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Abstract
The receiver operating characteristic (ROC) curve has been a popular statistical tool for
characterizing the discriminating power of a classifier, such as a biomarker or an imaging
modality for disease screening or diagnosis. It has been recognized that the accuracy of a given
procedure may depend on some underlying factors, such as subject’s demographic characteristics
or disease risk factors, among others. Non-parametric- or parametric-based methods tend to be
either inefficient or cumbersome when evaluating effect of multiple covariates is the main focus.
Here we propose a semi-parametric linear regression framework to model covariate effect. It
allows the estimation of sensitivity at given specificity to vary according to the covariates and
provides a way to model the area under the ROC curve indirectly. Estimation procedure and
asymptotic theory are presented. Extensive simulation studies have been conducted to investigate
the validity of the proposed method. We illustrate the new method on a diagnostic test dataset.
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Introduction
New advances in medical technology have produced an array of potentially powerful tools
to screen for and diagnose various medical conditions. Effective screening and accurate
diagnosis can ensure optimal treatment and improve prognosis. Before a screening or
diagnostic test can be applied in a clinical setting, rigorous statistical assessment of its
performance in discriminating the diseased state from the non-diseased state is required. For
tests measured on the continuous scale, the receiver operating characteristic (ROC) curve is
a common statistical tool for describing the performance of such tests [1]. Let D be disease
status (1 for disease and 0 otherwise) and Y the test result with positivity defined whenever
Y ≥ c. Define the true positive fraction (TPF(c)) and the False positive fraction (FPF(c)) as
P[Y ≥ c | D = 1] and P[Y ≥ c | D = 0], where TPF and 1 − FPF are also called test’s
sensitivity and specificity. The ROC curve is a plot of TPF(c) versus FPF(c) when the
threshold c ranges from - ∞ to ∞. Alternatively, the ROC curve can be written as a function
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of t, by defining SD(c) = P[Y ≥ c | D = 1] = TPF(c), SD¯(c) = P[Y ≥ c | D = 0] = FPF(c),
where D and D indicate the diseased and non-diseased population, then

(1)

Different approaches have been proposed to estimate an ROC curve. Nonparametrically, we
can obtain the empirical ROC curve based on

, where nD and nD¯ are
number of diseased and non-diseased observations respectively.

Alternatively, we can estimate the ROC curve parametrically by assuming a distributional
form for SD and SD¯ and then calculating the induced ROC curve with equation (1). The
derived ROC curve, however, is not invariant to transformation of the test results. Pepe [2]
notes that ROC curve describes only the relationship between the distributions of SD and SD¯,
not the distributions themselves. Semiparametric estimators that directly model the ROC
curve as a parametric function without specifying the underlying distributions of SD and SD¯

provides a desirable alternative.

Semiparametric estimations of the ROC curve starts by first specifying a parametric model
of the ROC curve, where the binormal model is most popular [3], and is defined as the
following:

(2)

with Φ being the cdf of the standard normal distribution. We call α0 the intercept and α1 the
slope of the binormal ROC curve. The binormal ROC curve was originally derived from

normally distributed test results, where , the resulting
ROC curve has α0 = μD − μD¯) σD and α1 = σD¯ σD. However, since the ROC curve is
invariant to strictly increasing transformations of Y, to say that the ROC curve is binormal
simply means that there exists some strictly increasing transformation, which would
simultaneously transform the raw data, YD¯ and YD, into normally distributed random
variables. In addition, under the binormal model, the area under the ROC curve (AUC) can

be written as .

Various semiparametric methods have been proposed to estimate the ROC curve under the
binormal assumption. LABROC [4] is a maximum likelihood-based procedure for ordinal
test results. Specifically, it categorizes continuous data and then applies the Dorfman and
Alf algorithm [5] to the categorized data. ROC-GLM [6–8] is a binary regression based
method. Pepe and Cai [9] and Cai [10] estimated the ROC curve using the concept of
placement values (PV).

