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Abstract

Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional
relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure
within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide
polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the
fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene
pathways. Where this is the case, pathways approaches may reveal aspects of a trait’s genetic architecture that would
otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and
so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-
level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative
trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data,
including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We
use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test
our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes
associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults.
By comparing results from both cohorts we identify a number of candidate pathways including those associated with
cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type
calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function.
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Introduction

Much attention continues to be focused on the problem of

identifying SNPs and genes influencing a quantitative or

dichotomous trait in genome wide scans [1]. Despite this, in

many instances gene variants identified in GWAS have so far

uncovered only a relatively small part of the known heritability of

most common diseases [2]. Possible explanations include the

presence of multiple SNPs with small effects, or of rare variants,

which may be hard to detect using conventional approaches [2–4].

One potentially powerful approach to uncovering the genetic

etiology of disease is motivated by the observation that in many

cases disease states are likely to be driven by multiple genetic

variants of small to moderate effect, mediated through their

interaction in molecular networks or pathways, rather than by the

effects of a few, highly penetrant mutations [5]. Where this

assumption holds, the hope is that by considering the joint effects

of variants acting in concert, pathways GWAS methods will reveal

aspects of a disease’s genetic architecture that would otherwise be

missed when considering variants individually [6,7]. In this paper
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we describe a sparse regression method utilising prior information

on gene pathways to identify putative causal pathways, along with

the constituent variants that may be driving pathways association.

Sparse modelling approaches are becoming increasingly popu-

lar for the analysis of genome wide datasets [8–11]. Sparse

regression models enable the joint modelling of large numbers of

SNP predictors, and perform ‘model selection’ by highlighting

small numbers of variants influencing the trait of interest. These

models work by penalising or constraining the size of estimated

regression coefficients. An interesting feature of these methods is

that different sparsity patterns, that is different sets of genetic

predictors having specified properties, can be obtained by varying

the nature of this constraint. For example, the lasso [12] selects a

subset of variants whose main effects best predict the response.

Where predictors are highly correlated, the lasso tends to select

one of a group of correlated predictors at random. In contrast, the

elastic net [13] selects groups of correlated variables. Model

selection may also be driven by external information, unrelated to

any statistical properties of the data being analysed. For example,

the fused lasso [14,15] uses ordering information, such as the

position of genomic features along a chromosome to select

‘adjacent’ features together.

Prior information on functional relationships between genetic

predictors can also be used to drive the selection of groups of

variables. In the present context, information mapping genes and

SNPs to functional gene pathways has recently been used in sparse

regression models for pathway selection. Chen et al. [16] describe

a method that uses a combination of lasso and ridge regression to

assess the significance of association between a candidate pathway

and a dichotomous (case-control) phenotype, and apply this

method in a study of colon cancer etiology. In contrast, Silver et al.

[17] use group lasso penalised regression to select pathways

associated with a multivariate, quantitative phenotype character-

istic of structural change in the brains of patients with Alzheimer’s

disease.

In identifying pathways associated with a trait of interest, a

natural follow-up question is to ask which SNPs and/or genes are

driving pathway selection? We might further ask a related

question: can the use of prior information on putative gene

interactions within pathways increase power to identify causal

SNPs or genes, compared to alternative methods that disregard

such information? One way to answer these questions is by

conducting a two-stage analysis, in which we first identify

important pathways, and then in a second step search for SNPs

or genes within selected pathways [18,19]. There are however a

number of problems with this approach. Firstly, highlighted

variants are then not necessarily those that were driving pathway

selection in the first step of the analysis. Secondly, the implicit (and

reasonable) assumption is that only a small number of SNPs in a

pathway are driving pathway selection, so that ideally we would

prefer a model that has this assumption built in. The above

considerations point to the use of a ‘dual-level’ sparse regression

model that imposes sparsity at both the pathway and SNP level.

Such a model would perform simultaneous pathway and SNP

selection, with the additional benefit of being simpler to

implement.

A suitable sparse regression model enforcing the required dual-

level sparsity is the sparse group lasso (SGL) [20]. SGL is a

comparatively recent development in sparse modelling, and in

simulations has been shown to accurately recover dual-level

sparsity, in comparison to both the group lasso and lasso [20,21].

SGL has been used for the identification of rare variants in a case-

control study by grouping SNPs into genes [22]; for the

identification of genomic regions whose copy number variations

have an impact on RNA expression levels [23]; and to model

geographical factors driving climate change [24]. SGL can be seen

as fitting into a wider class of structured-sparsity inducing models

that use prior information on relationships between predictors to

enforce different sparsity patterns [25–27].

Hierarchical and mixed effect modelling approaches have also

been suggested as a means of leveraging pathways information for

the simultaneous identification of SNPs or genes within associated

pathways. Brenner et al. [28] propose such a method for

identifying SNPs in a priori selected candidate pathways by

comparing results from multiple studies in a meta-analysis. This

approach is similar in motivation to the two-stage methods

described above. The method proposed by Wang et al. [29] is

closer in spirit to our own, in that it provides measures of pathway

significance, and also ranks genes within pathways. Both of these

methods however use results from univariate tests of association at

each gene variant as input to the models, in contrast to our joint-

modelling approach.

Here we describe a method for sparse, pathways-driven SNP

selection that extends earlier work using group lasso penalised

regression for pathway selection. This latter method was

previously shown to offer improved power and specificity for

identifying associated pathways, compared with a widely-used

alternative [30]. In following sections we describe our method in

detail, and demonstrate through simulation that the incorporation

of prior information mapping SNPs to gene pathways can boost

the power to detect SNPs and genes associated with a quantitative

trait. We further describe an application study in which we

investigate pathways and genes associated with serum high-density

lipoprotein cholesterol (HDLC) levels in two separate cohorts of

Asian adults. HDLC refers to the cholesterol carried by small

lipoprotein molecules, so called high density lipoproteins (HDLs).

HDLs help remove the cholesterol aggregating in arteries, and are

therefore protective against cardiovascular diseases [31]. Serum

HDLC levels are genetically heritable (h2~0:485) [32]. GWAS

studies have now uncovered more than 100 HDLC associated loci

(see www.genome.gov/gwastudies, Hindorff et al. [33]). However,

considering serum lipids as a whole, variants so far identified

account for only 25–30% of the genetic variance, highlighting the

limited power of current methodologies to detect hidden genetic

factors [34].

Author Summary

Genes do not act in isolation, but interact in complex
networks or pathways. By accounting for such interactions,
pathways analysis methods hope to identify aspects of a
disease or trait’s genetic architecture that might be missed
using more conventional approaches. Most existing
pathways methods take a univariate approach, in which
each variant within a pathway is separately tested for
association with the phenotype of interest. These statistics
are then combined to assess pathway significance. As a
second step, further analysis can reveal important genetic
variants within significant pathways. We have previously
shown that a joint-modelling approach using a sparse
regression model can increase the power to detect
pathways influencing a quantitative trait. Here we extend
this approach, and describe a method that is able to
simultaneously identify pathways and genes that may be
driving pathway selection. We test our method using
simulations, and apply it to a study searching for pathways
and genes associated with high-density lipoprotein cho-
lesterol in two separate East Asian cohorts.

Pathways-Driven Sparse Regression - HDLC
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Materials and Methods

This section is organised as follows. We begin by introducing

the sparse group lasso (SGL) model for pathways-driven SNP

selection, along with an efficient estimation algorithm, for the case

of non-overlapping pathways. We then describe a simulation study

illustrating superior group (pathway) and variant (SNP) selection

performance in the case that the true supporting model is group-

sparse. We continue by extending the previous model to the case

of overlapping pathways. In principle, we can then solve this

model using the estimation algorithm described for the non-

overlapping case. However, we argue that this approach does not

give us the outcome we require. For this reason we describe a

modified estimation algorithm that assumes pathway indepen-

dence, and demonstrate in a simulation study that this new

algorithm is able to identify the correct SNPs and pathways with

improved sensitivity and specificity. We next outline a strategy for

reducing bias in SNP and pathway selection, and a subsampling

procedure that exploits finite sample variation to rank SNPs and

genes in order of importance. We test these procedures in a third

simulation study using real pathways and genotype data, and

conclude that for the range of scenarios tested, our proposed

method demonstrates good power and specificity for the detection

of associated pathways and genes. We conclude this section with a

description of genotypes, phenotypes and pathways used in our

application study looking at pathways and genes associated with

high-density lipoprotein cholesterol levels in two Asian GWAS

cohorts.

The sparse group lasso model
We arrange the observed values for a univariate quantitative

trait or phenotype, measured for N unrelated individuals, in an

(N|1) response vector y. We assume minor allele counts for P

SNPs are recorded for all individuals, and denote by xij the minor

allele count for SNP j on individual i. These are arranged in an

(N|P) genotype design matrix X. Phenotype and genotype

vectors are mean centred, and SNP genotypes are standardised to

unit variance, so that
P

i x2
ij~1, for j~1, . . . ,P.

We assume that all P SNPs may be mapped to L groups or

pathways, Gl5f1, . . . ,Pg, l~1, . . . ,L, and begin by considering

the case where pathways are disjoint or non-overlapping, so that

Gl\Gl’~w for any l=l’. We denote the vector of SNP regression

coefficients by b~(b1, . . . ,bP), and additionally denote the matrix

containing all SNPs mapped to pathway Gl by

Xl~(xl1 ,xl2 , . . . ,xPl
), where xj~(x1j ,x2j , . . . ,xNj)’, is the column

vector of observed SNP minor allele counts for SNP j, and Pl is the

number of SNPs in Gl . We denote the corresponding vector of

SNP coefficients by bl~(bl1
,bl2

, . . . ,bPl
).

