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Abstract

Genetic variants in bitter-taste receptor genes have been hypothesized to negatively impact health
outcomes and/or influence dietary intake and, consequently, could increase the risk of colorectal
neoplasia. Using a case-control study of 914 colorectal adenoma cases/1188 controls, we explored
associations among colorectal adenoma risk, dietary intake, and genetic variation in three bitter-
taste receptor genes: TASZR38 (rs713598, rs1726866, rs10246939), TASZ2R16 (rs846672), and
TASZR50 (rs1376251). Analysis of covariance was conducted to detect trends in dietary intake
across TASZR genotypes/haplotypes. Odds ratios and 95% confidence intervals were estimated by
logistic regression to test gene-adenoma risk associations. No significant associations were
observed between the TASZR38PAV/PAV diplotype or the TAS2R16 (rs846672) polymorphism
with the selected diet variables. We observed weak inverse associations between the 7AS2R50
(rs1376251) C allele and dietary fiber and vegetable intake (/A < 0.015). Odds ratios for adenoma
risk were not significantly different from the null. Our findings do not support a link between
these TASZR genotypes/haplotypes and dietary intake that could impact colorectal adenoma risk.
However, given the paucity of data, we cannot dismiss the possibility that these genes may
influence colorectal adenoma risk in other ways, such as through impaired gastrointestinal
function, particularly in subgroups of the population.

Introduction

Genetic variation in type 2 bitter-taste receptors ( 7AS2R) may influence health-related
outcomes. More than 25 functional 7AS2R genes are clustered on chromosomes 5, 7, and 12
that respond to bitter tastants (e.g., thiocyanate and B-glucopyranosides) (1, 2) and are
expressed within the oral cavity (3), the gastrointestinal mucosa (4), and the lungs (5).
TASZR variants are hypothesized to play roles in individuals' food preferences (6, 7) and the
neutralization and expulsion of toxins from the colon/rectum (8), thereby influencing cancer
risk.

Variants of at least three TAS2R genes have been linked to poor dietary intake or increased
chronic disease risk. The most commonly studied of these genes, TASZ2R38 (rs713598,
rs1726866, rs10246939) is most commonly studied. The TAS2R38PAV/PAV diplotype
(the “taster” diplotype) explains 60% - 85% of the variance in taste sensitivity to the
thiocyanate-containing chemicals, phehylthiocarbamide (PTC) and 6-n-propylthiouracil
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(PROP) (9-11). Yet, research does not consistently demonstrate associations of PTC/PROP
sensitivity or genetic variation of TASZ2R38with a lower intake of bitter-tasting (12-14).

Two other TASZR genes, TASZR16 (rs846672) and TASZ2R50 (rs1376251), could similarly
influence the risk of colorectal adenoma. TASZ2R16 codes for B-glucopyranosides taste
sensitivity (15) and has been linked with greater alcohol intake and dependence (16-18)
given that excessive alcohol use is a risk factor for colorectal cancer (19). TASZR50, a
gustducin-linked G-protein, also plays a role in the detection of bitter stimuli. 7TASZ2R50 has
been controversially linked with an increased risk of myocardial infarction (20-23) through a
hypothesized but untested association with poor dietary intake (24, 25). Despite,
inconsistencies in the research, the consensus is that genetic variants of 7ASZ2R bitter-taste
receptor genes can influence dietary intake in a way that might impact disease risk,
including colorectal neoplasia (a common precursor lesion for colorectal cancer) (6).
Therefore, it is reasonable to hypothesize that genetic variations of the TASZ2R genes are
associated with colorectal adenoma risk.

Basson and colleagues (26) have recently explored the cross-sectional association between
taste sensitivity to PTC/PROP, a phenotype the PAV haplotype, and number of
histologically confirmed neoplastic polyps in 251 asymptomatic men age 28 to 87 years.
Their findings demonstrated a small but positive correlation between perceived PTC/PROP
bitterness and number of polyps, particularly among men greater than 66 year old (r=0.24,
P <0.01) suggesting that genetic sensitivity to bitter taste may influence colon cancer risk in
older men. Conversely, Carrai and colleagues (27) showed that the TASZ2R38 AVI/AVI
diplotype (the “non-taster” diplotype) was positively associated with an increased risk of
colorectal cancer in a large case-control study of Czech Republic and Germany residents
(ORpooled = 1.34; 95% ClI, 1.12, 1.61; P=0.001). Rather than a diet-related link, it was
hypothesized that the AVI/AVI diplotype could be a biomarker for the impaired function of
the gastrointestinal tract resulting in a slower elimination of toxins from the gut. Due to
conflicting findings such as these, it remains unclear whether genetic variation in TAS2R
genes influences colorectal cancer risk.