The development of our method is motivated by noting that the binormal model in equation
(2) essentially states that Φ−1(TPF) and Φ−1(FPF) have a linear relationship. Hence we

propose to fit a linear line through the points of  and obtain
estimates of α0 and α1 by the least squares technique, and consequently, estimate the ROC
curve itself. This method is intuitive, conceptually easy to understand, and very easy to
implement. More importantly, it can be readily extended to allow for covariate (Z) effects on
the ROC curve by writing

Zhang and Huang Page 2

J Biom Biostat. Author manuscript; available in PMC 2013 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

Our linear regression approach provides a simple and widely accessible algorithm for fitting
such models.

Hsieh and Turnbull [11] described a weighted least squares approach to estimate the
binormal ROC curve. For continuous data, their approach groups the data into a pre-
determined number (independent of the number of observations) of categories, and the
largest they chose is 12. Our framework is similar in spirits but allows significant
improvement in efficiency by eliminating the need of grouping, as will be shown later in the
next section. Moreover, our framework offers the flexibility to model additional covariate
effects and/or to model a segment of the ROC curve. In many applications only a part of the
ROC curve is of interest [12]. Restricting fitting of model (3) to a subrange [a,b] within (0,1)
is likely to confer robustness over the region of interest compared with fitting over the entire
(0,1) range.

Linear Regression Framework and Estimation
Estimation

Write the empirical ROC curve as

. As shown in Appendix I,

(4)

meaning that the process converges to a mean zero Gaussian process with variance-
covariance function

where Σ1 (s,t) = ROC(t)∧ROC(s) − ROC(t),

0 < s < 1,0 < t < 1, and λ is the limit of the ratio nD¯/nD as nD¯ approaches infinity.

We propose the following estimating procedure:

1. For a fixed boundary point (a,b), choose the set T = {tp} such that 0 < a < t1 <…<
tp <…< b < 1. For each tp, find the smallest threshold value cp, such that

;

2. Calculate

is either 0 or 1;

3. Set up the linear regression model as:
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where the normalized error vector, , is distributed as multivariate normal with
mean 0 and asymptotic covariance matrix Σ;

4.

Define the design matrix M as  and the
vector

5. Calculate the ordinary least squares(OLS) estimator of α as

6. Then the estimated ROC curve and its associated AUC are

 and

Asymptotic theory
We develop the asymptotic distribution of the OLS estimator α̂ = (α̂0, α̂1) under the
following assumptions: {YDi} and {YD¯i} are i.i.d. random variables with a survival
functions SD and SD¯ and density functions fD and fD¯, respectively; nD¯/fD → λ, 0 < λ < ∞, as

nD¯ → ∞; the slope of the ROC curve, , is bounded on the
subinterval [a,b] of (0,1),0 < a < b < 1.

Theorem 1—

where

and
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where

with J1(s) = (φ(Φ−1(ROC(s))))−1, J2(s) = (φ(Φ−1 (s)))−1, K1(s) = Φ−1(s) J1 (s) and K2(s) =
Φ−1(s) J2 (s).

Proof: The proof for Theorem 1 can be found in the Appendix II.

Asymptotic efficiency relative to HT method
Here we compare the asymptotic efficiency between the OLS estimator and the estimator
derived using Hsieh & Turnbull’s method (HT) for estimating α0, α1, and ROC(t) at t = 0.2,
0.4, 0.7, when λ (the limit of the ratio of nD¯ and nD) varies from 0.5 to 2. We choose (α0,
α1) = (1.2, 0.45) so that the area under the ROC curve (AUC) is 0.863 and the ROC curve
takes values of 0.794, 0.861 and 0.924 at t = 0.2, 0.4, 0.7, respectively. Note that for

, let Σ denote the asymptotic variance of  from an ROC
modeling method (OLS or HT), the asymptotic variance expression for the corresponding

 are:

Table 1 shows the asymptotic efficiency of HT relative to OLS. For the OLS estimator, the
boundary points (a, b) chosen are (0.0001, 0.9999). For the HT estimator, the number of
categories chosen is eight. Note that asymptotically, the OLS estimator can lead to
substantial efficiency gain compared to the HT estimator. The biggest improvement is seen
when estimating α1 with efficiency gain above 50%. The efficiency gain in estimating
points on the ROC curve varies from 3% to 20% depending on the point of interest (Table
1).