In general, where P is large, we expect only a small proportion

of SNPs to be ‘causal’, in the sense that they exhibit phenotypic

effects. A key assumption in pathways analysis is that these causal

SNPs will tend to be enriched within a small set, C5f1, . . . ,Lg, of

causal pathways, with DCD%L, where DCD denotes the size

(cardinality) of C. We denote the set of causal SNPs mapping to

pathway Gl by Sl , and make the further assumption that most

SNPs in a causal pathway are non-causal, so that DSl DvPl , where

DSl D denotes the size (cardinality) of Sl . A suitable sparse regression

model imposing the required, dual-level sparsity pattern is the

sparse group lasso (SGL). We illustrate the resulting causal SNP

sparsity pattern in Figure 1, and compare it to that generated by

the group lasso (GL), a group-sparse model that we used previously

in a sparse regression method to identify gene pathways [17,30].

With the SGL [20], sparse estimates for the SNP coefficient

vector, b are given by

b̂bSGL~arg minbf
1

2
DDy{XbDD22z(1{a)l

XL

l~1

wl DDbl DD2zalDDbDD1g ð1Þ

where l (lw0) and a(0ƒaƒ1) are parameters controlling

sparsity, and wl is a pathway weighting parameter that may vary

across pathways. (1) corresponds to an ordinary least squares

(OLS) optimisation, but with two additional constraints on the

coefficient vector, b, that tend to shrink the size of b, relative to

OLS estimates. One constraint imposes a group lasso-type penalty

on the size (‘2 norm) of bl ,l~1, . . . ,L. Depending on the values of

l,a and wl , this penalty has the effect of setting multiple pathway

SNP coefficient vectors, b̂lbl~0, thereby enforcing sparsity at the

pathway level. Pathways with non-zero coefficient vectors form the

set ĈC of ‘selected’ pathways, so that

ĈC(l,a)~fl : b̂lbl=0g:

A second constraint imposes a lasso-type penalty on the size

(‘1 norm) of b. Depending on the values of l and a, for a selected

pathway l[ĈC, this penalty has the effect of setting multiple SNP

coefficient vectors, b̂bj~0,j5Gl , thereby enforcing sparsity at the

SNP level within selected pathways. SNPs with non-zero

coefficient vectors then form the set ŜSl of selected SNPs in

pathway l, so that

ŜSl(l,a)~fj : b̂bj=0,j[Glg:

The set of all selected SNPs is given by

ŜS~
[
l[ĈC

ŜSl :

The sparsity parameter l controls the degree of sparsity in b, such

that the number of pathways and SNPs selected by the model

increases as l is reduced from a maximal value lmax, above which

b̂b~0. The parameter a controls how the sparsity constraint is

distributed between the two penalties. When a~0, (1) reduces to

the group lasso, so that sparsity is imposed only at the pathway

level, and all SNPs within a selected pathway have non-zero

coefficients. When 0vav1, solutions exhibit dual-level sparsity,

such that as a approaches 0 from above, greater sparsity at the

group level is encouraged over sparsity at the SNP level. When

a~1, (1) reverts to the lasso, so that pathway information is

ignored.

Figure 1. Sparsity patterns enforced by the group lasso and
sparse group lasso. The set S5f1, . . . ,Pg of causal SNPs influencing
the phenotype are represented by boxes that are shaded grey. Causal
SNPs are assumed to occur within a set C5f1, . . . ,Lg of causal
pathways, G1, . . . ,GL. Here C~f2,3g. The group lasso enforces sparsity
at the group or pathway level only, whereas the sparse group lasso
additionally enforces sparsity at the SNP level.
doi:10.1371/journal.pgen.1003939.g001

Pathways-Driven Sparse Regression - HDLC
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Model estimation

For the estimation of b̂bSGL we proceed by noting that the

optimisation (1) is convex, and (in the case of non-overlapping

groups) that the penalty is block-separable, so that we can obtain a

solution using block, or group-wise coordinate gradient descent

(BCGD) [35]. A detailed derivation of the estimation algorithm is

given in the accompanying Supplementary Information S1,

Section 3.

From (S.9) and (S.10), the criterion for selecting a pathway l is

given by

DDS(X’l r̂rl ,al)DD2w(1{a)lwl , ð2Þ

and the criterion for selecting SNP j in selected pathway l by

DDX ’j r̂rl,j DD1wal, ð3Þ

where r̂rl~r̂rl{
P

m=l Xl b̂bl and r̂rl,j~r̂rl{
P

k=j Xkb̂bk are respec-

tively the pathway and SNP partial residuals, obtained by

regressing out the current estimated effects of all other pathways

and SNPs respectively. The complete algorithm for SGL

estimation using BCGD is presented in Box 1.

SGL simulation study 1
We test the hypothesis that where causal SNPs are enriched in a

given pathway, pathway-driven SNP selection using SGL will

outperform simple lasso selection that disregards pathway

information in a simple simulation study. We simulate P~2500
genetic markers for N~400 individuals. Marker frequencies for

each SNP are sampled independently from a multinomial

distribution following a Hardy Weinberg equilibrium frequency

distribution. SNP minor allele frequencies are sampled from a

uniform distribution U½0:1,0:5�. SNPs are distributed equally

between 50 non-overlapping pathways, each containing 50 SNPs.

We then test each competing method over 500 Monte Carlo

(MC) simulations. At each simulation, a baseline univariate

phenotype is sampled from N (10,1). To generate genetic effects,

we randomly select 5 SNPs from a single, randomly selected

pathway Gl , to form the set S5Gl of causal SNPs. Genetic effects

are then generated as described in Supplementary Information S1,

Section S3.

To enable a fair comparison between the two methods (SGL

and lasso), we ensure that both methods select the same number of

SNPs at each simulation. We do this by first obtaining the SGL

solution, ŜSSGL, with l~0:85lmax and a~0:8, which ensures

sparsity at both the pathway and SNP level. We use a uniform

pathway weighting vector w~1. We then compute the lasso

solution using coordinate descent over a range of values for the

lasso regularisation penalty, l, and choose the set

ŜSlasso(l’) such that DŜSlasso(l’)D~DŜSSGLD

where DŜSSGLD is the number of SNPs previously selected by SGL,

and DŜSlasso(l’)D is the number of SNPs selected by the lasso with

l~l’. We measure performance as the mean power to detect all 5

causal SNPs over 500 MC simulations, and test a range of genetic

effect sizes (c) (see Supplementary Information S1, Section S3). In

a follow up study, we compare the performance of the two

methods in a scenario in which pathways information is

uninformative. For this we repeat the previous simulations, but

with 5 causal SNPs drawn at random from all 2500 SNPs,

irrespective of pathway membership. Results are presented in

Figure 2.

Referring to Figure 2, we see that where causal SNPs are

concentrated in a single causal pathway (Figure 2 - left), SGL

demonstrates greater power (and equivalently specificity, since the

total number of selected SNPs is constant), compared with the

lasso, above a particular effect size threshold (here c&0:04).

Where pathway information is not important, that is causal SNPs

are not enriched in any particular pathway (Figure 2 - right), SGL

performs poorly.

To gain a deeper understanding of what is happening here, we

also consider the power distributions across all 500 MC

simulations corresponding to each point in the plots of Figure 2.

These are illustrated in Figure 3. The top row of plots illustrates

the case where causal SNPs are drawn from a single causal

pathway. Here we see that there is a marked difference between

the two distributions (SGL vs lasso). The lasso shows a smooth

distribution in power, with mean power increasing with effect size.

In contrast, with SGL the distribution is almost bimodal, with

power typically either 0 or 1, depending on whether or not the

correct causal pathway is selected. This serves as an illustration of

the advantage of pathway-driven SNP selection for the detection

of causal SNPs in the case that pathways are important. As

previously found by Zhou et al. [6] in the context of rare variants

and gene selection, the joint modelling of SNPs within groups gives

rise to a relaxation of the penalty on individual SNPs within

selected groups, relative to the lasso. This can enable the detection

of SNPs with small effect size or low MAF that are missed by the

lasso, which disregards pathways information and treats all SNPs

equally. Where causal SNPs are not enriched in a causal pathway

(bottom row of Figure 3), as expected SGL performs poorly. In this

case SGL will only select a SNP where the combined effects of

constituent SNPs in a pathway are large enough to drive pathway

selection.

Finally, with many pathways methods an adjustment to

pathway test statistics is made to account for biases due to

variations in pathway size, that is the number of SNPs in a

pathway [6]. We explore potential biases using SGL for pathway

selection using the simulation framework described above, but this

time allowing for varying pathway sizes, ranging from 10 to 200

Box 1. SGL-BCGD Estimation Algorithm

1. initialise br0.
2. repeat: [pathway loop]

for pathway l = 1, 2,…, L:
if S X’l r̂rl , alð Þk k2ƒ 1{að Þlwl

blr0
else
repeat: [SNP loop]

for j~l1, . . . ,lPl
:

if bj = 0 :
Newton update b��j /bj using (S.14)

and (S.12)
else:

Newton update b��j /bj using (S.11)

and (S.12)
if f b��l
� �

wf blð Þ:
b��j /

b��j zbj

2

bj/b��j
until convergence of bl [SNP loop]

until convergence of b [pathway loop]

3. b̂bSGL/b

Pathways-Driven Sparse Regression - HDLC
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SNPs. We find no evidence of a pathway size bias (see

Supplementary Information S1, Section 5 for further details).

We discuss the issue of accounting for pathway size and other

potential biases in pathway and SNP selection when using real

data in a later section.