The present case-control study examined the associations between genetic variants of
TAS2R16, TASZR38, and TAS2R50 with dietary intakes of fiber- and antioxidant-rich
fruits and vegetables, alcohol consumption, and risk of colorectal adenoma in a multi-ethnic
sample of men and women. In line with the approach of Basson and colleagues described
above (26), genetic variants of bitter-taste receptor genes were hypothesized to be associated
with poor dietary intake, including decreased vegetable intake (TAS2R38 PAV haplotype
and TASZR50 C allele) and/or greater alcohol consumption (7AS2R16 A allele) and, as the
result, with an increased risk of colorectal adenoma.

Materials and methods

Subjects

The study design and data collection procedures for this colorectal adenoma study have been
described in detail elsewhere (28). In brief, colorectal adenoma cases were recruited in two
phases. Cases were identified via adenoma screening by flexible sigmoidoscopy from July
1996 to February 2000 at the Hawai'i site of the Prostate Lung Colorectal and Ovarian
(PLCO) screening trial and from January 1995 to June 2006 at the Gastroenterology
Screening Clinic of Kaiser Permanente Hawai'i. Starting in June 2002, recruitment also
included patients undergoing colonoscopy in the Kaiser Permanente Gastroenterology
Department. Eligible cases were patients of Japanese American, white, or Native Hawaiian
race/ethnicity with histologically confirmed, first-time, adenomas of the colorectum.
Controls were recruited among patients found to have a normal colon and rectum at
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endoscopy and were individually matched to the cases on age, sex, race/ethnicity, screening
date (£ 3 months), recruitment site, and type of examination. The participation rate was
67.8% for cases and 69.2% for controls. Blood samples were collected from 93% of the
eligible participants. The present analyses were based on 914 colorectal adenoma cases and
1,188 controls with available DNA. Institutional review board approval was obtained from
each of the participating institutions and informed consent was provided by all study
participants.

Questionnaire data

Demographic and lifestyle data were collected via an interview-administered questionnaire
that included questions regarding lifetime histories of smoking, vitamin and mineral
supplement use, and usual physical activity, a family history of colorectal cancer, as well as
current weight and height. The interview also included a validated food frequency
questionnaire with 268 food items and categories (29). Participants were asked to report the
frequency and amount of each food consumed during the year prior to their endoscopic
examination. For this study, we focused on the following eight categories of tart- or bitter-
tasting foods and beverages demonstrated in previous studies to vary with TASZR
genotypes/haplotypes and/or to be associated with colorectal cancer risk: total dietary fiber,
vegetables (all), vegetables (no legumes, denoted “non-starchy vegetables”), dark green
vegetables (including dark green cruciferous vegetables, taro leaves, spinach, dark green
lettuce, peppers, other dark green vegetables), cruciferous vegetables (including broccoli,
cauliflower, cabbage, won bok, dark green cruciferous, light green cruciferous, and other
cruciferous), fruits (all), citrus fruits (including oranges, grapefruit, tangerines, other citrus
fruits, grapefruit juice, orange juice, lime and lemon juice), and alcohol (including beer,
wine, hard liquor, and other alcohol).

SNP Selection

Genotyping

Five non-synonymous (missense) SNPs of three bitter-taste receptor genes (7TASZR38,
TASZR50, TASZ2R16) expressed in the oral cavity were selected for genotyping based on
previously published research (13, 16-18, 20, 24, 25, 30, 31). For TASRZ238, we selected
three of the most commonly studied SNPs (rs713598, rs1726866, and rs10246939). For
TASZR50, we selected the rs1376251 polymorphism. For TAS2R16 gene, we considered
the two non-synonymous SNPs: rs846664 and rs860170 polymorphisms (32, 33) and chose
to include rs860170 because of its greater minor allele frequency in whites. However, the
genotype distribution for rs860170 was not in Hardy-Weinberg equilibrium for any of the
three ethnic groups sampled in this study (P <0.001); thus, a proxy SNP (rs846672) was
genotyped that was highly correlated with rs860170 (r2 = 1 in European (HapMap CEU) and
Japanese (HapMap JPT) (32, 33). Each of the selected SNPs had minor allele frequencies
greater than 5% in each racial/ethnic group.

