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Abstract
Cognitive dysfunction is a common symptom of Parkinson’s disease that causes significant
morbidity and mortality. The severity of these symptoms ranges from minor executive symptoms
to frank dementia involving multiple domains. In the present review, we will concentrate on the
aspects of cognitive impairment associated with prefrontal dopaminergic dysfunction seen in non-
demented patients with PD. These symptoms include executive dysfunction and disorders of
thought such as hallucinations and psychosis. Such symptoms may go on to predict dementia
related to Parkinson’s disease, which involves amnestic dysfunction and is typically seen later in
the disease. Cognitive symptoms are associated with dysfunction in cholinergic circuits in addition
to the abnormalities in the prefrontal dopaminergic system. These circuits can be carefully studied
and evaluated in Parkinson’s disease, and could be leveraged to treat difficult clinical problems
related to cognitive symptoms of PD.

Introduction
Parkinson’s disease (PD) is a neurodegenerative condition in which midbrain dopamine
neurons inexorably die (Hughes et al., 1992) resulting in impaired motor function (Fahn et
al., 2004). Recently, non-motor symptoms have been recognized as a prominent part of PD
(Chaudhuri and Schapira, 2009). These symptoms can precede diagnosis of motor symptoms
by several decades (Claassen et al., 2010). One non-motor symptom that causes particular
morbidity and mortality in PD is cognitive dysfunction (Santangelo et al., 2007; Forsaa et
al., 2010a). In the present review, we discuss cognitive dysfunction in PD and relate it to
processes that localize to the prefrontal cortex. We show how mesocortical dopaminergic
projections to the prefrontal cortex can be involved in the genesis of these symptoms, and
how these projections interact with ascending cholinergic projections.

Identifying the mechanism of cognitive dysfunction in PD is crucial for treating cognitive
symptoms of PD, as currently we have few effective treatments for this difficult clinical
problem. Levodopa inconsistently improves cognitive symptoms of PD (Müller et al., 2001;
Cools, 2006; Pascual-Sedano et al., 2008), depending on disease state and the integrity of
striatal dopamine signaling (Cools et al., 2001).. Some data suggest that cholinesterase
inhibitors can be somewhat beneficial for executive symptoms of PD (Reading et al., 2001;
Poewe et al., 2006; Schmitt et al., 2010) in addition to their known benefits for dementia
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((Emre et al., 2004)). Further elucidation of how these circuits influence cognition in PD
may help rationally target therapies for this difficult clinical problem.

Spectrum of cognitive dysfunction in PD
Although mild visuospatial and amnestic impairments can also be seen, typically non-
demented PD patients can manifest executive dysfunction with no amnestic component at
incident diagnosis of PD (Foltynie et al., 2004a; Aarsland et al., 2009). These include
impaired working memory, planning, attention (Aarsland et al., 2011), decreased speed of
processing (Uc et al., 2005), impulse control disorders (Pontone et al., 2006) associated with
dopamine agonists (Weintraub D, 2006), and disordered thought (Factor et al., 2003). These
are distinct from fluctuating disturbances of memory, calculation, visuospatial function, and
behavioral control associated diffusely with Lewy Body Dementia (Lennox, 1992; McKeith
et al., 1996) and PD-related dementia (Aarsland et al., 2003, 2009). Crucially, PD is
heterogeneous with respect to cognitive impairments, complicating interpretation of clinical
data thus far (Wurtman, 2012). In addition, epidemiological studies draw on a diversity of
methods, and there is no uniform definition of mild cognitive impairment in PD (Goldman
and Litvan, 2011).