The problem of overlapping pathways
The assumption that pathways are disjoint does not hold in

practice, since genes and SNPs may map to multiple pathways (see

‘Pathway mapping’ section below). This means that typically

Gl\Gl’=w for some l=l’. In the context of pathways-driven SNP

selection using SGL, this has two important implications. Firstly,

the optimisation (1) is no longer separable into groups (pathways),

so that convergence using coordinate descent is no longer

guaranteed [35]. Secondly, we wish to be able to select pathways

independently, and the SGL model as previously described does

not allow this. For example consider the case of an overlapping

gene, that is a gene that maps to more than one pathway. If a SNP

mapping to this gene is selected in one pathway, then it must be

selected in each and every pathway containing the mapped gene,

so that all pathways mapping to the gene are selected. We instead

want to admit the possibility that the joint SNP effects in one

pathway may be sufficient to allow pathway selection, while the

joint effects in another pathway containing some of the same SNPs

do not pass the threshold for pathway selection.

A solution to both these problems is obtained by duplicating

SNP predictors in X, so that SNPs belonging to more than one

pathway can enter the model separately [30,36]. The process

Figure 2. SGL vs Lasso: comparison of power to detect 5 causal SNPs. Each data point represents mean power over 500 MC simulations. Left:
Causal SNPs drawn from single causal pathway. Right: Causal SNPs drawn at random.
doi:10.1371/journal.pgen.1003939.g002

Figure 3. SGL vs Lasso: distribution over 500 MC simulations of power to detect 5 causal SNPs. Each plot represents the power
distribution at a single data point in Figure 2. The power distribution is discrete, since each method can identify 0, 1, 2, 3, 4 or 5 causal SNPs, with
corresponding power 0, 0.2, 0.4, 0.6, 0.8 or 1.0. Top row: Causal SNPs drawn from single causal pathway. Bottom row: Causal SNPs drawn at random.
doi:10.1371/journal.pgen.1003939.g003

Pathways-Driven Sparse Regression - HDLC
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works as follows. An expanded design matrix is formed from the

column-wise concatenation of the L,(N|Pl) sub-matrices, Xl , to

form the expanded design matrix X�~½X1,X2, . . . ,XL� of size

(N|P�), where P�~
P

l Pl . The corresponding P�|1 param-

eter vector, b�, is formed by joining the L,(Pl|1) pathway

parameter vectors, b�l , so that b�~½b�1,b�2, . . . ,b�L�’. Pathway

mappings with SNP indices in the expanded variable space are

reflected in updated groups G�1, . . . ,G�L. The SGL estimator (1),

adapted to account for overlapping groups, is then given by

b̂bSGL�~arg minbf
1

2
DDy{X�b�DD22z(1{a)l

XL

l~1

wl DDb�l DD2zalDDb�DD1g:

ð4Þ

With this overlap expansion, the model is then able to perform

pathway and SNP selection in the way that we require, and the

corresponding optimisation problem is amenable to solution using

the BCGD estimation algorithm described in Box 1. However, for

the purpose of pathways-driven SNP selection, the application of

this algorithm presents a problem. This arises from the replication

of overlapping SNP predictors in each group, X�l , that they occur.

Consider for example the simple situation where there are two

pathways, G�k,G�l , containing sets of causal SNPs S�k(G�k and S�l (G�l
respectively. Here the � indicates that SNP indices refer to the expanded

variable space. We begin by assuming that S�k and S�l contain the same

SNPs, so that in the unexpanded variable space, Sk~Sl .

We then proceed with BCGD by first estimating b�k. We assume

that the correct SNPs are selected, so that fb̂b�j =0 : j[S�kg, and

b̂b�j ~0 otherwise. For the estimation of b�l , the estimated effectP
j[S�k

X �j b̂b�j , of these overlapping causal SNPs is removed from the

regression, through its incorporation in the block residual

r̂r�l ~y{
P

j[S�k X �j b̂b�j . Since no other causal SNPs exist in pathway

G�l ,X�’l r̂r�l ~0, so that the criterion for pathway selection,

DDS(X�’l r̂r�l ,al)DD2w(1{a)lwl (2) is not met. That is G�l is not selected.

Now consider the case where additional, non-overlapping causal

SNPs, possibly with smaller effects, occur in G�l , so that in the

unexpanded variable space, Sk5Sl . In other words, causal SNPs

are partially overlapping (see Figure 4). This is the situation for example

where multiple causal genes overlap both pathways, but one or

more additional causal genes occur in Gl . During BCGD pathway

G�l is then less likely to be selected by the model, than would be the

case if there were no overlapping SNPs, since once again the effects

of overlapping causal SNPs, Sk\Sl~Sk, are removed.

For pathways-driven SNP selection, we will argue that we instead

require that SNPs are selected in each and every pathway whose joint

SNP effects pass a revised pathway selection threshold, irrespective of

overlaps between pathways. This is equivalent to the previous

pathway selection criterion (2), but with the additional assumption

that pathways are independent, in the sense that they do not compete

in the model estimation process. We describe a revised estimation

algorithm under the assumption of pathway independence below.

We justify the strong assumption of pathway independence with

the following argument. In reality, we expect that multiple pathways

may simultaneously influence the phenotype, and we also expect

that many such pathways will overlap, for example through their

containing one or more ‘hub’ genes, that overlap multiple pathways

[37,38]. By considering each pathway independently, we aim to

maximise the sensitivity of our method to detect these variants and

pathways. In contrast, without the independence assumption, a

competitive estimation algorithm will tend to pick out one from

each set of similar, overlapping pathways, and miss potentially

causal pathways and variants as a consequence. We illustrate this

idea in the simulation study in the following section. One potential

concern is that by not allowing pathways to compete against each

other, specificity may be reduced, since too many pathways and

SNPs may be selected. We discuss the issue of specificity further in

the context of results from the simulation study.

A detailed derivation of the SGL model estimation algorithm

under the independence assumption is given in Supplementary

Information S1, Section 2. The main results are that the pathway

(2) and SNP (3) selection criteria become

DDS(X’ly,al)DD2w(1{a)lwl , and

DDX ’jyDD1wal ð5Þ

respectively. The key difference is that partial derivatives r̂rl and r̂rl,j

are replaced by y, that is each pathway is regressed against the

phenotype vector y. This means that there is no block coordinate

descent stage in the estimation, so that the revised algorithm utilises

only coordinate gradient descent within each selected pathway. For

this reason we use the acronym SGL-CGD for the revised algorithm,

and SGL-BCGD for the previous algorithm using block coordinate

gradient descent. The new algorithm is described in Box 2.

Finally, we note that for SNP selection we are interested only in

the set ŜS of selected SNPs in the unexpanded variable space, and

not the set S�~fj� : b�j =0,j�[f1, . . . ,P�gg. Since, under the

independence assumption, the estimation of each b�l does not

depend on the other estimates, b�k,k=l, we do not need to record

separate coefficient estimates for each pathway in which a SNP is

selected. Instead we need only record the set ŜSl ,l[ĈC of SNPs

selected in each selected pathway. This has a useful practical

implication, since we can avoid the need for an expansion of X or

b, and simply form the complete set of selected SNPs as

ŜS~
[
l[ĈC

ŜSl :

SGL simulation study 2
We now explore some of the issues raised in the preceding

section, specifically the potential impact on pathway and SNP

selection power and specificity of treating the pathways as

independent in the SGL estimation algorithm. We do this in a

simulation study in which we simulate overlapping pathways. The

simulation scheme is specifically designed to highlight differences

Figure 4. Two pathways with partially overlapping causal
SNPs. Causal SNPs (marked in grey) in the set Sk overlap both
pathways, so that Sk~Gk\Gl . Additional causal SNPs, Sl\\Sk ,
(marked in purple) occur in pathway l only.
doi:10.1371/journal.pgen.1003939.g004
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in pathway and SNP selection with the independence assumption

(using the SGL-CGD estimation algorithm in Box 2) and without

it (using the standard SGL estimation algorithm in Box 1).

SNPs with variable MAF are simulated using the same procedure

described in the previous simulation study, but this time SNPs are

mapped to 50 overlapping pathways, each containing 30 SNPs. Each

pathway overlaps any adjacent (by pathway index) pathway by 10

SNPs. This overlap scheme is illustrated in Figure 5 (top).

As before we consider a range of overall genetic effect sizes, c. A

total of 2000 MC simulations are conducted for each effect size. At

MC simulation z, we randomly select two adjacent pathways,

Gl ,Glz1 where l[f1, . . . ,49g. From these two pathways we

randomly select 10 SNPs according to the scheme illustrated in

Figure 5 (bottom). This ensures that causal SNPs overlap a

minimum of 1, and a maximum of 2 pathways, with

Sz5(Gl\\Gl{1)|(Glz1\\Glz2). The true set of causal path-

ways, C, is then given by flg, flz1g or fl,lz1g (although

simulations where DCD~1 will be extremely rare). Genetic effects on

the phenotype are generated as described previously (Supplemen-

tary Information S1, Section S3).

SNP coefficients are estimated for each algorithm, SGL-BCGD

and SGL-CGD, using the same regularisation with l~0:85lmax

and a~0:85 for both.

The average number of pathways and SNPs selected by SGL-

BCGD and SGL-CGD across all 2000 MC simulations is reported in

Table 1. As expected, for both models, the number of selected variables

(pathways or SNPs) increases with decreasing effect size, as the number

of pathways close to the selection threshold set by lmax increases.

For each model, at MC simulation z we record the pathway and

SNP selection power, DĈCz\CzD=DCzD and DŜSz\SzD=DSzD respectively.