Genotyping was conducted by the 5’ nuclease Tagman allelic discrimination assay using the
manufacturer's predesigned primer/probe sets, and assays were read on a 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA). All assays were carried out by
individuals blinded to case-control status. For quality control, 177 blind replicate samples
were included. The average concordance rate among these samples was 92.7%. The average
genotyping success rate for the SNPs was 99.1%. The final set of SNPs were all in Hardy-
Weinberg equilibrium at the P>0.01 level for each racial/ethnic group.
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Analysis of covariance was conducted to estimate trends in mean dietary intakes by TASZ2R
genotypes/haplotypes (gene-diet associations) and across ethnic/racial groups. Dietary
variables were adjusted for total energy intake by the method of residuals (34) and are
presented as geometric means. Models were minimally adjusted for sex, race/ethnicity, and
age. To ensure that confounders did not bias the estimates, a model fully adjusted for the
following additional variables was also performed and the results compared smoking status,
pack-years of cigarette smoking, case-control status, as well as family history of colorectal
cancer among first degree relatives. Because of multiple tests, the type I error was inflated.
Therefore, the critical value for statistical significance was corrected by the Bonferroni
method to p = 0.001 (0.05/5 SNPs x 8 diet variables = 0.05/40) to control for the multiple
comparisons for the gene-diet associations.

Odds ratios (OR) and 95% confidence intervals (95% CI) for the associations between
TASR genotypes/haplotypes and colorectal adenoma risk (gene-risk associations) were
estimated by unconditional logistic regression, minimally adjusting for recruitment site,
index endoscopy type, age at exam, sex, and race/ethnicity. Gene-by-diet interactions on
adenoma risk were additionally tested. To assess the effect of confounding, regression
models were further adjusted for other adenoma risk factors: family history of colorectal
cancer, vitamin supplement use, years of education, smoking status, pack-years of cigarette
smoking, lifetime physical activity, and body mass index. P-values for both the partially-
and fully-adjusted models are presented. However, there was little effect of including these
variables in the models (change in beta estimates <10%) and the fully adjusted odds ratios
are not presented. The variants were parameterized as dummy variables representing each
genotype and as continuous trends assigned the dosage of haplotype or variant allele.

TASR haplotype frequencies among adenoma cases and controls were estimated following
the methods of Stram et al. (35). Haplotype dosage (i.e. an estimate of the number of copies
of haplotype h) for each individual and each haplotype, h, was computed using that
individual's genotype data and haplotype frequency estimates as obtained from the E-M
algorithm (36). Statistical significance for the gene-risk associations was corrected by the
Bonferroni method to p = 0.0025 (0.05/5 SNPs x 4 tests (all and by race/ethnicity =0.05/20))
to address the issue of multiple comparisons testing for the five SNPs and four tests (all and
by race/ethnicity). Statistical significance for the gene-by-diet interactions on adenoma risk
was also corrected to p = 0.00625 (0.05/8 tests).

Participant characteristics

Table 1 summarizes participant characteristics by adenoma case and control status.
Compared to cases, controls were less likely to smoke (P < 0.001) or to have a family
history of colorectal cancer (P= 0.010), were more likely to take vitamin supplements (P=
0.003), and had a lower mean BMI compared to cases (£ <0.001) without a difference in
mean reported energy intake (P = 0.903) or lifetime physical activity participation (P=
0.184). Compared to controls, cases had significantly lower intakes of dietary fiber (P
<0.001), total vegetables (P= 0.043), total fruits (£ < 0.001), and citrus fruits (£ = 0.006),
and a significantly greater alcohol consumption (2= 0.002). We also observed differences in
all dietary variables by race/ethnicity (P < 0.005) with the exception of cruciferous vegetable
intake (P=0.709) (Supplementary Table 1). Japanese Americans tended to consume the
lowest amounts of vegetables, whereas whites consumed the greatest amounts of dark green
vegetables, fruit, and alcohol.
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TAS2R genotypes/haplotypes

Four of the eight possible TASZ2R38 haplotypes (combination of rs713598, rs1726866, and
rs10246939 genotypes) were observed in our study. The two most common haplotypes were
AVI (47.7%; “non-taster” haplotype) and PAV (49.4%; “taster” haplotype). The AAV and
AAI haplotypes were rare (2.7% and <1%, respectively), and participants with one or two
copies of these haplotypes were excluded from the TASZ2R38 analyses. The other possible
haplotypes, PAI, PVI, PVV, and AVV, were not observed in this sample. The most
frequently observed combination of haplotypes was the heterozygous PAV/AVI diplotype
(46.6%) followed by PAV/PAV (“tasters”; 27.8%) and AVI/AVI (“non-tasters”; 25.6%).
The overall genotype frequencies for TASZ2R16 (rs846672) and TASZR50 (rs1376251) were
AA=11.7%, AC=46.1% and CC=42.2%, and CC=26.2%, TC=44.2%, and T/T=29.6%,
respectively (Table 2).

