Synthesis and biological properties of pinane-thromboxane A_2 , a selective inhibitor of coronary artery constriction, platelet aggregation, and thromboxane formation

(thromboxane A₂/prostaglandin H₂ analogs/thromboxane synthetase)

K. C. NICOLAOU[†], R. L. MAGOLDA[†], J. BRYAN SMITH[‡], D. AHARONY[‡], E. F. SMITH[‡], AND A. M. LEFER[‡]

[†]Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and [‡]Cardeza Foundation and Departments of Pharmacology and Physiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Communicated by E. J. Corey, March 5, 1979

ABSTRACT Pinane-thromboxane A_2 (PTA₂, $[1\alpha, 2\beta(Z), 3\alpha(1E, 3R^*), 5\alpha]$ -7-{3-(3-hydroxy-1-octenyl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl}-5-heptenoic acid) has been synthesized and tested for biological activity in systems responsive to thromboxane A_2 , stable prostaglandin endoperoxide (PGH₂) analogs, and prostacyclin (PGI₂). At low concentrations, PTA₂ inhibited cat coronary artery constriction induced by stable prostaglandin endoperoxide analogs, and it stabilized liver lysosomes. At slightly higher concentrations, PTA₂ inhibited thromboxane synthetase, but it had no effect on prostacyclin synthetase. The analog also had no effect on the inhibition of platelet aggregation by PGI₂ or prostaglandin D₂. It is suggested that PTA₂ has a suitable biochemical profile for use as an antithrombotic agent.

In 1975, Hamberg *et al.* (1) proposed the structure (Fig. 1) for an unstable (half-life of about 30 s at pH 7.4 and 37°C) substance with potent thrombotic and smooth muscle contracting properties that they named thromboxane A_2 (TA₂). The isolation or chemical synthesis of this important member of the arachidonic acid cascade (2) has not yet been achieved. Furthermore, no analogs of this structurally unusual molecule have been reported to date. We now wish to report the synthesis of a thromboxane A_2 analog (structure 8a) and some of its interesting biological properties.

