10.
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Surface remeshing and tetrahedral mesh generation for a more complicated t-tubular
structure. (a) The original surface mesh consists of 38, 557 vertices and 48, 018 triangles. (b)
The regenerated mesh, with 7, 721 vertices and 15, 442 triangles, shows much smoother
surface and higher quality. (c) The tetrahedral mesh, generated from the mesh in (b), has 24,
912 vertices and 94, 424 tetrahedra. (d) The histograms of both domain surface mesh and
entire tetrahedral mesh. The minimal and maximal angles (or dihedral angles) are indicated

by red vertical bars.
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Figure 11.

Ilustration of the tetrahedral mesh smoothing algorithm. () The smoothed tetrahedral mesh,
where the input is the mesh in Fig. 8(a). (b) The histograms of both surface mesh and
tetrahedral mesh in (). (¢) The smoothed tetrahedral mesh with the mesh in Fig. 8(c) as
input. (d) The histograms of both surface mesh and tetrahedral mesh in (c). The
improvement on tetrahedral mesh quality is noticeable, as compared to Fig. 8(b&d).
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Surface and tetrahedral mesh generation on a single particle cryo-EM structure (GroEL,
EMDataBank 1D=1080) [39]. (a) The segmented surface mesh using iso-surfacing (with 18,
705 vertices and 37, 626 triangles). (b) The tetrahedral mesh (with 165, 391 vertices and
707, 328 tetrahedra) generated by our toolkit. (¢) The histograms of angles on the surface
and dihedral angles in the tetrahedral mesh in (b). The minimal and maximal angles (or
dihedral angles) are indicated by red vertical bars.
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Figure13.

Surface and tetrahedral mesh generation on a molecular structure. (a) A molecule with 8,
418 atoms (PDB-ID: 2HAO, downloaded from http://www.rcsb.org/pdb/). (b) The surface
mesh (with 127, 474 vertices and 254, 892 triangles) generated by our toolkit. The minimal
and maximal angles are 18.1° and 135.5°, respectively. (c) The tetrahedral mesh (with 144,
918 vertices and 629, 306 tetrahedra) generated by our toolkit. (d) The histograms of angles
on the surface and dihedral angles in the tetrahedral mesh in (c). The minimal and maximal
angles (or dihedral angles) are indicated by red vertical bars.
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