Since the number of selected variables can vary slightly between the

two models, we also record false positive rates (FPR) for pathway

and SNP selection as DĈCz\\CzD=DĈCzD and DŜSz\\SzD=DŜSzD respectively.

The large possible variation in causal SNP distributions, causal

SNP MAFs etc. makes a comparison of mean power and FPR

between the two methods somewhat unsatisfactory. For example,

depending on effect size, a large number of simulations can have

either very high, or very low pathway and SNP selection power,

masking subtle differences in performance between the two

methods. Since we are specifically interested in establishing the

relative performance of the two methods, we instead illustrate the

number of simulations at which one method outperforms the other

across all 2000 MC simulations, and show this in Figure 6. In this

figure, the number of simulations in which SGL-CGD outper-

forms SGL, i.e. where SGL-CGD power.SGL-BCGD power, or

SGL-CGD FPR,SGL-BCGD FPR, are shown in green. Con-

versely, the number of simulations where SGL-BCGD outper-

forms SGL-CGD are shown in red.

We first consider pathway selection performance (top row of

Figure 6). For both methods, the same number of pathways are

selected on average, across all effect sizes (Table 1). At low effect

sizes, there is no difference in performance between the two

methods for the large majority of MC simulations, and where there

is a difference, the two methods are evenly balanced. As with SGL

Simulation Study 1, this is the region (with cƒ0:04) where pathway

selection fairs no better than chance. With cw0:04, SGL-CGD

consistently outperforms SGL, both in terms of pathway selection

sensitivity and control of false positives (measured by FPR).

To understand why, we turn to SNP selection performance

(bottom row of Figure 6). At small effect sizes (cƒ0:04), in the

small minority of simulations where the correct pathways are

identified, SGL-BCGD tends to demonstrate greater power than

SGL-CGD (Figure 6 bottom left). However, this is at the expense

of lower specificity (Figure 6 bottom right). These difference are

due to the slightly larger number of SNPs selected by SGL-BCGD

Box 2. SGL-CGD Estimation Algorithm for
Overlapping Pathways

1. initialise b̂b�/0.
2. for pathway l = 1, 2,…, L:

if S X�’l y, al
� ��� ��

2
ƒ 1{að Þlwl

b̂b�l /0
else

repeat: [CGD (SNP) loop]
for j~l1, . . . ,lPl

:

if b̂b�j ~0 :

Newton update b̂b��j /b̂b�j using (S.21) and

(S.12)
else:

Newton update b̂b��j /b̂b�j using (S.20) and

(S.12)

if f b��l
� �

wf b�
l

� �
:

b̂b��j /
b̂b��j zb̂b�j

2

b̂b�j /b̂b��j
until convergence

3. b̂bSGL/b�

Table 1. Simulation study 2: Mean number of pathways and
SNPs selected by each model at each effect size, c, across 2000
MC simulations.

c

0.02 0.04 0.06 0.08 0.1 0.12

pathways SGL-CGD 5.8 5.9 5.4 4.8 3.9 3.2

SGL-BCGD 5.8 5.9 5.4 4.8 3.9 3.2

SNPs SGL-CGD 26.6 27.0 24.8 22.2 18.5 15.3

SGL-BCGD 28.8 29.3 26.7 23.6 19.4 15.8

doi:10.1371/journal.pgen.1003939.t001

Figure 5. SGL Simulation Study with overlapping pathways.
Top: Illustration of pathway overlap scheme. The are 30 SNPs in each
pathway. Pathways Gl ,(l~1, . . . ,50) overlap each adjacent pathway by
10 SNPs. Bottom: Causal SNPs from adjacent pathways, l,lz1 are
randomly selected from the region marked in purple, ensuring that
SNPs in S overlap a maximum of two pathways.
doi:10.1371/journal.pgen.1003939.g005
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(see Table 1), which in turn is due to the ‘screening out’ of

previously selected SNPs from the adjacent causal pathway during

BCGD, as described previously. This results in the selection of a

larger number of SNPs when any two overlapping pathways are

selected by the model. In the case where two causal pathways are

selected, SNP selection power is then likely to be higher, although

at the expense of a greater number of false positives.

When pathway effects are just on the margin of detectability

(c~0:06), SGL-CGD is more often able to select both causal

pathways, although this doesn’t translate into increased SNP

selection power. This is most likely because at this effect size

neither model can detect SNPs with low MAF, so that SGL-CGD

is detecting the same (overlapping) SNPs in both causal pathways.

Note that once again SGL-BCGD typically has a higher FPR than

SGL-CGD, since more SNPs are selected from non-causal

pathways.

As the effect size increases, the number of simulations in which

SGL-CGD outperforms SGL-BCGD for SNP selection power

grows, paralleling the former method’s enhanced pathway

selection power. This is again a demonstration of the screening

effect with SGL-BCGD described previously. This means that

SGL-CGD is more often able to select both causal pathways, and

to select additional causal SNPs that are missed by SGL. These

additional SNPs are likely to be those with lower MAF, for

example, that are harder to detect with SGL, once the effect of

overlapping SNPs are screened out during estimation using

BCGD. Interestingly, as before SGL-CGD continues to exhibit

lower false positive rates than SGL. This suggests that, with the

simulated data considered here, the independence assumption

offers better control of false positives by enabling the selection of

causal SNPs in each and every pathway to which they are mapped.

In contrast, where causal SNPs are successively screened out

during the estimation using BCGD, too many SNPs with spurious

effects are selected.

The relative advantage of SGL-CGD over SGL-BCGD on all

performance measures starts to decrease around c~0:1, as SGL-

BCGD becomes better able to detect all causal pathways and

SNPs, irrespective of the screening effect.

Pathway and SNP selection bias
One issue that must be addressed is the problem of selection

bias, by which we mean the tendency of SGL to favour the

selection of particular pathways or SNPs under the null, where no

SNPs influence the phenotype. Possible biasing factors include

variations in pathway size or varying patterns of SNP-SNP

correlations and gene sizes. Common strategies for bias reduction

include the use of dimensionality reduction techniques and

permutation methods [39–42].

In earlier work we described an adaptive weight-tuning strategy,

designed to reduce selection bias in a group lasso-based pathway

Figure 6. SGL-CGD vs SGL-BCGD performance, measured across 2000 MC simulations. Top row: Pathway selection performance. (Left)
green bars indicate the number of MC simulations where SGL-CGD has greater pathway selection power than SGL. Red bars indicate where SGL-
BCGD has greater power than SGL-CGD. (Right) green bars indicate the number of MC simulations where SGL-CGD has a lower FPR than SGL. Red
bars indicate the opposite. Bottom row: As above, but for SNP selection performance.
doi:10.1371/journal.pgen.1003939.g006
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selection method [30]. This works by tuning the pathway weight

vector, w~(w1,w2, . . . ,wL), so as to ensure that pathways are

selected with equal probability under the null. This strategy can be

readily extended to the case of dual-level sparsity with the SGL.

Our procedure rests on the observation that for pathway

selection to be unbiased, each pathway must have an equal chance

of being selected. For a given a, and with l tuned to ensure that a

single pathway is selected, pathway selection probabilities are then

described by a uniform distribution, Pl~1=L, for l~1, . . . ,L. We

proceed by calculating an empirical pathway selection frequency

distribution, P�(w), by determining which pathway will first be

selected by the model as l is reduced from its maximal value, lmax,

over multiple permutations of the response, y. This process is

described in detail in Supplementary Information S1, Section 4.

We note that alternative methods for the construction of ‘null’

distributions, for example by permuting genotype labels, have

been used in existing pathways analysis methods [6]. In the present

context we choose to permute phenotype labels in order to

preserve LD structure, since we expect this to be a significant

source of bias with our data.

Our iterative weight tuning procedure then works by applying

successive adjustments to the pathway weight vector, w, so as to

reduce the difference, dl~P�l (w){Pl , between the unbiased and

empirical (biased) distributions for each pathway. At iteration t, we

compute the empirical pathway selection probability distribution

P�(w(t)), determine dl for each pathway, and then apply the

following weight adjustment

w
(tz1)
l ~w

(t)
l 1{sign(dl)(g{1)L2d2

l

� �
0vgv1, l~1, . . . ,L:

The parameter g controls the maximum amount by which each wl

can be reduced in a single iteration, in the case that pathway l is

selected with zero frequency. The square in the weight adjustment

factor ensures that large values of Ddl D result in relatively large

adjustments to wl . Iterations continue until convergence, wherePL
l~1 Ddl Dv .

Note that when multiple pathways are selected by the model,

the expected pathway selection frequency distribution under the

null will not be uniform. This is because pathways overlap, so that

selection frequencies will reflect the complex distribution of

overlapping genes, as indeed will unbiased empirical selection

frequencies. We have shown previously that this adaptive weight-

tuning procedure gives rise to substantial gains in sensitivity and

specificity with regard to pathway selection [30].