Regression Model with Discrete Covariates
Suppose there are K categories that potentially could overlap with each other. For k = 1,
…,K, let Z(k) be a vector of length K− 1, with value 1 for the k−1th element and zero else
where (so Z(1) is a vector of zeros), and let nD¯k be the number of non-diseased observations
in category k. Suppose the ROC curve within category k is characterized by

where θ = (β2,…,βk)T.

That is, for subset 1(the reference subset)

(5)

and for subset k,k = 2,…,K,

Zhang and Huang Page 5

J Biom Biostat. Author manuscript; available in PMC 2013 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

Hence βk is the difference in the intercept parameter of the ROC curves between subset k
and the reference subset. The parameter of interest here is θ* = (β1,…,βk, γ)T. The
underlying assumptions for equation (5) is that there exists an unknown monotone
increasing function h1, such that h1(YD¯,1) ~ N(0,1) and h1(YD,1): N(β1 / γ,1 /γ2). Similarly,
for subsequent subset k, k = 2, 3,…,K, (6) implies there exists an unknown monotone
increasing function hk, such that hk(YD¯,k) ~ N(0,1) and h1(YD,1) ~ N(β1 / γ,1 / γ2). Notice
that hk s are not required to be the same for different k.

Let  be the empirical estimate of ROCk(t) based on data from category k. Like in

the case of equation (4),  converge to a Gaussian

process, therefore Φ−1 ROCk(t) can be approximated by , which motivates
the following estimation procedure:

1. Calculate pairs of  for each subset separately;

2. Let design matrix D be

(7)

where , M1 is a vector of length p with constant
value of one, and O is a zero value matrix.

3. Let ;

4. Our linear model is: for the reference subset,

where  is normally distributed with mean 0 and asymptotic covariance
matrix Σr,1; and for subset k,k = 2,3,..,K

where  is normally distributed with mean 0 and asymptotic covariance
matrix Σr,k;

5. Our OLS estimator for θ* is
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The above method assumes covariate effects can be explained adequately by the difference
in the intercept parameter (α0). If in addition we allow the slope of a binormal ROC curve to
be different across covariate categories by assuming

(8)

where

then the parameter of interest is θ* = (β1, γ1,…, βk, γk)T. The estimating procedure is similar
to the case where only intercept parameters vary, but with M1 replaced by M in (7).
Inference for the significance of θ* in both settings can be achieved by estimating the
variance of θ* with the bootstrap resampling method.

Simulation
Estimation of the ROC curve—The estimation procedure specified in the previous
section starts with the choice of the false positive set T. Although in theory, any chosen set
of T would yield estimators with the same asymptotic property, their small sample
properties need to be investigated. An obvious starting point is to choose the collection of
the observed false positive fractions that fall into the interval [a,b], we call this observed FP
(OFP) method. In the case where there are no ties in the test results of non-diseased subjects,
this is equivalent to the method selecting the subset of {1/nD¯, 2/nD¯,…..,(nD¯ −1) /nD¯} within
[a,b], which we call the equal fraction (EF) method. Another possible choice is to divide
interval [a,b] into nD¯ −1 equally spaced sub-intervals and choose the midpoints of those
subintervals to be the set T (midpoint(MP) method). For the last two methods, the number of
points in T always equal to nD¯ −1 regardless of the length of [a,b].

We compare the performance of the OLS estimators between those three different methods
of selecting T (OFP, EF and MP). We simulate dataset both with and without ties and vary
the values of [a,b] to estimate either a full curve or a partial ROC curve.

First, we generate YD¯ ~ N (0,1) and . The resulting ROC curve follows
a binormal model: ROC(t) = Φ(α0 + α1 Φ−1(t)). The parameters (α0, α1) are chosen to be
(1.2, 0.45), corresponding to an area under the curve (AUC) value of 0.863 and a partial
AUC (pAUC) value of 0.142 for t ∈ (0, 0.2). With sample size of nD = nD¯ = 100, we
compare the biases and sampling standard errors in estimating AUC, ROC(0.2), ROC(0.4)
and ROC(0.7) in the full curve estimation and pAUC(0.2) and ROC(0.1) in the partial curve
estimation. To simulate data with ties, we chose 20% tied values within each population.