Cognitive dysfunction is common in PD (Muslimovic et al., 2005). In early Parkinson’s
disease, up to 36% of Parkinson’s patients had some evidence of cognitive impairment at
disease onset (Foltynie et al., 2004a). In a population-based study in Norway of untreated
PD (Aarsland et al., 2009), 19% of patients had mild cognitive impairment, as defined by
poor performance on neuropsychological testing. Interestingly, two-thirds of patients in this
category had intact performance on tests that measured amnestic performance. The
CamPaIGN study followed 126 PD patients for 5 years from incident diagnosis, and
revealed a population with dementia that was unrelated to executive dysfunction as
measured by the Tower of London task (Aarsland et al., 2010). In a Swedish study, 88
patients with newly diagnosed Parkinson’s disease performed consistently worse in
neuropsychological testing, and 30% of patients had executive deficits (Elgh et al., 2009).
This deficit may be independent of overall motor disability (Cooper et al., 1991; Kieburtz et
al., 1994); however, some studies suggest some patterns linking movement speed and axial
signs to cognitive dysfunction (e.g. Aarsland et al., 2003; Domellöf et al., 2011).

Cognitive symptoms can be influenced by disease progression. This pattern of both non-
amnestic and amnestic patterns of cognitive dysfunction has commonly been observed in
multi-center population studies of PD (Aarsland et al., 2009; Dalrymple-Alford et al., 2011;
Monastero et al., 2012). A meta-analyses revealed that on average across a diversity of
methodologies, 27% of patients with PD had non-amnestic cognitive dysfunction (Litvan et
al., 2011). Several epidemiological studies have revealed that patients with PD develop
dementia at 4-6 times the rate of normal aging (Aarsland et al., 2001, 2005; Hobson and
Meara, 2004). In a longitudinal study of idiopathic PD, cognitive symptoms continued to
develop over the course of the disease at rates much higher than normal aging (Williams-
Gray et al., 2007) and are associated with a shorter time to dementia (Aarsland and Kurz,
2010). Within 5 years of diagnosis, up to 17% of patients developed dementia (Aarsland et
al., 2010). In advanced PD, cognitive symptoms can dominate later stages of the disease
(Ferreri et al., 2006).

At all stages, cognitive dysfunction can cause significant morbidity and mortality (Forsaa et
al., 2010a). These symptoms at first diagnosis lead to nearly double the mortality rate in PD
(Levy et al., 2002) and predict nursing home placement (Aarsland et al., 2000). This is
associated with significant costs at all stages of disease (Kaltenboeck et al., 2012). Even in
earlier stages of disease, cognitive dysfunction can interfere with key activities such as
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driving (Stolwyk et al., 2005; Uc et al., 2006, 2007, 2011; Crizzle et al., 2012) and predict
loss of independence (Uc et al., 2011). Future observational data on the natural history of
cognitive symptoms and dementia in PD will help further define this issue (Balzer-
Geldsetzer et al., 2011)

Executive dysfunction
Executive functions are a group of psychological processes that regulate and control other
cognitive processing. These include functions such as working memory, planning,
reasoning, timing, and inhibitory control (Baddeley, 1998). Executive processes can be
measured through standard neuropsychological testing such clock-drawing, Wisconsin-
Card-Sorting, Stroop interference tasks, or trailmaking (Litvan et al., 1991), and are distinct
from non-executive functions such as memory, language and motor control. Screening
instruments that assay executive function may be useful in PD patients (Dalrymple-Alford et
al., 2010, 2011).

Patients with very early PD can have impaired executive functions (Caballol et al., 2007).
An early study reported that executive dysfunction in PD was not correlated with motor
function (Van Spaendonck et al., 1996). As mentioned above, the Norwegian ParkWest
study noted mild cognitive impairment among 196 non-demented patients with PD
(Aarsland et al., 2009) compared to age-matched controls. A multicenter study from the
same group of 1,346 actively managed patients with PD found that 26% of PD patients had
MCI and 10% had executive dysfunction (Aarsland et al., 2010). Small studies have
reported that dopaminergic therapy does not reliably improve executive dysfunction in high-
functioning (Pascual-Sedano et al., 2008) or moderate PD (Morrison et al., 2004), and can
potentially have detrimental effects (Cools et al., 2001; Cools and D’Esposito, 2011).