Ranking variables
With most variable selection methods, a choice for the

regularisation parameter, l, must be made, since this determines

the number of variables selected by the model. Common strategies

include the use of cross validation to choose a l value that minimises

the prediction error between training and test datasets [43]. One

drawback of this approach is that it focuses on optimising the size of

the set, ĈC, of selected pathways (more generally, selected variables)

that minimises the cross validated prediction error. Since the

variables in ĈC will vary across each fold of the cross validation, this

procedure is not in general a good means of establishing the

importance of a unique set of variables, and can give rise to the

selection of too many variables [44,45]. For the lasso, alternative

approaches, based on data subsampling or bootstrapping have been

shown to improve model consistency, in the sense that the correct

model is selected with a high probability [45–47]. These methods

work by recording selected variables across multiple subsamples of

the data, and forming the final set of selected variables either as the

intersection of variables selected at each model fit, or by assessing

variable selection frequencies. Examples of the use of such

approaches can be found in a number of recent gene mapping

studies involving model selection using either the lasso or elastic net

[9,19,44,48]. Motivated by these ideas, we adopt a resampling

strategy in which we calculate pathway, gene and SNP selection

frequencies by repeatedly fitting the model over B subsamples of the

data, at fixed values for a and l. Each random subsample of size

N=2 is drawn without replacement. Our motivation here is to

exploit knowledge of finite sample variability obtained by subsam-

pling, to achieve better estimates of a variable’s importance. With

this approach, which in some respects resembles the ‘pointwise

stability selection’ strategy of Meinshasen and Bühlmann [45],

selection frequencies provide a direct measure of confidence in the

selected variables in a finite sample. This resampling strategy also

allows us to rank pathways, genes and SNPs in order of their

strength of association with the phenotype, so that we expect the

true set of causal variables to achieve a high ranking, whereas non-

causal variables will be ranked low.

There have however been suggestions that the use of lasso-type

penalties in combination with a subsampling approach can be

problematic when applied to GWAS data, where there is

widespread correlation between SNPs [49]. This is due to the

lasso’s tendency to single out different SNPs within an LD block

from subsample to subsample, depressing variable selection

frequencies for groups of SNPs with high LD. Possible remedies

include the use of grouping or sliding-window type strategies, so

that neighbouring SNPs in high LD are added to the set of selected

SNPs at each subsample. We test the relative performance of these

different strategies in a final simulation study described in the next

section.

For pathway ranking, we denote the set of selected pathways at

subsample b by

ĈC(b)~fl : b̂b(b)
l =0g b~1, . . . ,B,

where b̂b(b)
l is the estimated SNP coefficient vector for pathway l at

subsample b. The selection probability for pathway l measured

across all B subsamples is then

p
path
l ~

1

B

XB

b~1

I
(b)
l l~1, . . . ,L

where the indicator function, I
(b)
l ~1 if l[ĈC(b), and 0 otherwise.

Pathways are ranked in order of their selection probabilities,

p
path
l1

§, . . . ,§p
path
lL

.

For SNP ranking, we denote the set of SNPs selected at

subsample b (in the unexpanded variable space) by ŜS(b), and

further denote the set of all SNPs within a specified LD threshold, r

of SNPs in ŜS(b) by ŜSr(b) (including SNPs in ŜS(b)). We use an R2

correlation coefficient §0:8 for this threshold. Using the same

procedure as for pathway ranking, we then obtain two possible

expressions for the selection probability of SNP j across B

subsamples as

pSNP
j ~

1

B

XB

b~1

J
(b)
j and pSNPr

j ~
1

B

XB

b~1

J
r(b)
j ,

where the indicator functions, J
(b)
j ~1 if j[ŜS(b), and 0 otherwise;

and J
r(b)
j ~1 if j[ŜSr(b), and 0 otherwise.
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Finally, for gene ranking we denote the set of selected genes to

which the SNPs in ŜS(b) are mapped by ŵw(b)5W, where

W~f1, . . . ,Gg is the set of gene indices corresponding to all G

mapped genes. An expression for the selection probability for gene

g is then

pgene
g ~

1

B

XB

b~1

K (b)
g ,

where the indicator function K (b)
g ~1 if g[ŵw(b)

, and 0 otherwise.

SNPs and genes are ranked in order of their respective selection

frequencies.

Software implementing the methods described here, together

with sample data is available at http://www2.imperial.ac.uk/

,gmontana/psrrr.htm.

Simulation study 3
We evaluate the performance of the above strategies for ranking

pathways, SNPs and genes in a final simulation study. For this

study we use real genotype and pathways data so that we can

gauge variable selection performance in the presence of LD, and

variations in the distribution of gene and pathway sizes and of

overlaps. For these simulations we use genome-wide SNP data

from the ‘SP2’ dataset and map SNPs to pathways from the

KEGG pathways database (see following sections for further

details). This dataset comprises 1,040 individuals, each genotyped

at 542,297 SNPs, of which 75,389 SNPs can be mapped to 4,734

genes and 185 pathways with a mean pathway size of 1,080 SNPs.

We test a number of different scenarios in which we vary the

numbers of causal SNPs and SNP effect sizes. For each scenario

we perform 400 MC simulations. For each MC simulation we

select k causal SNPs at random from a single randomly selected

causal pathway. Note however that because pathways can overlap,

different numbers of causal SNPs (up to a maximum number k)

may overlap more than one pathway. We then generate a

quantitative phenotype in which we control the per-locus effects

size, GV~2b2m(1{m), where b is the proportionate change in

phenotype per causal allele, and m is the locus minor allele

frequency. GV is then the total proportion of trait variance

attributable to each causal locus under an additive model, and

under Hardy-Weinberg equilibrium [50]. We also report the total

variance, TV, which is the proportion of trait variance attributable

to all causal loci.

Using contemporaneous GWAS data, Park et al. [50], report

values for GV ranging from 0.0004 to 0.02 for three complex traits

(height, Crohns disease and breast, prostate and colorectal (BPC)

cancers), although clearly only the largest studies will have

sufficient power to identify the smallest genetic effects. They

additionally produce estimates ranging from 67 to 201 for the total

number of susceptibility loci using these effect sizes, with

corresponding values for TV ranging from 0.1 to 0.36 (95% CI).

It is interesting to note that for certain diseases there is also

evidence for polygenic modes of inheritance involving many

thousands of SNPs with small effects [51]. While it is currently

impossible to translate findings from these and other GWAS into

an understanding of how causal SNPs might be distributed within

putative causal pathways, we are guided in part by these reported

values in constructing our six simulation test scenarios, which are

listed in Table 2. These are designed to cover cases where the

number of causal SNPs is relatively small (k~5), or large (k~50)
relative to pathway size, and to test cases where the proportion of

trait variance explained by causal SNPs spans a realistic range.

For simplicity, we set the regularisation parameter l to be very

close to lmax, to ensure that a single pathway is selected at each of

the B~100 subsamples generated for each simulation. We set

a~0:9 and characterise the resulting SNP sparsity in the final two

columns of Table 2. At each MC simulation, all causal SNPs used

to generate the phenotype are removed from the genotype data

prior to model fitting.

In Figure 7(g) we present the proportion of subsamples (across

all MC simulations) in which the correct causal pathway is

selected, for each of the scenarios described in Table 2. Since

pathways overlap, a causal pathway is here defined as any pathway

containing one or more causal SNPs. Since only one pathway is

selected at each subsample, true positive rates for each scenario

represent the mean number of subsamples in which a causal

pathway is selected, across all MC simulations.

In Figure 7(a)–(f) we present results for SNP and gene ranking

performance using SGL-CGD in combination with our resam-

pling-based ranking strategy, using the three different selection

frequency measures, pSNP,pSNPr and pgene, described in the

previous section. For SNP rankings, since actual causal SNPs used

to generate phenotypes are removed, true positives are defined as

selected SNPs that tag at least one causal SNP with an R2

coefficient §0:8. False positives are selected SNPs which do not

tag any causal SNP. For gene rankings, causal genes are defined as

those that map to a true causal SNP. True positives are then

selected causal genes, and false positives are selected non-causal

genes. Since the number of ranked variables varies across

simulations, mean true positive rates across all simulations are

plotted against the number of selected false positives for each

scenario. Thus, for a particular simulation, if the highest ranking

false positive is at rank z, then the number of true positives is z{1,

and the true positive rate for a single false positive is the proportion

of true causal variables (SNPs or genes) that are tagged by these

z{1 selected variables. SNP and gene rankings using a univariate,

regression-based quantitative trait test (QTT) for association are

also presented for comparison. For SNP rankings, variables are

ranked by their QTT p-value. For gene rankings, SNPs are first

mapped to genes, and genes are then ranked by their smallest

associated SNP p-value. SNP to gene mappings for all methods are

determined in the same way as for mapping SNPs to pathways,

that is SNPs are mapped to genes within 10 kbp upstream or

downstream of the SNP in question (see ‘Pathway mapping’

section below).

It is immediately apparent that the best performance, both in

terms of power and control of false positives, is obtained by

grouping selected SNPs into genes, that is when ranking by gene

Table 2. Simulation study 3: Six scenarios tested.

scenario k GV TV
mean # selected SNPs
at each subsample

mean #
ranked SNPs
across all
simulations

(a) 5 0.005 0.03 85 4856

(b) 5 0.01 0.05 71 4170

(c) 5 0.05 0.2 43 483

(d) 50 0.001 0.1 65 3803

(e) 50 0.005 0.2 57 903

(f) 50 0.01 0.4 56 496

doi:10.1371/journal.pgen.1003939.t002
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selection frequency, pgene. As described elsewhere [49], simple

ranking by SNP selection frequency (pSNP) gives poor results, even

if we extend SNP selection to include nearby SNPs in strong LD

with selected variants (pSNPr ). A notable feature of our method is

highlighted by comparing scenarios (c) and (e). In scenario (c), the

genetic variance explained by each causal locus is relatively high,

and gene ranking performance for both QTT and SGL is very

good. For scenario (e), the proportion of total phenotypic variance

explained by causal loci is the same as that in (c) (TV~0:2), but in

the former relatively small genetic effects are distributed across a

larger number of causal loci (k~50 vs. k~5). Pathway selection

power is maintained by SGL for both scenarios, and SGL is also

able to maintain superior gene ranking performance with

relatively high power and good control of false positives compared

to QTT where performance is poor. Also of interest is the fact that

SGL gene ranking performance is able to outperform QTT SNP

and gene ranking, even at the smallest per-locus effect sizes

(measured by GV - scenarios (a) and (d)), where pathway selection

performance is relatively low. Note that in some cases (most

notably in scenario (a)), SGL SNP and gene ranking power can

exceed pathway selection power. This is because true positive

SNPs or genes may be ranked higher than false positives, even in

the case that a causal pathway is selected in relatively few

subsamples. Indeed this ability to distinguish true from false

positives in variable rankings at low signal to noise thresholds is

one of the attractive features of our subsampling approach.