MATERIALS AND METHODS

Synthesis of Pinane-Thromboxane A₂, $[1\alpha, 2\beta(Z), 3\alpha$ - $H(1E,3R^*),5\alpha$]-7-{3-(3-Hydroxy-1-octenyl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]-5-heptenoic Acid. The thromboxane analog pinane-thromboxane A_2 (PTA₂, 8a) was synthesized from (–)-myrtenol (1) as outlined in Fig. 2. (–)-Myrtenol (1) was efficiently (95%) converted (MnO₂/CH₂Cl₂, 25°C, 48 hr) to the α,β -unsaturated aldehyde 2, which underwent smooth 1,4-addition with the mixed cuprate derived from (\pm) -translithio-1-octen-3-ol tert-butyldimethylsilyl ether and 1pentynylcopper hexamethylphosphorus triamide complex (3) to afford the aldehyde 3 (80% yield). 8,9 Condensation of 3 with methoxymethylenetriphenylphosphorane (1.5 equivalents) in toluene/tetrahydrofuran solution at 0°C furnished in 94% vield the enol ether 4 (mixture of geometrical isomers), from which the aldehyde 5 was liberated quantitatively [Hg(OAc)₂/KI/ H₂O/tetrahydrofuran]. The upper side chain was completed by the standard prostaglandin (PG) Wittig reaction employing the sodium salt of 4-carboxybutyltriphenylphosphorane in dimethyl sulfoxide, leading, after diazomethane treatment, to the methyl ester of the protected TA₂ analog 6 (mixture of C-15 epimers, PG numbering) in 80% yield. Deprotection of the hydroxy group (acetic acid/water/tetrahydrofuran, 3:2:2 vol/vol, 45° C) led to the methyl esters 7a and 7b (1:1, 100%), which were separated by preparative thin-layer chromatography (silica, ether/petroleum ether, 1:1 vol/vol; 7a, $R_F = 0.53$; 7b, $R_F = 0.59$). Hydrolysis of the more polar compound 7a with lithium hydroxide in aqueous tetrahydrofuran at 25°C furnished PTA_2 (8a) quantitatively, $R_F = 0.66$ (silica, ether), whereas similar hydrolysis of the less polar methyl ester 7b produced the 15-epimer (PG numbering) 8b (100%), $R_F = 0.70$ (silica, ether). The methyl ester of PTA₂ (7a)[¶] showed the following properties: Infrared spectrum, ν_{max} 3400 (OH), 1742 cm⁻¹ (COOCH₃). ¹H nuclear magnetic resonance spectrum (220 MHz, C²HCl₃) τ relative to tetramethylsilane 4.40–4.78 (multiplet, 4 H, olefin), 5.95 (multiplet, 1 H, CH-O), 6.33 (singlet, 3 H, COOCH₃), 8.80 and 8.94 (singlets, 3 H each, pinane CH₃), 7.55-9.30 (multiplet, 28 H). ¹³C nuclear magnetic resonance spectrum (15 MHz, C²HCl₃) ppm relative to tetramethylsilane 174.0, 139.6, 131.2, 130.2, 128.9, 73.0, 51.4, 48.8, 43.9, 41.7, 39.3, 38.6, 37.4, 34.9, 34.3, 33.5, 32.4, 31.7, 28.2, 26.7, 25.2, 24.9, 23.0, 22.6, 14.0. Mass spectrum, parent ion massto-charge ratio 390. $[\alpha]_{D}^{22}$ +26.40° (methanol). Analysis, calculated for C25H42O3: C 76.86% and H 10.87%; found: C 77.05% and H 11.08%. The ¹³C NMR spectra of 7a and 7b are of crucial value in assigning the stereochemistry of these compounds. In particular, the relatively low chemical shift for C-10 (PG numbering) in the ¹³C NMR spectra of 7a and 7b (δ 33.3 ± 2 ppm) reveals the relative stereochemistry of the upper side chain by comparison to the corresponding model epimeric compounds from the myrtenol family, which exhibit this carbon at δ 33.2 ppm (C trans to the side chain) and 24.2 (C cis to the side chain) (4). PTA₂ (8a) and its 15R isomer (8b) are indefinitely stable at 25°C in solution or in the pure liquid state.

Biological Methods. PTA_2 (up to 4 μ l of a 2.5 mM solution in ethanol) was tested for its effect on cat coronary arteries continuously perfused with 10 ml Krebs-Henseleit solution as described (5). Constriction of the arteries was induced by addition of 15 or 30 nM 9,11-azo-PGH₂ or 1 μ M 9,11-methanoepoxy-PGH₂ (U46619). The effect of PTA₂ on the release of cathepsin D from the cat liver large granule fraction was determined as described (6).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

Abbreviations: PG, prostaglandin, TA_2 , thromboxane A_2 , PTA_2 , pinane-thromboxane A_2 , PGI_2 , prostacyclin.

⁸ All new compounds showed satisfactory infrared, mass, and NMR spectral data and analyzed correctly for carbon and hydrogen.

[¶] The designated stereochemistry for this and the following compounds was tentatively assigned and subsequently confirmed on the basis of: (*i*) the presumption that the cuprate reagent would approach the α,β -unsaturated system from the less hindered β face, (*ii*) ¹³C and ¹H nuclear magnetic resonance spectral data (4), and (*iii*) the potent biological properties of the isomer 8a (see *Results*).

FIG. 1. Biosynthesis and degradation of thromboxane A2 (TA2) and prostacyclin (PGI2). TB2, thromboxane B2.

Platelet aggregation was studied in an aggregometer (Chronolog Corporation, Philadelphia, PA) using 0.5 ml of citrated human platelet-rich plasma at 37°C (7). One minute after addition of PTA₂ (up to 2 μ l of a 25 mM solution in ethanol), aggregation was initiated by addition of sodium arachidonate (0.3–0.5 mM), ADP (2 μ M), collagen (1 μ g/ml), epinephrine (50 μ M), 9,11-azo-PGH₂, (0.1–0.6 μ M), 9,11-methanoepoxy-PGH₂ (U46619, 0.3–0.6 μ M) or 9,11-epoxymethano-PGH₂ (U44069, 1–3 μ M). The analog was also tested for its effects on the inhibition of ADP-induced aggregation by 2 nM PGI₂ or 20 nM PGD₂.