Impaired impulse control is another executive deficit seen in PD patients. It is manifested as
pathological gambling, hypersexuality, compulsive shopping, and compulsive eating. These
were recently detected in up to 13% of structured surveys of Parkinson’s patients (Voon et
al., 2006b), and prospectively related to exposure to dopamine agonists (Voon et al., 2006a)
that may be dose-dependent (Lee et al., 2010). In a large cross-sectional multicenter study,
impulse control disorders were found in 13.6% of patients with PD (Weintraub et al., 2010).
In this study, dopaminergic agonists were associated with a 2.5 times greater risk of
developing complications. Patients who were more likely to develop impulse control
disorders were younger, depressed, anxious, impulsive, and obsessive (Weintraub et al.,
2010; Voon et al., 2011). The primary treatment for this disorder is withdrawal of
dopaminergic agonists (Ávila et al., 2011) if practical.

Thought disorders in PD
Disorders of thought are commonly seen in psychiatric disease such as schizophrenia or
bipolar disorder, and are hypothesized to involve dopaminergic circuitry (Braver et al.,
1999). In PD, which also involves dysfunction in dopamine systems, disorders of thought
have been recognized for decades (Knopp, 1970). A community survey of 245 patients in
Norway reported that 10% of patients had symptoms of disordered thought, the risk of
which correlated with age and disease severity (Aarsland et al., 1999). Following this cohort
over time suggested that a majority of Parkinson’s patients experienced thought disorders at
some time (Forsaa et al., 2010b) associated with high doses of levodopa and REM sleep
disorder. Such symptoms could be a surrogate of disease severity, and could be associated
with poor outcomes such as nursing home placement, death, and dementia (Factor et al.,
2003). Atypical antipsychotics such as clozapine (Wolk and Douglas, 1992) can be effective
at controlling hallucinations (Parkinson’s Study Group, 1999), and cholinesterase inhibitors
have modest benefit (Williams-Gray et al., 2006). More recently, serotonin 5-HT2A agonists
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have demonstrated anti-psychotic efficacy in both animal models and human subjects
(Acadia Pharmaceuticals, 2012).

Dementia
One hallmark of dementia is that it involves amnestic dysfunction. Some PD patients with
cognitive symptoms have no memory loss (Williams-Gray et al., 2006 p.-; Aarsland et al.,
2009, 2010). Although executive dysfunction and thought disorders can be seen in other
types of dementias (Swanberg et al., 2004; Aarsland et al., 2010), in Parkinson’s disease
these features often predict the early development of dementia (Aarsland and Kurz, 2010;
Forsaa et al., 2010b) with associated increases in morbidity and mortality (Forsaa et al.,
2010a). Dementia can be highly prevalent across the entire course of Parkinson’s disease,
affecting up to 80% of patients (Aarsland et al., 2001, 2003; Aarsland and Kurz, 2010), and
may be associated with early hallucinations and akinetic-dominant variants of PD (Aarsland
et al., 2003; Emre et al., 2007).

Idiopathic PD involves extensive accumulation of Lewy-bodies, eosinophilic intracellular
inclusions within the midbrain. However, they can be observed in normal aging and other
dementias (Gibb and Lees, 1988). One possibility is that Lewy-Body pathology spreads
from peripheral nuclei to the neocortex (Braak et al., 2003). This idea has been recently
bolstered by description of cell-to-cell transmission of pathological a-synuclein (Dunning et
al., 2012; Luk et al., 2012b, 2012a). According to this hypothesis, cognitive symptoms of
PD would be caused by spread of Lewy-bodies to the cognitive areas of the neocortex, such
as medial prefrontal cortex (Huang et al., 2007).

Indeed, quantitative counts of synuclein pathology seemed to loosely associate with MMSE,
although in this data, there were high-pathological stage PD patients with low impairments,
and low pathological stage PD patients with high impairment (Braak et al., 2006).
Multivariate regression of the brains of 148 patients with PD revealed that Braak’s specific
pathological staging was not predictive of dementia (Gibb and Lees, 1988; Burton et al.,
2004; Compta et al., 2011; Irwin et al., 2012). However, distribution of Lewy-body burden
did roughly correlate with clinical diagnosis of dementia (Irwin et al., 2012). These data,
while not supporting the explicit rostro-caudal progression of synuclein (Jellinger, 2009),
largely support the Braak hypothesis. However, the specific patterns in PD, PD-related
dementia, and Lewy-body dementia are yet to be defined (Lippa et al., 2007).