All genotypes/haplotype distributions varied significantly by race/ethnicity (£ < 0.001), with
the TAS2R38PAV/PAV diplotypes most common in Japanese Americans (38.8%),
followed by whites (30.7%) and Native Hawaiians (30.5%). The AA genotype for rs846672
was most common in Japanese Americans (61.6%), followed by Native Hawaiians (24.6%)
then whites (13.8%) and, whereas the CC genotype for rs1376251 was most frequent in
whites (81.3%), followed by Native Hawaiians (11.5%) and Japanese Americans (7.2%).

TAS2R and Dietary Intake

Table 3 summarizes the gene-diet analyses for all study participants combined. Accounting
for the adjusted = 0.001 level, only nominally significant negative associations between
the TASZ2R501s1376251 C allele and consumption of dietary fiber (Pyjj-agj= 0.013),
vegetables (Py)1-adj = 0.004), and non-starchy vegetables (vegetables not including legumes)
(Prull-adj = 0.026) were also observed (Table 3). No significant race/ethnicity-by-genotype/
haplotype or sex-by-genotype/haplotype interactions were observed (not shown). Race/
ethnicity-specific gene-diet tables are presented in Supplementary Tables 3a-3c.

TAS2R and Colorectal Adenoma Risk

We observed no significant associations between the TAS2R16, TASZR38, or TASZR50
haplotypes/genotypes and colorectal adenoma risk for the combined sample at the corrected
P=0.0025 level (Table 4). No significant race/ethnicity-by-genotype/haplotype or sex-by-
genotype/haplotype interactions were observed (not shown).

TAS2R by diet interactions on Colorectal Adenoma Risk

Accounting for the adjusted 2= 0.00625, only one gene-by-diet interaction effect was
borderline significant: citrus fruit (£=0.007) for TAS2R50. However, there were no
discernible patterns of associations that coincided with any plausible hypotheses.

Discussion

Few studies have explored associations between variants of bitter-taste receptor genes and
colorectal adenoma risk (27, 37) and none have included a measure of dietary intake. This
study examined associations of three bitter-taste receptor genes (TAS2R16, TASZR38, and
TAS2R50) with colorectal adenoma risk in a multi-ethnic sample of whites, Japanese
Americans, and Native Hawaiians. We observed only weak gene-diet associations between
the TAS2R50C allele (rs1376251) and decreasing intakes of dietary fiber and vegetables,
none of the gene-adenoma risk reached significance, and there were no meaningful gene-by-
diet interactions on adenoma risk.
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The tested gene-diet associations provided little support for an influence of bitter-taste
receptor genes on dietary intake. We hypothesized a negative association between the
TASZR38PAV haplotype and selected dietary variable, including cruciferous vegetable
intake (13, 16). However, we were unable to confirm this association despite having
adequate power to detect significant trends [greater than 99% to detect an R2 = 0.02 at alpha
= 0.001 for a SNP with a minor allele frequency (MAF) of 0.05 or greater]. A positive
association between the A allele of the TASZ2R16 SNP (rs846672) and alcohol intake was
also hypothesized (16), but not confirmed. Lastly, we hypothesized the TAS2R50
(rs1376251) C allele would be associated with decreasing consumption of fruits/vegetables
and/or an increasing consumption of alcohol (24, 25). Yet, only nominally significant trends
were detected in the hypothesized direction for dietary fiber and vegetable consumption. It
should be noted that a lack of support for these hypotheses is potentially due to industry
food processing (38) and home preparation techniques, such as prolonged cooking or the
addition of salt, sugar, or fat (30, 39, 40), that “debitter” foods to make them more palatable.
Ultimately, our findings provide limited support that genetic variants of the TASZ2R taste
receptors gene family can influence dietary intake to the extent that there is a subsequent
impact on colorectal adenoma risk.