We conclude from this simulation study that SGL in combina-

tion with gene ranking using our proposed subsampling approach

Figure 7. A–F: SNP and gene ranking performance for the six different scenarios described in Table 2. Plots show mean true positive
rates over 400 MC simulations for each scenario. Three different subsample ranking methods (solid lines) are used for SGL, as described in the
previous section. SNP and gene ranking performance obtained by ranking p-values from a univariate, regression-based quantitative trait test (QTT -
dashed lines) are shown for comparison. Definitions for true positive rates and number of false positives are described in the main text. G: Pathway
selection performance for each scenario. True positive rates represent the proportion of simulations in which the correct causal pathway is selected.
doi:10.1371/journal.pgen.1003939.g007
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is able to demonstrate good power and specificity over a range of

scenarios using real genotype and pathways data. We next use this

approach in an application study which we describe in the

remainder of this article.

Subjects, genotypes and phenotypes
Our application study using pathways-driven SNP selection to

search for pathways and genes associated with variation in serum

high-density lipoprotein cholesterol levels is carried out using data

from two separate cohorts of Asian adults. These datasets have

previously been used to search for novel variants associated with

type 2 diabetes mellitus (T2D) in Asian populations. The first

(discovery) cohort is from the Singapore Prospective Study

Program, hereafter referred to as ‘SP2’, and the second

(replication) dataset is from the Singapore Malay Eye Study or

‘SiMES’. Detailed information on both datasets can be found in

[52], but we briefly outline some salient features here.

Both datasets comprise whole genome data for T2D cases and

controls, genotyped on the Illumina HumanHap 610 Quad array.

For the present study we use controls only, since variation in lipid

levels between cases and controls can be greater than the variation

within controls alone. The use of both cases and controls in our

analysis might then lead to a confounded analysis, where any

associations could be linked to T2D status or some other spurious

factor.

A full investigation of population stratification for the SP2

dataset was carried out for the original GWAS study using PCA

with 4 panels from the International Hapmap Project and the

Singapore Genome Variation Project, to ensure that this dataset

contained only ethnic Chinese [52–54]. The SiMES dataset

comprises ethnic Malays, and shows some evidence of cryptic

relatedness between samples. For this reason, the first two

principal components of a PCA for population structure are used

as covariates in our analysis of this dataset. Again full details of the

stratification analysis can be found in [52] and associated

Supplementary Information.

A summary of information pertaining to genotypes for each

dataset, both before and after imputation and pathway mapping, is

given in Table 3, along with a list of phenotypes and covariates.

Genotype imputation
After the initial round of quality control, genotypes for both

datasets have a maximum SNP missingness of 5%. Since our

method cannot handle missing values, we perform ‘missing holes’

SNP imputation, so that all missing SNP calls are estimated

against a reference panel of known haplotypes.

SNP imputation proceeds in two stages. First, imputation

requires accurate estimation of haplotypes from diploid genotypes

(phasing). This is performed using SHAPEIT v1 (http://www.

shapeit.fr). This uses a hidden Markov model to infer haplotypes

from sample genotypes using a map of known recombination rates

across the genome [55]. The recombination map must correspond

to genotype coordinates in the dataset to be imputed, so we use

recombination data from HapMap phase II, corresponding to

genome build NCBI b36 (http://hapmap.ncbi.nlm.nih.gov/

downloads/recombination/2008-03_rel22_B36/).

Following the primary phasing stage, SNP imputation is performed

using IMPUTE v2.2.2 (http://mathgen.stats.ox.ac.uk/impute/

impute_v2.html). IMPUTE uses a reference panel of known

haplotypes to infer unobserved genotypes, given a set of observed

sample haplotypes [56]. The latest version (IMPUTE 2) uses an

updated, efficient algorithm, so that a custom reference panel can be

used for each study haplotype, and for each region of the genome,

enabling the full range of reference information provided by

HapMap3 [57] to be used. Following IMPUTE 2 guidelines, we

use HapMap3 reference data corresponding to NCBI b36 (http://

mathgen.stats.ox.ac.uk/impute/data_download_hapmap3_r2.html)

which includes haplotype data for 1,011 individuals from Africa, Asia,

Europe and the Americas. SNPs are imputed in 5MB chunks, using

an effective population size (Ne) of 15,000, and a buffer of 250 kb to

avoid edge effects, again as recommended for IMPUTE 2.

Pathway mapping
Pathways GWAS methods rely on prior information mapping

SNPs to functional networks or pathways. Since pathways are

typically defined as groups of interacting genes, SNP to pathway

mapping is a two-part process, requiring the mapping of genes to

pathways, and of SNPs to genes. A consistent strategy for this

mapping process has however yet to be established, a situation

compounded by a lack of agreement on what constitutes a

pathway in the first place [58].

The number and size of databases devoted to classifying genes into

pathways is growing rapidly, as is the range and diversity of gene

interactions considered (see for example http://www.pathguide.

org/). Databases such as those provided by KEGG (http://www.

genome.jp/kegg/pathway.html), Reactome (http://www.reactome.

org/) and Biocarta (http://www.biocarta.com/) classify pathways

across a number of functional domains, for example apoptosis, cell

adhesion or lipid metabolism; or crystallise current knowledge on

specific disease-related molecular reaction networks. Strategies for

pathways database assembly range from a fully-automated text-

mining approach, to that of careful curation by experts. Inevitably

therefore, there is considerable variation between databases, in terms

of both gene coverage and consistency [59], so that the choice of

database(s) will itself influence results in pathways GWAS.

The mapping of SNPs to genes adds a further layer of

complexity, since although many SNPs may occur within gene

boundaries, on a typical GWAS array the vast majority of SNPs

will reside in inter-genic regions. In an attempt to include variants

potentially residing in functionally significant regions lying outside

Table 3. Genotype and phenotype information
corresponding to the SP2 and SiMES datasets used in the
study.

SP2 Simes

Sample size N = 1,040 N = 1,099

Genotypes

Before imputation

SNPs available for analysis(1) 542,297 557,824

SNPs with missing genotypes(2) 152,372 282,549

Post imputation

SNPs available for analysis(3) 492,639 515,503

Phenotypes/covariates

quantitative trait (phenotype)(4) HDLC HDLC

covariates gender, age, age2, gender, age, age2,

BMI(5) BMI, PC1, PC2(6)

(1)after first round of quality control [52] and removal of monomorphic SNPs.
(2)maximum 5% missing rate per SNP.
(3)after imputation and removal of SNPs with MAFv0:01.
(4)mg/dL.
(5)body mass index (kg=m2).
(6)principal components relating to cryptic relatedness.
doi:10.1371/journal.pgen.1003939.t003
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gene boundaries, SNPs may be mapped to nearby genes using

various distance thresholds. Various values for SNP to gene

mapping distances, measured in thousands of nucleotide base pairs

(kb), have been suggested in the literature, ranging from mapping

SNPs to genes only if they fall within a specific gene, to the attempt

to encompass upstream promoters and enhancers by extending the

range to 10, 20 or even 500 kb and beyond [18,39,58]. This

process is illustrated schematically in Figure 8. Notable features of

the SNP to pathway mapping process include the fact that genes

(and therefore SNPs) may map to more than one pathway, and

also that many SNPs and genes do not currently map to any

known pathway [7].

Following imputation, SNPs for both datasets in the present

study are mapped to KEGG canonical pathways from the

MSigDB database (http://www.broadinstitute.org/gsea/msigdb/

index.jsp). SNPs are mapped to all genes +10 kb, upstream or

downstream of the SNP in question. We exclude the largest

KEGG pathway (by number of mapped SNPs), ‘Pathways in

Cancer’, since it is highly redundant in that it contains multiple

other pathways as subsets. Details of the pathway mapping process

are given in Figures 9 and 10.

Note that there is a difference in the number of SNPs available for

the pathway mapping between the two datasets, and this results in a

small discrepancy in the total number of mapped genes (SP2: 4,734

mapped genes; SiMES: 4,751). However, both datasets map to all

185 KEGG pathways, and a large majority of mapped genes and

SNPs overlap both datasets. Detailed information on the pathway

mapping process for the two datasets is presented in Table 4.

Figure 8. Schematic illustration of the SNP to pathway mapping process. (i) Genes (green circles) are mapped to pathways using
information on gene-gene interactions (top row), obtained from a gene pathways database. Many genes do not map to any known pathway (unfilled
circles). Also, some genes may map to more than one pathway. (ii) Genes that map to a pathway are in turn mapped to genotyped SNPs within a
specified distance. Many SNPs cannot be mapped to a pathway since they do not map to a mapped gene (unfilled squares). Note SNPs may map to
more than one gene. Some SNPs (orange squares) may map to more than one pathway, either because they map to multiple genes belonging to
different pathways, or because they map to a single gene that belongs to multiple pathways.
doi:10.1371/journal.pgen.1003939.g008

Figure 9. SP2 dataset: SNP to pathway mapping.
doi:10.1371/journal.pgen.1003939.g009
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Ethics statement
An ethics statement covering the SP2 and SiMES datasets used

in this study can be found in [52].