To study the effects of PTA₂ on thromboxane synthesis, rabbit platelets were washed free of plasma, resuspended in buffered saline solution (8), and incubated at 37°C for 5 min with PTA₂ at either 10 or 100 μ M. [1-¹⁴C]Arachidonic acid (0.5 μ Ci, specific activity 50 Ci/mol, New England Nuclear; 1 Ci = 3.7×10^{10} becquerels) was added and incubation was con-

tinued for 15 min, then lipids were extracted by the method of Folch *et al.* (9) and subjected to thin-layer chromatography (solvent system C of ref. 10). In additional experiments, human platelet-rich plasma was incubated at 37° C in the aggregometer for 1 min with the analog. Sodium arachidonate (0.4 mM) was added and incubation was continued for 5 min. The samples were decanted into 1/10th vol of 100 mM EDTA and centrifuged for 2 min at 15,000 × g, and thromboxane B₂ in the supernatant was determined by radioimmunoassay (11).

The effects of PTA_2 on prostacyclin synthetase were determined by using sheep vesicular glands as the enzyme source and $[1^{-14}C]$ arachidonic acid as substrate essentially as described (12).

RESULTS

Coronary Artery Constriction. Incubation of cat coronary arteries with PTA_2 (1 μ M) abolished the constriction induced by 30 nM 9,11-azo-PGH₂ (Fig. 3). Mean constrictions equivalent to 32 and 53 mm Hg (1 mm Hg = 133 Pa) were observed in three experiments at 15 nM and 30 nM 9,11-azo-PGH₂, respectively. At a concentration of 100 nM, PTA₂ reduced these constrictions by 73% and 50%, respectively. Similar results were obtained in one experiment using 9,11-methanoepoxy-PGH₂ as the agonist.

FIG. 3. Constriction of a cat coronary artery induced by 9,11azo-PGH₂ (30 nM) and antagonism of this constriction by PTA₂ (1 μ M).

FIG. 4. Effect of PTA₂, at different concentrations, on the aggregation of human platelets induced by: (A) 0.18 μ M 9,11-azo-PGH₂; (B) 0.29 μ M 9,11-methanoepoxy-PGH₂; or (C) 1.43 μ M 9,11-epoxymethano-PGH₂. Downward displacement of the curves indicates aggregation (decreased optical density).

At a final concentration of $1 \mu M$, PTA₂ caused a significant (P < 0.005) inhibition of the release of cathepsin D from cat liver lysosomes (four experiments).

Platelet Aggregation. PTA₂ in intermediate concentrations $(1-15 \ \mu\text{M})$ inhibited the aggregation of human platelets induced by 9,11-azo-PGH₂, 9,11-epoxymethano-PGH₂ (U44069) or 9,11-methanoepoxy-PGH₂ (U46619) in a dose-dependent fashion (Fig. 4). PTA₂ at 10 μ M[§] abolished platelet aggregation induced by arachidonic acid, abolished the second wave of aggregation induced by ADP or epinephrine, and partially inhibited platelet aggregation induced by collagen. At this concentration, PTA₂ did not inhibit primary aggregation induced by ADP or epinephrine, nor did it affect the inhibition of aggregation by PGI₂ or PGD₂. The 15*R*-epimer (PG numbering) of PTA₂ (8b) was approximately 1/10th as effective as PTA₂ as a prostaglandin endoperoxide antagonist.

Thromboxane Synthetase. At 10 μ M, PTA₂ inhibited the formation of thromboxane B₂ from [1⁻¹⁴C]arachidonic acid by washed rabbit platelets by 23%. At 100 μ M, 83% inhibition of thromboxane B₂ formation was observed. This was associated with corresponding increases in radioactive PGE₂, PGD₂, and PGF₂_(**) indicating that the effect of the analog was on thromboxane synthetase and not on cyclooxygenase. While the analog, at 50 μ M, abolished arachidonic acid-induced aggregation in human platelet-rich plasma, thromboxane B₂ formation was reduced by only 50%.