Other pathological processes may contribute to cognitive symptoms in PD (Kempster et al.,
2010). For instance, tau and amyloid are common in PD-dementia (Kempster et al., 2010;
Compta et al., 2011; Kotzbauer et al., 2012; Irwin et al., 2012) and while these are correlated
with PD-dementia (Compta et al., 2011), they shed little insight on cognitive dysfunction
present earlier in the disease. Furthermore, the association with Alzheimer’s risk factors,
AB42 (Montine et al., 2010), ApoE4 (Irwin et al., 2012), the tau-related gene MAPT
(Aarsland et al., 2010) or white matter changes (Kim et al., 2012) suggest that other
processes may contribute to cognitive dysfunction in PD.

One possibility is that AD-pathology involving tau and amyloid deposition contributes to
dementia, and separate synuclein-related processes involving cholinergic and dopaminergic
systems contribute to executive dysfunction in PD (Fig 1). Future work may be able to
perform molecular imaging of synuclein with molecular imaging of AD pathology (Burack
et al., 2010) and explicitly test this idea and further define the role of synuclein pathology
and cognitive symptoms of PD.
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Prefrontal dopamine signaling and executive dysfunction in PD
Executive dysfunction and thought disorders localize to the prefrontal cortex (Goldman-
Rakic, 1998; Baddeley, 1998; Fuster, 2008). For instance, brain imaging of executive
processes such as working memory (Narayanan et al., 2005), planning (Miller and Cohen,
2001), conflict monitoring (Botvinick et al., 2004), inhibitory control (Dias et al., 2006), and
timing (Coull et al., 2011) reliably show activation of prefrontal regions, including
dorsolateral prefrontal cortex (BA 9/46) and medial prefrontal regions (BA 25/32). Diseases
that involve impaired executive function such as schizophrenia involve deactivation in these
regions (Weinberger et al., 1986). Prefrontal dysfunction has long been linked to disordered
thought (Dolan et al., 1993), and localization of processes that are affected by PD might
facilitate insight into possible mechanisms, as any pathophysiological explanation for the
cognitive symptoms of PD must account for prefrontal dysfunction.

Neuropsychological evidence reveals that Parkinson’s patients are impaired on tests that are
sensitive to prefrontal function (Zgaljardic et al., 2006), such as the Wisconsin-Card-Sorting
Task (Gotham et al., 1988), attentional set-shifting (Cools et al., 2001), and spatial working
memory (Lange et al., 1992). Metabolic imaging evidence has implicated a medial frontal
network in which deactivation in medial frontal networks is correlated with poor
performance on cognitive tests (Huang et al., 2007). Brain imaging studies have consistently
demonstrated hypoactivation of prefrontal areas in Parkinson’s patients. For instance, during
a random number generation task, controls activated medial frontal networks more robustly
than Parkinson’s patients (Dirnberger et al., 2005). The same group observed similar
deactivation during a motor timing task; in this task, medial frontal activation could be
modulated by levodopa (Jahanshahi et al., 2010). A similar pattern was found in a time
perception task (Harrington et al., 2011). During performance of the Tower of London
planning tasks, L-dopa restored prefrontal blood flow as measured by PET (Cools et al.,
2002). Finally, in PD decreased performance on attentional set-shifting is correlated with
impaired metabolic activity in prefrontal cortex (Sawada et al., 2012). This line of work
consistently describes less prefrontal activity in PD that is correlated with impaired
executive performance.

Prefrontal dopamine
Patients with PD have impaired prefrontal dopamine signaling (Dubois and Pillon, 1995,
1997). Prefrontal regions receive dopamine not from the nigrostriatal projections; rather,
they receive dopamine from ventral tegmental and medial nigral regions of the midbrain
(Williams and Goldman-Rakic, 1998). These nuclei do degenerate in some patients with PD
(Javoy-Agid and Agid, 1980; Javoy-Agid et al., 1981; Dymecki et al., 1996). To date, there
is no evidence explicitly linking VTA loss with cognitive dysfunction in PD (Jellinger,
1999), although it is clear that mesocortical dopaminergic projections can influence
cognitive function (Narayanan et al., 2012).