Results

We perform pathways-driven SNP selection on the SP2 and

SiMES datasets independently using SGL, and combine this with

the subsampling procedure described previously to highlight

pathways and genes associated with variation in HDLC levels.

We present results for each dataset separately, followed by a

comparison of the results from both datasets.

SP2 analysis
For the SP2 dataset we consider two separate scenarios for the

regularisation parameters l and a. For the two scenarios we set the

sparsity parameter, l~0:95lmax, but consider two values for a,

namely a~0:95,0:85. We test each scenario over 1000 N=2
subsamples. We also compare the resulting pathway and SNP

selection frequency distributions with null distributions, again over

1000 N=2 subsamples, but with phenotype labels permuted, so

that no SNPs can influence the phenotype.

The parameter a controls how the regularisation penalty is

distributed between the ‘2 (pathway) and ‘1 (SNP) norms of the

coefficient vector. Each scenario therefore entails different

numbers of selected pathways and SNPs, and this information is

presented in Table 5.

Comparisons of empirical and null pathway selection frequency

distributions for each scenario are presented in Figure 11. The

same comparisons for SNP selection frequencies are presented in

Figure 12. In these plots, null distributions (coloured blue) are

ordered along the x-axis according to their corresponding ranked

empirical selection frequencies (marked in red). This is to help

visualise any potential biases that may be influencing variable

selection.

To interpret these results, we begin by noting from Table 5 that

many more SNPs are selected with a~0:85, resulting in higher

SNP selection frequencies, compared to those obtained with

Figure 10. SiMES dataset: SNP to pathway mapping.
doi:10.1371/journal.pgen.1003939.g010

Table 4. Comparison of SNP and gene to pathway mappings
for the SP2 and SiMES datasets.

SP2 SiMES

Total SNPs mapping to pathways 75,389 78,933

Total SNPs mapping to pathways in both datasets
(intersection)

74,864

Total mapped genes 4,734 4,751

Total genes mapping to pathways in both datasets
(intersection)

4,726

Total mapped pathways 185 185

Minimum number of genes mapping to single pathway 11 11

Maximum number of genes mapping to single pathway 63 63

Minimum number of SNPs mapping to single pathway 66 67

Maximum number of SNPs mapping to single pathway 5,759 6,058

Minimum number of pathways mapping to a single SNP 1 1

Maximum number of pathways mapping to a single SNP 45 45

doi:10.1371/journal.pgen.1003939.t004

Table 5. Separate combinations of regularisation parameters,
l and a used for analysis of the SP2 dataset.

l = 0.95lmax

a = 0.85 a = 0.95

empirical

selected pathways 7.966.1 4.864.1

selected SNPs 155161294 1606185

null

selected pathways 9.167.2 5.064.55

selected SNPs 165661401 1556194

For each l, a combination, the mean (6SD) number of selected pathways and
SNPs across all 1000 subsamples is reported.
doi:10.1371/journal.pgen.1003939.t005
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a~0:95 (see Figure 12). This is as expected, since a lower value for

a implies a reduced ‘1 penalty on the SNP coefficient vector,

resulting in more SNPs being selected. Perhaps surprisingly, given

that the ‘2 group penalty (1{a)l is increased, the number of

selected pathways is also greater. This must reflect the reduced ‘1

penalty, which allows a greater number of SNPs to contribute to a

putative selected pathway’s coefficient vector. This in turn

increases the number of pathways that pass the threshold for

selection.

This raises the question of what might be considered to be an

optimal choice for the regularisation-distributional parameter a,

since different assumptions about the number of SNPs potentially

influencing the phenotype may affect the resulting pathway and

SNP rankings. To answer this, we turn our attention to the pathway

and SNP selection frequency distributions for each a value in

Figures 11 and 12. At the lower value of a~0:85 (top plots in

Figures 11 and 12), empirical pathway and SNP selection frequency

distributions appear to be biased, in the sense that there is a

suggestion that pathways and SNPs with the highest empirical

selection frequencies also tend to be selected with a higher frequency

under the null, where there is no association between genotype and

phenotype. This relationship appears to be diminished with

a~0:95, when fewer SNPs are selected by the model. We

investigate this further by plotting empirical vs. null selection

frequencies as a sequence of scatter plots in Figure 13, and we report

Pearson correlation coefficients and p-values for these in Table 6.

Figure 11. Empirical and null pathway selection frequency distributions for all 185 KEGG pathways with the SP2 dataset. For each
scenario, pathways are ranked along the x-axis in order of their empirical pathway selection frequency, p

path
l1

w, . . . ,wp
path
lL

. Top: a~0:85. Bottom:
a~0:95.
doi:10.1371/journal.pgen.1003939.g011
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These provide further evidence of increased correlation between

empirical and null selection frequency distributions at the lower a
value for both pathways and SNPs, again suggesting increased bias

in the empirical results, in the sense that certain pathways and

SNPs tend to be selected with a higher frequency, irrespective of

whether or not a true signal may be present. Further qualitative

evidence of reduced bias with a~0:95 is suggested by the clearer

separation of empirical and null distributions at the higher a value

in Figures 11 and 12. For example, the maximum empirical

pathway selection frequency is reduced by a factor of 0.29 (0.35 to

0.25) as a is increased from 0.85 to 0.95, whereas the maximum

pathway selection frequency under the null is reduced by a factor

of 0.81 (0.29 to 0.054). Similarly for SNPs, the maximum

empirical SNP selection frequency is reduced by a factor of 0.37

(0.52 to 0.33), whereas the maximum SNP selection frequency

under the null is reduced by a factor of 0.9 (0.11 to 0.011).

The increased bias with a~0:85 is most likely due to the

selection of too many SNPs, in the sense that many selected SNPs

do not exhibit real phenotypic effects. These extra SNPs effectively

add noise to the model, in the form of multiple weak, spurious

signals. This in turn will add bias to the resulting selection

frequency distributions, tending to favour, for example, SNPs that

overlap multiple pathways, and the pathways that contain them.

As a is increased, we would expect this biasing effect to be

reduced, until a point where too few SNPs are selected, when there

is then a risk that some of the true signal may be lost.

Note that the reduced but still significant correlations between

empirical and null selection frequency distributions at a~0:95 in

Figure 12. Empirical and null SNP selection frequency distributions with the SP2 dataset. For each scenario, SNPs are ranked along the x-
axis in order of their empirical pathway selection frequency, pSNP

j1
wpSNP

j2
w . . .. Top: a~0:85. Bottom: a~0:95. Note fewer SNPs are selected with

nonzero empirical selection frequency with a~0:95, so that the x-axis range in the bottom plot is reduced.
doi:10.1371/journal.pgen.1003939.g012
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Table 6 are not unexpected. These may reflect the complex

overlap structure between pathways, meaning that pathways (and

associated SNPs) with a relatively high degree of overlap with

other pathways, due for example to the presence of so called ‘hub

genes’, are more likely to harbour true signals, as well as spurious

ones [38,60,61]. Another potential source of correlations between

empirical and null distributions is the effect of LD depressing SNP

selection frequencies, highlighted earlier.

Taking all the above into consideration, we choose to report

results with a~0:95, where there is less evidence of bias due to the

selection of too many SNPs. The top 30 pathways, ranked by their

selection frequency, ppath are presented in Table 7, and the top 30

ranked genes, ranked by pgene are presented in the left hand part of

Table 8. Versions of these tables extending to lower ranks are

provided in Tables S1 and S2.

SiMES analysis
For the replication SiMES dataset, we repeat the above analysis

design, but consider only the ‘low bias’ scenario where

l~0:95lmax and a~0:95. Once again we test each scenario over

1000 N=2 subsamples, and compare the resulting pathway and

SNP selection frequency distributions with null distributions

generated over 1000 N=2 subsamples with phenotype labels

permuted. Pathway and SNP selection frequency distributions are

presented in Figure 14. An investigation of pathway and SNP

selection bias is presented in the form of scatter plots illustrating

potential correlation between empirical and null selection

frequencies in Figure 15, with corresponding Pearson correlation

coefficients and p-values presented in Table 9. The top 30 ranked

pathways and genes are presented in Tables 10 and 8 (right hand

part) respectively, and extended rankings are provided in Tables

S3 and S4.

Comparison of ranked pathway and gene lists
We now consider the problem of comparing the pathway and

gene rankings obtained for each dataset. To do this we require

some measure of distance between each pair of ranked lists. Ideally

this measure should place more emphasis on differences between

highly-ranked variables, since we expect the association signal, and

hence agreement between the ranked lists, to be strongest there.

By the same reasoning, we expect there to be little or no

Figure 13. SP2 dataset: scatter plots comparing empirical and null selection frequencies presented in Figures 11 and 12. Top row:
Pathway selection frequencies with a~0:85,0:95. Bottom row: SNP selection frequencies for the same a values. For clarity, SNP selection frequencies
are plotted for the top 1000 SNPs (by empirical selection frequency) only. Corresponding correlation coefficients (for all ranked SNPs) are presented in
Table 6. Note that pathway and SNP selection frequencies are much higher at the lower a value (left hand plots), since many more variables are
selected (see Table 5.)
doi:10.1371/journal.pgen.1003939.g013

Table 6. SP2 dataset: Pearson correlation coefficients (r) and
p-values for the data plotted in Figure 13.

a = 0.85 a = 0.95

n r p-value n r p-value

pathways 185 0.66 1.3610224 185 0.26 2.961024

SNPs 62,965 0.37 0 30,027 0.11 1.2610284

n denotes the number of predictors considered. For SNPs, coefficients describe
correlations for all predictors selected with nonzero empirical selection
frequencies only, since a large number of SNPs are not selected by the model at
any subsample.
doi:10.1371/journal.pgen.1003939.t006
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agreement between variables at lower rankings, where selection

frequencies are low. Indeed a consideration of empirical and null

selection frequency distributions (Figures 11 (bottom), 12 (bottom)

and 14) suggests that only the very top ranked variables are likely

to reflect any true signal, so that we would additionally like our

distance metric to be able to accommodate consideration of the

top-k variables only, with kvp, where p is the total number of

variables ranked in either dataset. One complication with top-k

lists is that they are partial, in the sense that unlike complete (k~p)
lists, a variable may occur in one list, but not the other.