Prostacyclin Synthetase. When incubated with ram seminal vesicle microsomes, 62% of arachidonic acid was converted into 6-keto-PGF₁, the stable end-product of PGI₂ (Fig. 1). This conversion was unaffected by the analog at 100 μ M.

DISCUSSION

The isolation (10, 13) of the prostaglandin endoperoxides PGH_2 and PGG_2 not only confirmed their intermediary role in the biosynthesis of prostaglandins but also led to the discovery of two pathways of metabolism of arachidonic acid (Fig. 1). The thromboxane pathway was discovered by Hamberg and associates (1), who demonstrated that the platelet-aggregating and rabbit aorta-contracting activities of prostaglandin endoperoxides were significantly enhanced after they had been transformed by platelets into the highly unstable thromboxane A_2 (TA₂). Subsequently, it was demonstrated that the release of TA₂ from platelets induced by thrombin was associated with the development of activity that markedly contracted coronary arteries, and it was suggested that TA_2 may be the cause of the angina associated with arterial thrombosis (14). The second pathway, described by Moncada and associates (15), is now known to involve endothelial cells that transform prostaglandin endoperoxides into prostacyclin (PGI₂), a potent inhibitor of platelet aggregation and a vasodilator (Fig. 1). Thus, two unstable agents, TA_2 and PGI₂, with directly opposing effects, either promoting or inhibiting thrombosis, can be formed from prostaglandin endoperoxides.

Progress in understanding the actions of prostaglandin endoperoxides has been achieved by chemical synthesis of stable analogs. Several analogs of PGH₂ possessing a 15S-hydroxyl group have been synthesized (e.g., compounds I–V, Table 1) and have been found to induce platelet aggregation and cause contraction of the rabbit aorta. The potency of 9,11-azo-PGH₂ is comparable to that of TA₂ in both of these systems (16, 24). Because these compounds are stable and mimic the agonistic effects of the naturally occurring but unstable PGG₂, PGH₂, and TA₂, we used them to evaluate the effects of PTA₂ in our studies.

Two stable analogs of PGH₂ lacking the 15S-hydroxyl group have been found to inhibit platelet aggregation (compounds VI and VII, Table 1). The 15-deoxy derivative of 9,11-azo-PGH₂ was found to be a potent inhibitor of thromboxane synthetase. Because this compound inhibited platelet aggregation induced by arachidonic acid or PGH2 but not by 9,11-epoxymethano-PGH₂, it was suggested that this proved that the conversion of PGH₂ into TA₂ was obligatory for platelet aggregation. However, this suggestion is open to question, because it was shown subsequently that imidazole, another inhibitor of thromboxane synthetase, has no effect on platelet aggregation induced by PGH₂ (25). Subsequently, 15-deoxy-9,11-azo-PGH₂ was found to be a potent inhibitor of prostacyclin synthetase (26). Recently, 15-deoxy-9,11-epoxyimino-PGH₂ was reported to be a TA₂ receptor antagonist because it inhibited platelet aggregation induced by arachidonic acid, TA₂, PGH₂, and PGH₂ analogs. This compound did not inhibit thromboxane synthetase. However, it did inhibit prostacyclin synthetase and mimicked the effects of TA2 on rabbit aorta, producing vasoconstriction.

Pinane-thromboxane A_2 (PTA₂) has properties that clearly distinguish it from prostaglandin endoperoxide analogs (Table 2). First, in low concentrations PTA₂ inhibited the constriction of cat coronary arteries induced by the PGH₂ analogs that mimic TA₂. This must be a direct antagonistic effect and not inhibition of enzyme activity, because the stable analogs cannot be converted to TA₂ by thromboxane synthetase, and, besides, cat coronary arteries are incapable of thromboxane synthesis

[#] At concentrations above $10 \ \mu$ M, PTA₂ itself induced platelet shape change and, at 50 μ M, a very small reversible aggregation was observed, indicating partial agonistic activity. At these concentrations, subsequent responses to prostaglandin endoperoxide analogs were abolished.