From Table 2, when the test results have no ties, midpoint(MP) method has the best
performance. When data has ties, observed false positive fraction(OFP) method has the
smallest bias when estimating the entire curve, but MP has the best performance for
estimating the partial curve. We recommend using either method MP or OFP in practice and
we choose MP method for the subsequent simulations (Table 2).

Next we compare performance of the OLS estimator with two existing semiparametric ROC
modeling approach (ROC-GLM and PV), which have been shown to have good
performance among others. Table 3 summarizes relative biases and standard errors for the
three estimators for estimating either a full or a partial ROC curve. We observe that when
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the full ROC curve is of interest, the OLS and the GLM estimators have comparable
performances while the PV estimator has somewhat larger biases. When estimating a partial
ROC curve, however, the OLS estimator can have substantially smaller bias compared to
other estimators (Table 3).

In Table 4, we demonstrate performance of the OLS estimator relative to the nonparametric
ROC estimator and the parametric ROC estimator assuming normal case and control
distributions after Box-Cox transformation. We generate data as YD¯ ~ LOGN(0,1) and

 so the resulting ROC curve is the same as above. We further
modify the data as following: (i) inflating all data points by two fold (scaled log normal
distribution); (ii) increasing all data points by 2 units (shifted log normal distribution); (iii)
exp(Y1/3) (non Box-Cox). For the parametric method, Box-Cox transformation is applied to
YD¯ and YD separately before the fitting of a normal distribution. For log normal data or
scaled log normal data, the OLS estimator and the parametric estimator combined with Box-
Cox transformation have similar performances. For shifted log normal and non Box-Cox
data, however, the parametric estimator performs poorly with a large bias even after a Box-
Cox transformation. Both the OLS estimator and the nonparametric estimator are unbiased
in these scenarios with the former substantially more efficient (Table 4).

Lastly, we perform simulation studies to investigate the use of large sample inference for
ROC curve and AUC based on the OLS estimator. Table 5 shows the mean estimated
asymptotic error and the coverage of corresponding 95% Wald confidence intervals. The
variance estimate from the asymptotic theory reflects the actual sampling variance and the
coverage of 95% confidence intervals is excellent (Table 5).

Application to DPOAE Data Set
The DPOAE data set was first published by Stover et al. [13]. DPOAE stands for distortion
product otoacoustic emission, which is an audiology test used to separate normal-hearing
from hearing-impaired ears.

The test is administrated under nine different auditory stimulus conditions with three levels
of frequency (1001, 1416 and 2002 Hz) and three levels of intensity (55, 60 and 65 dB SPL).
A total of 210 subjects were included in the study. The subjects were considered cases with
hearing impairment at a given frequency if their audiometric threshold exceeds 20dB HL
measured by a behavior test (gold standard). Each subject was tested in only one ear. Test
result is the negative signal-to-noise ratio, -SNR, with higher value being more indicative of
hearing impairment. The objective of the analysis is to determine the optimal setting for the
clinical use of DPOAE to separate normal from hearing-impaired ears, but bear in mind an
ear may be determined to be hearing impaired or normal at different frequencies.

We partition the data into nine subsets, corresponding to the nine test settings. Data is
analyzed by the method specified in (8) where both intercept and slope parameters vary
across subsets. The set T is chosen by the midpoint method from (0.0001, 0.9999). We
choose the reference subset (subset 1) to be the test setting with frequency value of 1001Hz
and intensity value of 55 dB SPL. Let (β1, γ1) be the intercept and slope estimates for the
ROC curve for setting (1001, 55) and the subsequent βk and γk, with k = 2,…,9, represent
the differences in the intercept and slope parameters of the ROC curves between subset k
and subset 1. None of the γ̂k is statistically significantly different from 0 at α = 0.05 α = 0.05
level (data are not shown).

We also develop a χ2 test statistic γ̂' Σ̂γ γ̂, where γ = (γ2,…γ9) and Σ̂γ is the estimated
covariance matrix of γ̂. Write the null hypothesis as H0: γ = 0 and compare the above
statistic with a χ2 distribution with 8 degrees of freedom gives a P-value of 0.84, suggesting
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insignificant slope terms consistent with the result from testing the significance of each γk
separately.