Clinically, there is no correlation with classical nigrostriatal functions, such as bradykinesia
or tremor (Cooper et al., 1991; Kieburtz et al., 1994). Attempts to link cognitive dysfunction
with motor features noted an association with akinetic forms of PD (Aarsland et al., 2003;
Uc et al., 2009) and with axial/visuomotor dysfunction (Domellöf et al., 2011) insinuate that
other dopaminergic systems, such as mesocortical projections originating from the ventral
tegmental area, may be involved. Future in-vivo molecular imaging studies of patients with
early PD and cognitive dysfunction may address this question.

Dopamine signaling in prefrontal cortex influences executive function (Arnsten and Li,
2005; Cools and D’Esposito, 2011). For instance, seminal work by Goldman-Rakic and
colleagues demonstrated that blocking D1 receptors in prefrontal cortex degraded single
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neuron activity encoding working memory (Williams and Goldman-Rakic, 1995; Wang et
al., 2004; Goldman-Rakic et al., 2004). In rodents, selectively blocking prefrontal D1
receptors impairs cognitive functions such as interval timing (Narayanan et al., 2012) and
memory (Seamans et al., 1998; Floresco and Phillips, 2001). Furthermore, dopamine release
measured by microdialysis is correlated with working memory performance (Phillips et al.,
2004).

In humans, dopamine can be imaged using molecular imaging techniques, such as PET or
SPECT. However, these studies are complicated because prefrontal signal is difficult to
isolate (Vrieze et al., 2011). Metabolic imaging (Huang et al., 2007) and presynaptic
dopamine imaging (Ekman et al., 2012) have suggested an association with decreased
anterior cingulate and caudate activation in patients with cognitive impairment in PD. In
prefrontal regions, D1-type dopamine receptors are more prominent than D2-type receptors
(Gaspar et al., 1995; Seong and Carter, 2012). Despite these challenges, PET imaging shows
that D1 signaling is modulated in frontal regions during working memory tasks (Okubo et
al., 1997; Abi-Dargham et al., 2002). PET scanning revealed marked decrease in lateral and
medial prefrontal dopamine and in D2 receptors in PD, albeit later in the disease (Rakshi et
al., 1999; Kaasinen et al., 2000). Curiously, in early PD dopamine uptake has been reported
to be increased in prefrontal regions (Rakshi et al., 1999; Kaasinen et al., 2001; Cools et al.,
2001), presumably related to frontal compensation. Increased dopamine could also produce
cognitive dysfunction observed at first diagnosis (Aarsland et al., 2009) as cognitive
processes require optimal dopamine (Cools and D’Esposito, 2011).

One other possibility is that dysfunctional striatal networks in PD involve both motor and
cognitive pathways (Graybiel et al., 1994). For instance, decreased metabolic signal in
frontal circuits is correlated with altered signal in the pallidum (Dirnberger et al., 2005), and
that connectivity analysis revealed that pallido-frontal analysis could be modulated by
levodopa (Jahanshahi et al., 2010). Another study described altered dopamine release in the
caudate and not the medial frontal cortex (Sawamoto et al., 2008), and this altered dopamine
release could explain dysfunctional prefrontal networks (Polito et al., 2012).

Finally, genetic polymorphisms in frontostriatal circuits may interact with cognitive
dysfunction. For instance, a polymorphism in catechol-o-methyl transferase was associated
with poor planning in PD patients as measured by the Tower of London task (Foltynie et al.,
2004b). Mutations in this gene also influenced attention (Williams-Gray et al., 2008), and
potently modulated fronto-striatal circuitry (Wu et al., 2012).

Cholinergic dysfunction
A final mechanistic contributor to cognitive symptoms of PD is the degeneration of non-
dopaminergic ascending projection nuclei. Further analysis of the DATATOP study (Anon,
1989) found that cognitive symptoms of PD were correlated with subcortical features such
as bulbar and gastrointestinal symptoms, suggesting that autonomic, non-dopaminergic
projections may be involved (Uc et al., 2009).