Table 1. Analogs of prostaglandin endoperoxides COOH Ř, PGH_2 : X---Y = O---O, R_1 = OH; PGG_2 : X---Y = O---O, R_1 = OOH Platelet-Aortacontracting aggregating activity. activity. % of PGH₂ X----Y R_1 % of PGG₂ Refs. Name Analog 9,11-Azo-PGH₂ N=Nон 16 790 700 T 9,11-Methanoepoxy-PGH₂ Π (U46619) $CH_2 - 0$ OH 370 620 17, 18, 19 III 9,11-Epoxymethano-PGH₂ (U44069) 0---CH2 OH 63 360 17, 18, 19 IV 9,11-Etheno-PGH₂ CH=CH OH 10 3 10 S - SOH 100 2400 20, 21 v 9,11-Dithia-PGH₂ VI 15-Deoxy-9,11-azo-PGH₂ N = NН Inhibits 22 VII 15-Deoxy-9.11epoxyimino-PGH₂ O---NH Η Inhibits Contracts 23

(unpublished observations). Similarly, PTA_2 antagonized the effects of the PGH₂ analogs on platelet aggregation. The selectivity of this antagonism for prostaglandin-induced aggregation was evidenced by the finding that PTA_2 had no effect on primary aggregation induced by ADP or epinephrine. On the other hand, PTA_2 did inhibit secondary aggregation induced by these agents, and it abolished aggregation induced by arachidonic acid. This indicates that PTA_2 can antagonize the effects of TA_2 formed endogenously by platelets.

PTA₂ at higher concentrations also inhibited thromboxane synthetase. However, it was less potent as an enzyme inhibitor than as an antagonist. The abolition of arachidonic acid-induced aggregation by PTA₂ is probably mainly due to direct antagonism of thromboxane effects because, even at 50 μ M, PTA₂ inhibited thromboxane B₂ formation by only 50%. Most significant was the finding that PTA₂ has no effect on prostacyclin synthesis or on the inhibition of platelet aggregation produced by PGI₂ or PGD₂.

Increased TA₂ formation has been implicated in the vasospasm associated with coronary artery disease and angina (19). PTA_2 would seem to possess an ideal biochemical profile for use as an antithrombotic agent (Table 2). The primary effect of PTA_2 would be to prevent vasoconstriction of coronary arteries due to excess thromboxane formation. Additionally, PTA_2 would reduce platelet aggregation and the synthesis of thromboxanes. Because these effects occur only at higher concentrations, and PTA_2 has no effect on primary aggregation induced by ADP, PTA_2 should have little influence on hemostasis. The lysosomal stabilizing property of PTA_2 suggests that

Table 2. Properties of PTA₂

- 1. Inhibits coronary artery contraction by prostaglandin endoperoxide analogs, ID_{50} 0.1 μM
- 2. Stabilizes lysosomes at $1 \mu M$
- Inhibits aggregation by prostaglandin endoperoxide analogs, ID₅₀ 2.0 μM
- 4. Inhibits thromboxane synthetase, $ID_{50} 50 \mu M$
- 5. Has no effect on prostacyclin synthetase at $100 \,\mu M$
- 6. Has no effect on the inhibiton of platelet aggregation by PGD₂ or PGI₂

ID₅₀, dose that causes 50% inhibition of activity.

it may have a beneficial effect on the ischemic myocardium. Unlike aspirin, which inhibits cyclooxygenase, or the 15deoxy-PGH₂ analogs (compounds VI and VII, Table 1) that inhibit prostacyclin synthetase, PTA_2 does not compromise PGI₂ formation or effects.

We thank Dr. M. Haslanger of The Squibb Institute for Medical Research, Princeton, NJ, for ¹³C NMR spectra and helpful discussions on their interpretation. We also thank Dr. J. Pike for the gifts of prostaglandins used in this study and The Middle Atlantic Regional NMR Facility (National Institutes of Health RR542) at The University of Pennsylvania, directed by Dr. G. McDonald, where the ¹H NMR spectra were recorded. This work was financially supported in part by the National Institutes of Health (National Heart, Lung, and Blood Institute, Contract HV-E2931) and by The University of Pennsylvania.