We re-analyze the data with the slope terms omitted and Table 6 summarizes the results. We
can see that among the nine test settings, the setting (1416, 55) (β4) has the largest intercept
estimate and the difference from the intercept of the reference setting (1001, 55) is
statistically significant (p=0.0041). The p values for other parameters (β2 β3 β5 to β9) are not
significant. The estimated ROC curve for setting (1416, 55) is ROC(t) = Φ(2.54 +
0.82Φ−1(t)) with estimated AUC value of 0.975, which is the largest among all settings. The
performance of the test declines with increasing intensity at each fixed frequency value. This
analysis suggests (1416Hz, 55 dB SPL) is a better test setting than the reference setting. It
has also shown that at fixed false positive level of 10%, the expected sensitivities for the
nine test settings range from 62.5% to 93.2%, demonstrating the importance of choosing an
optimal test setting (Table 6).

Concluding Remarks
This manuscript proposes a semiparametric OLS method to estimate and compare
performance of diagnostic tests and more generally, to assess potential covariate effects on
the test performance. The asymptotic distribution theory for the OLS estimator is developed
for the ROC curve estimation, in which the estimators are shown to be consistent and
asymptotically normally distributed. For modeling covariate effects, we recommend
boostrap resampling for variance estimation.

Our proposed estimator provides useful addition to the field of rank-based semiparametric
ROC modeling. Those semiparametric approaches are more robust than parametric
approaches, by assuming a functional form on the ROC curve itself but not the test results
and thus invariant to monotone transformation of the test results. At the same time, they
offer better efficiency compared to nonparametric method. We have done extensive
simulations to compare the proposed OLS estimator with two other commonly used
semiparametric ROC modeling methods (the ROC-GLM and placement value based
method), and found the OLS estimator has comparable performance in general and slightly
better performance in some scenarios [12]. The OLS estimator, however is much more
intuitive compared to other estimators and very easy to implement using standard linear
regression software, which could make it particularly appealing to clinical audience.

In summary, the proposed linear regression framework provides an unified approach for the
ROC curve analysis. It can be used to estimate the ROC curve, as well as model covariate
effect. The application of ROC curve goes beyond the medical diagnostic field and it can be
used for evaluating any discrimination tools. It is, and will continue to be an important and
exciting area to engage in research.
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Appendix I: Proof of Equation (4)
Hsieh and Turnbull(1996, Theorem 2.1) showed, as nD¯ → ∞,

(9)

They also showed (Theorem 2.2) for independent observations, under the above conditions,
there exists a probability space on which one can define sequences of two independent

versions of Brownian bridges , and the following statement holds:

(10)

a.s. uniformly on [a,b], 0 < a < b <1.

The above two theorems stated the strong consistency and strong approximation properties
for the ROC curve.

Fix t ∈ [a,b], by intermediate value theorem,

(11)

where
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(12)

Therefore, ROC*(t) → ROC(t) a.s. by (9)

From continuous mapping theorem:

(13)

Notice

(14)

Then we have

(15)

(16)

a.s. uniformly on [a,b], 0 < a < b < 1.

Let

(17)

(18)

Equation (16) implies Vn (t) ⇒ V (t) in (D[a,b], ‖.‖∞)

Equation (4) resulted from the fact that V(t) is the sum of two independent Brownian
Bridges.

Appendix II: Proof of Theorems 1
Theorem 1 is a direct consequence of the equation (4), namely, asymptotic normality of the
empirical ROC estimates.
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Table 2

Inference of the ROC curve by the semiparametric least squares based method (OLS) with different choices of
the false positive sets (OFP: observed false positive fraction, EF: equal fraction or MP: midpoint method).
Cases and controls are drawn from normal distributions. (α0, α1) = (1.2, 0.45). nD, nD¯ = (100, 100). Sample
means and sampling standard errors from 1000 simulations are shown.