A limited number of studies have explored associations between 7ASZ2R genotypes and
colorectal cancer risk. In one study, Carrai and colleagues (27) explored the association
between TASZ2R38 SNPs and diplotypes, and colorectal cancer among predominantly white
1,203 colorectal cases and 1,332 controls. Findings demonstrated an increased risk of
colorectal cancer for the AVI/AVI group (“non-tasters”) compared to the PAV/PAV group
(“tasters”) (OR = 1.34; 95% ClI, 1.12, 1.61; P=0.001). This observed direction of
association is opposite of what would be consistent with our diet-related hypothesis that
“tasters” would be at greater risk of colorectal adenoma risk due to a decreased intake of the
chemoprotective nutrients found in bitter-tasting foods. Rather, they suggested that the AV1/
AVI diplotype could be a biomarker for an impaired gastrointestinal function (27). In the
current study, the odds ratio and confidence interval for whites with the AVI/AVI diplotype
compared to the PAV/PAV (OR =1.33, 95% CI1 0.91, 1.97) very similar to that observed by
Carrai and colleagues. Unfortunately, we did not have sufficient power to detect this as
significant in race/ethnicity-specific analyses. Despite this limitation, our findings for the
TASZR38 gene align with a diet-related hypothesis rather than with Carrai and colleague's
biomarker hypothesis. Further consideration of race/ethnicity-disparate associations between
the TASZ2R38 AVI/AVI diplotype as a biomarker for elevated colorectal cancer risk is
warranted.

Our study is strengthened by the multi-ethnic composition of the sample, as well as the
examination of dietary intake as a possible phenotypic link between variations in bitter-taste
receptor genes and colorectal cancer risk. Compared to prior studies of predominantly
European populations, our multi-ethnic study is characterized by a substantial variation in
intake, presumably increasing the power of our study to detect gene-diet associations.
However, inherent dietary measurement error and the lack of detailed food preparation
techniques could ultimately have attenuated observed associations. Another limitation was
our inability to explore associations by race/ethnicity, due to having limited statistical
power. Limited statistical power, especially in subgroups, also precluded us from firm
conclusions on whether there is a true lack of association between the TASZR SNPs
genotyped in this study and risk of colorectal adenoma (80% power to detect an OR = 0.73
for a SNP with a MAF of 0.25 using a log additive model with alpha = 0.0025). Despite
these limitations, the magnitudes of gene- risk association observed in this study may still
have clinical relevance.
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In summary, our findings in combination with others' offer limited support for associations
among variations of selected TASZR genes, dietary intakes, and colorectal adenoma risk.
Only nominal gene-diet trends were observed between the TAS2R50 C allele and decreasing
dietary fiber and vegetable intake. Given these findings, we conclude that the influence of
variants of the selected bitter-taste receptor genes on dietary intake is unlikely to be
substantial enough to influence colorectal adenoma risk negatively. Gene-risk associations
for variations of each 7ASZR gene were non-significant as were the gene-by-diet
interactions on adenoma risk. Given the paucity of studies in this area, we cannot discount
possible weak associations, especially in population subgroups. While bitter-taste receptor
genes may not have a meaningful impact on dietary intake, we also cannot dismiss the
possibility they may play other important roles related to colorectal cancer risk, particularly
in subgroups of the population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1
Study characteristics of colorectal adenoma cases and controls

Case (n=914) Control (n=1188) P-value

Males, % 60.2 62.7 0.236
Race, % Japanese American 31.8 32.6
White 46.8 47.6 0.708
Native Hawaiian 213 19.9
Smoking Status, %  Never 41.8 51.9
Past 44.5 40.8 <0.001
Current 13.7 7.3
Procedure type, %  Colonoscopy 429 30.3
Flexible sigmoidoscopy 57.1 69.6 <0.001
Family history of colorectal cancer, % 17.6 13.6 0.010
Vitamin supplement use, % f 67.2 75.2 0.003
Age at exam, yr 60.6+8.8 60.6+8.4 0.947
Education, yr 15.1+3.4 15.4+3.1 0.090
Pack-years, No. 17.3+25.8 12.2+22.0 <0.001
BMI at exam, kg/m? 28.0£5.9 26.8+5.0 <0.001
Lifetime physical activity, hr 11855+16072 11030+12406 0.184
Total energy, kcal/day 77 2270+1091 2276+1173 0.903
Dietary fiber, g/day 20.8+7.0 22.2+7.6 <0.001
Total vegetables, g/day 359.1+168.9 375.1+184.8 0.043
Vegetables (no legumes), g/day 314.3.1+147.0 324.8+159.0 0.126
Cruciferous vegetables, g/day 48.3+51.4 47.1+43.9 0.779
Dark green vegetables, g/day 60.3+54.1 60.2+57.8 0.691
Total fruits, g/day 294.4+221.8 333.9+235.1 <0.001
Citrus fruits, g/day 87.9+114.1 100.0+128.4 0.006
Alcohol, mg/day 228.6+445.9 161.3£331.1 0.002

Categorical data are presented as percentages and continuous data are presented as means + SD as indicated.
Pack-years = number of cigarettes smoked per day/20 x duration of smoking in years.
Supplement use = within the past 2 weeks

fn:2065 due to missing data.

ﬁn:2096 due to missing data.
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