- Hamberg, M., Svensson, J. & Samuelsson, B. (1975) Proc. Natl. Acad. Sci. USA 72, 2994–2998.
- Nicolaou, K. C., Gasic, G. P. & Barnette, W. E. (1977) Angew. Chem. Int. Ed. Engl. 17, 293–312.
- Corey, E. J., Shibasaki, M., Nicolaou, K. C., Malmstem, C. L. & Samuelsson, B. (1976) Tetrahedron Lett., 737-741.
- Bohlmann, F., Zeisberg, R. & Klein, E. (1975) Org. Magn. Reson. 7, 426–439.
- Ogletree, M. L., Smith, J. B. & Lefer, A. M. (1978) Am. J. Physiol. 253, H400–H406.
- Lefer, A. M., Ogletree, M. L., Smith, J. B., Silver, M. J., Nicolaou, K. C., Barnette, W. E. & Gasic, G. P. (1978) Science 200, 52– 54.
- Smith, J. B., Ingerman, C., Kocsis, J. J. & Silver, M. J. (1973) J. Clin. Invest. 52, 965–969.
- 8. Bills, T. K., Smith, J. B. & Silver, M. J. (1976) Biochim. Biophys. Acta 424, 303-314.
- Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957) J. Biol. Chem. 226, 497–509.
- 10. Nugteren, D. H. & Hazelhof, E. (1973) Biochim. Biophys. Acta 326, 448-461.
- 11. Ferraris, V., Smith, J. B. & Silver, M. J. (1977) Thromb. Haemostas. 38, 20.
- Cottee, F., Flower, R. J., Moncada, S., Salmon, J. A. & Vane, J. R. (1978) Prostaglandins 14, 413-423.
- Hamberg, M., Svensson, J., Wakabayashi, T. & Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 345-349.

- Ellis, E. F., Oelz, O., Roberts, L. J., II, Payne, N. A., Sweetman, B. J., Nies, A. S. & Oates, J. A. (1976) Science 193, 1135–1137.
- Moncada, S., Gryglewski, R., Bunting, S. & Vane, J. R. (1976) Nature (London) 263, 663–665.
- Corey, E. J., Nicolaou, K. C., Machida, Y., Malmsten, C. L. & Samuelsson, B. (1975) Proc. Natl. Acad. Sci. USA 72, 3355– 3358.
- 17. Bundy, G. L. (1975) Tetrahedron Lett., 1957-1960.
- 18. Malmsten, C. (1976) Life Sci. 18, 169-176.
- Smith, J. B., Sedar, A. W., Ingerman, C. M. & Silver, M. J. (1977) in *Platelets and Thrombosis*, eds. Mills, D. C. B. & Pareti, F. I. (Academic, New York), pp. 83–95.
- Miyake, H., Iguchi, S., Itoh, H. & Hayashi, M. (1977) J. Am. Chem. Soc. 99, 3536-3537.

- 21. Okuma, M., Yoshimoto, T. & Yamamoto, S. (1977) Prostaglandins 14, 891-896.
- Gorman, R., Bundy, G., Peterson, D., Sun, F., Miller, O. & Fitzpatrick, F. (1977) Proc. Natl. Acad. Sci. USA 74, 4007-4011.
- Fitzpatrick, F. A., Bundy, G. L., Gorman, R. & Honohan, T. (1978) Nature (London) 275, 764-766.
- 24. Needleman, P., Minkes, M. & Raz, A. (1976) Science 193, 163-165.
- Needleman, P., Bryan, B., Wyche, A., Bronson, S. D., Eakins, K., Ferrendelli, J. A. & Minkes, M. (1977) Prostaglandins 14, 897-907.
- Sun, F. F., Chapman, J. P. & McGuire, J. C. (1977) Prostaglandins 14, 1055-1074.