Parameter True value OFP EF MP

Percent of ties: 0%

(a,b) = (0.0001, 0.9999)

 R(0.2) 0.794 0.791(0.039) 0.792(0.039) 0.795(0.038)

 R(0.4) 0.861 0.860(0.031) 0.860(0.031) 0.862(0.031)

 R(0.7) 0.924 0.923(0.024) 0.923(0.024) 0.924(0.024)

 AUC 0.863 0.861(0.027) 0.861(0.027) 0.863(0.027)

(a,b)= (0.0001,0.2)

 R(0.1) 0.733 0.727(0.049) 0.729(0.048) 0.733(0.048)

 pAUC(0.2) 0.142 0.141(0.010) 0.141(0.010) 0.142(0.010)

Percent of ties:20%

(a,b) = (0.0001, 0.9999)

 R(0.2) 0.794 0.794(0.043) 0.805(0.041) 0.798(0.042)

 R(0.4) 0.861 0.862(0.034) 0.879(0.031) 0.864(0.034)

 R(0.7) 0.924 0.924(0.026) 0.942(0.022) 0.926(0.025)

 AUC 0.863 0.863(0.030) 0.875(0.027) 0.865(0.030)

(a,b) = (0.0001,0.2)

 R(0.1) 0.733 0.728(0.053) 0.739(0.051) 0.734(0.053)

 pAUC(0.2) 0.142 0.141(0.011) 0.143(0.010) 0.143(0.011)
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Table 3

Inference of the ROC curve by the semiparametric least squares based method (OLS), the ROC-GLM method
(GLM) and the placement value method (PV). Cases and controls are drawn from normal distributions.
(α0,α1) = (1.2, 0.45), (nD, nD¯) = (100, 100). Relative bias and sampling standard error from 500 simulations
are shown. Relative bias = bias/true value × 100%.

Parameter True value OLS GLM PV

(a,b) = (0.0001, 0.9999)

α0 1.2 1.09(0.150) 1.46(0.152) 2.40(0.161)

α1 0.45 2.42(0.083) 1.38(0.080) 9.44(0.101)

R(0.2) 0.794 −0.14(0.040) 0.16(0.038) −0.53(0.040)

R(0.4) 0.861 −0.02(0.031) 0.12(0.031) 0.15(0.032)

R(0.7) 0.924 −0.02(0.023) −0.002(0.023) 0.38(0.024)

(a,b) = (0.0001,0.2)

α0 1.2 0.18(0.246) −1.79(0.235) 7.45(0.266)

α1 0.45 −0.62(0.141) −6.82(0.130) 14.04(0.159)

R(0.05) 0.677 0.11(0.051) 1.27(0.049) −1.00(0.051)

R(0.1) 0.733 −0.02(0.046) 0.51(0.046) 0.11(0.045)

R(0.15) 0.768 −0.13(0.046) 0.08(0.045) 0.61(0.045)
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Table 5

Result of 1000 simulations to evaluate the application of inference based on asymptotic theory to finite sample
studies. (α0, α1) = (1.2, 0.45). Relative bias = bias / true value × 100%; SSE: sampling standard error; ASE:
mean estimated standard error using asymptotic theory; CP: coverage of 95% Wald-confidence intervals using
estimated asymptotic error.

Relative Bias SSE ASE CP

(nD, nD̄) = (100, 100)

α0 2.4% 0.163 0.151 94.8%

α1 2.2% 0.085 0.083 95.4%

R(0.2) 0.4% 0.039 0.039 94.6%

R(0.4) 0.3% 0.032 0.031 93.4%

R(0.7) 0.1% 0.025 0.023 90.8%

(nD, nD¯) = (100, 50)

α0 0.9% 0.159 0.157 95.0%

α1 2.9% 0.088 0.088 94.6%

R(0.2) −0.3% 0.041 0.042 94.6%

R(0.4) −0.1% 0.033 0.033 94.6%

R(0.7) −0.1% 0.025 0.024 93.8%

(nD, nD¯) = (50, 100)

α0 1.1% 0.205 0.208 96.4%

α1 0.9% 0.101 0.113 97.2%

R(0.2) −0.2% 0.053 0.053 93.8%

R(0.4) −0.2% 0.041 0.043 94.4%

R(0.7) −0.3% 0.030 0.033 94.6%
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