Indeed, PD involves degeneration of multiple ascending projection systems (Fig 2),
including norepinephrine, serotonin, and dopamine (Scatton et al., 1983; Jellinger, 2011),
and prominently, acetylcholine. Cholinergic neurons in the basal forebrain are decimated in
PD (Arendt et al., 1983) and develop Lewy-bodies (Candy 1983). Early pathological work
linked cognitive symptoms in PD with decreased choline acetyltransferase (Fonnum, 1966),
an enzyme necessary for presynaptic synthesis of acetylcholine, and neuronal counts in the
basal nucleus of Meynert (Perry et al., 1985).
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More recent molecular imaging techniques have identified cholinergic deficits in
Parkinson’s patients. For instance, PET and SPECT of nicotinic receptors have revealed
widespread loss in Parkinson’s patients with cognitive impairments (Fujita et al., 2006;
Meyer et al., 2009). In fact, cortical cholinergic function is more compromised in
Parkinson’s disease with dementia compared to Parkinson’s disease without dementia,
which in turn shows worse cortical cholinergic function compared to Alzheimer’s disease
(Bohnen et al., 2003). PET studies have also found decreased cortical and subcortical
acetylcholinesterase in PD (Gilman et al., 2010). Acetylcholinesterase activity correlates
with impaired executive function but not motor symptoms (Bohnen et al., 2006).
Furthermore, acetylcholine has a potent modulatory role in thought disorders (Bosboom et
al., 2003).

The strongest clinical link between cholinergic projections and PD comes from the
EXPRESS study, which described several beneficial effects of treatment with rivastigmine,
a cholinesterase inhibitor which presumably increases the amount of acetylcholine present at
the synaptic cleft. This study, a randomized, placebo-controlled study of 410 PD patients,
reported a moderate improvement in a cognitive battery for PD patients with mild-moderate
dementia (Emre et al., 2004; Poewe et al., 2006). Similar efforts with donepezil have been
promising (Aarsland et al., 2002; Rowan et al., 2007) but have been limited by side effects
(Fabbrini et al., 2002; Müller et al., 2006). This literature suggests that cholinergic signaling
can be effectively modulated by oral drugs to improve executive function, psychosis, and
dementia in Parkinson’s patients, and future drugs might modulate this system while
minimizing dose-limiting side effects.

An interesting interface exists between cholinergic projection systems and dopamine
systems involved in cognition. Parkinson’s patients given small doses of anticholinergics
such as scopolamine had impaired working memory (Dubois et al., 1987). A follow-up
study reported decreases specifically on executive tests with both trihexiphenadyl and
scopolamine (Bédard et al., 1999). We propose a model whereby cholinergic and
dopaminergic projections to prefrontal cortex (Fig 1 and 2) interact in the prefrontal cortex
and lead to executive dysfunction. This model makes testable predictions that cholinergic
and dopaminergic signaling interact on prefrontal neurons, and that modulation of these
receptors should profoundly influence neuronal networks correlated with executive function
(Williams and Goldman-Rakic, 1995; Asaad et al., 1998; Narayanan and Laubach, 2006,
2009) and can be systematically investigated in animal models of PD and in PD patients. We
are optimistic that these avenues may lead to new treatment paradigms for this difficult
clinical problem.

Summary
In the present review, we have discussed cognitive dysfunction of PD involving executive
dysfunction and disordered thought. There are no effective treatments for these symptoms,
which may predict later amnestic disturbance, and lead to considerable morbidity and
mortality. We evaluate a mechanistic possibility for executive dysfunction in PD revolving
around prefrontal dopamine systems, which could interact with cholinergic circuitry to
produce executive dysfunction (Fig 1). We are hopeful that further evaluation of the
pathophysiology of cognitive dysfunction in Parkinson’s disease will explore these ideas, as
they may lead to new treatments that take advantage of either of these systems.
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Figure 1.
Whereas alpha-synuclein in mesocortical dopamine projections likely contributes cellular
dysfunction leading executive impairment, tau and alpha-synuclein may impair basal
forebrain and acetylcholine signaling contributing to both executive and memory
impairment.
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Figure 2.
Ascending projection systems that degenerate in Parkinson’s disease.
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