In order to consider this problem, we introduce the following

notation. We denote the complete set of ranked predictors by

L~f1, . . . ,pg, and begin by assuming that all variables are ranked

in both datasets. We denote the rank of each variable in list 1 by

t(i),i~1, . . . ,p, so that t(5)~1 if variable 5 is ranked first and so

on. The corresponding ranks for list 2 are denoted by

s(i),i~1, . . . ,p. A suitable metric describing the distance between

two top-k rankings is the Canberra distance [62],

Ca(k,t,s)~
Xp

i~1

Dminft(i),kz1g{minfs(i),kz1gD
minft(i),kz1gzminfs(i),kz1g : ð6Þ

This has the properties that we require, in that the denominator

ensures more emphasis is placed on differences in the ranks of

highly ranked variables in either dataset. Furthermore, this

distance measure allows comparisons between partial, top-k lists,

since a variable occurring in one top-k list but not the other is

assigned a ranking of kz1 in the list from which it is missing. Note

also that a variable i that is not in either of the top-k ranks, that is

t(i),s(i)wk, makes no contribution to Ca(k,t,s).

In order to gauge the extent to which the distance measure (6)

differs from that expected between two random lists, we require a

value for the expected Canberra distance between two random

lists, which we denote E½Ca(k,p)�. Jurman et al. [62] derive an

expression for this quantity, and we use this to compute the

normalised Canberra distance,

Table 7. SP2 dataset: Top 30 pathways, ranked by pathway selection frequency, ppath.

Rank KEGG pathway name ppath Size (# SNPs) top 30 ranked genes in pathway

1 Toll Like Receptor Signaling Pathway 0.254 766 TIRAP RAC1 IFNAR1 CD80 IL12B PIK3R1

2 Jak Stat Signaling Pathway 0.179 1447 PIAS2 IL5RA TPO IFNAR1 IL12B PIK3R1 IL2RA

3 Ubiquitin Mediated Proteolysis 0.165 1603 PIAS2 RFWD2 PARK2

4 *Dilated Cardiomyopathy 0.103 3054 ADCY2 TGFB3 PRKACB RYR2 ITGB8 ITGA1 CACNA2D3 LAMA2 CACNA1C

5 Cytokine Cytokine Receptor Interaction 0.100 2553 IL5RA IL12B TGFB3 EGFR TPO IFNAR1 IL2RA

6 Ecm Receptor Interaction 0.095 2271 ITGB8 ITGA1 LAMA2

7 Arginine And Proline Metabolism 0.091 432 NOS1

8 Parkinson’s Disease 0.090 1320 PARK2

9 * Hypertrophic Cardiomyopathy 0.088 2819 TGFB3 RYR2 ITGB8 ITGA1 CACNA2D3 LAMA2 CACNA1C

10 Small Cell Lung Cancer 0.068 1808 PIAS2 PIK3R1 LAMA2

11 Natural Killer Cell Mediated Cytotoxicity 0.067 1781 KRAS RAC1 VAV3 VAV2 PRKCA IFNAR1 PRKCB PIK3R1

12 * T Cell Receptor Signaling Pathway 0.065 1541 KRAS VAV3 VAV2 PIK3R1

13 Tgf Beta Signaling Pathway 0.065 947 TGFB3

14 Olfactory Transduction 0.065 2497 PRKACB

15 * Arrhythmogenic Right Ventricular
Cardiomyopathy

0.063 3726 RYR2 TCF7L1 ITGB8 ITGA1 CACNA2D3 LAMA2 CACNA1C

16 * Ppar Signaling Pathway 0.062 758

17 Taste Transduction 0.062 941 PRKACB

18 Type I Diabetes Mellitus 0.060 776 CD80 IL12B

19 * Ribosome 0.057 261

20 * Terpenoid Backbone Biosynthesis 0.056 147

21 Neuroactive Ligand Receptor Interaction 0.053 5745 GRIN3A

22 Regulation Of Actin Cytoskeleton 0.053 3803 KRAS RAC1 EGFR ITGB8 VAV3 ITGA1 VAV2 PIK3R1

23 Mismatch Repair 0.053 222

24 Cell Adhesion Molecules Cams 0.053 3977 ITGB8 CD80

25 Maturity Onset Diabetes Of The Young 0.053 239

26 Butanoate Metabolism 0.052 383

27 Purine Metabolism 0.052 3224 ADCY2

28 P53 Signaling Pathway 0.052 598 RFWD2

29 Dorso Ventral Axis Formation 0.050 581 KRAS EGFR

30 Basal Cell Carcinoma 0.049 589 TCF7L1

The final column lists genes in the pathway that are in the top 30 ranked genes selected in the study (see left-hand side of Table 8). Pathways falling in the consensus
set, Ypath

25 , obtained by comparing pathway ranking results from both SP2 and SiMES datasets (see Table 11), are marked with a � .
doi:10.1371/journal.pgen.1003939.t007
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Ca�(k,t,s)~
Ca(k,t,s)

E½Ca(k,p)� : ð7Þ

Note that this has a lower bound of 0, corresponding to exact

agreement between the lists. For two random lists, the upper

bound will generally be close to 1, although it can exceed 1,

particularly for small k, since the expected value for random lists is

not necessarily the highest value.

Pathway rankings. We illustrate the variation of the

normalised Canberra distance (7) between SP2 and SiMES

pathway rankings in the left hand plot in Figure 16 (blue curve).

We consider all possible top-k lists, k~1, . . . ,185 since all 185

pathways are ranked in both datasets. In the same plot, we also

show

Ca�p(k,t,s)~
1

Z

XZ

p~1

Ca(k,t,sp)

E½Ca(k,p)� k~1, . . . ,185 ð8Þ

obtained by comparing empirical SP2 rankings (t) against

Z~10,000 permutations of the SiMES pathway rankings,

sp,p~1, . . . ,10,000 (green curve). This latter curve confirms that

the expected value, E½Ca(k,p)�, is indeed a good measure of Ca in

the random case where there is no agreement between rankings.

Using the same permuted rankings, sp, we next test the null

hypothesis that the observed normalised Canberra distance,

Ca�(k,t,s), is not significantly different from that between t and

a random list sp, by computing a p-value as

p�(k)~
1

Z

XZ

p~1

ICa�(k,t,s)ƒCa�(k,t,sp),

for k~1, . . . ,185. We then obtain FDR q-values using the

Benjamini-Hochberg procedure [63] and illustrate these for each k

in the right hand plot of Figure 16. FDR is controlled at a nominal

5% level for 19ƒkƒ71, indicating that the distance between the

top-k pathway rankings for both datasets is significantly different

from the random ranking case for a wide range of possible values

of k. The distance Ca� between SP2 and SiMES pathway rankings

however attains its minimum value when k~25 with

q(25)~0:037, so that on this measure, the two pathway rankings

are in closest agreement when we consider the top 25 pathways in

each ranked list only. Some intuitive understanding of why this

might be so can be gained by considering the empirical vs. null

pathway selection frequency distributions for each dataset in

Figures 11 (bottom) and 14 (top). Here we see that the separation

between empirical and null selection frequencies is most clear for

values of k below around 30 for SP2, and around 15 for SiMES.

If we assume that the two pathway rankings are indeed in closest

agreement when k~25, then one means of obtaining a consensus

set of important pathways is to consider their intersection,

Ypath
25 ~fi : t{1(i)ƒ25g\fj : s{1(j)ƒ25g,

from which we can obtain a set of average rankings as

ypath
25 ~ft(z)zs(z)

2
: z[Ypath

25 g:

Both the intersection set, Y
path
25 , and ordered average rankings,

ypath
25 for the two datasets under consideration are shown in

Table 11. We additionally mark the consensus set Y25
path with

asterisks in Tables 7 and 10.

Gene rankings. A number of factors complicate the com-

parison of ranked gene lists across both datasets. Firstly, sets of

mapped genes differ slightly between the two datasets (see Table 3).

Secondly, even if we consider only those variables mapped in both

datasets, different, though overlapping sets of variables are ranked

in each. Thirdly, ranked variables are not independent [62]. For

example, genes may be grouped into pathways, so that a

reordering of genes within a pathway might be considered less

significant than a reordering of genes mapping to different

pathways.

In order to compute a distance measure between pairs or

ranked gene lists, we therefore make two simplifying assumptions.

Table 8. SP2 and SiMES datasets: Top 30 genes ranked by
gene selection frequency, pgene.

SP2 GENE RANKING SiMES GENE RANKING

Rank Gene pgene

#
mapped
SNPs Gene pgene

#
mapped
SNPs

1 IFNAR1 0.33 11 PPA2 0.31 16

2 IL12B 0.3 9 PDSS2 0.26 59

3 PIAS2 0.3 7 GABARAPL1 0.18 11

4 TIRAP 0.22 5 ATP6V0A4 0.15 35

5 RAC1 0.21 10 ITGB1 0.13 14

6 LAMA2* 0.19 111 CACNA1C* 0.11 186

7 ADCY2* 0.19 94 PRKCB* 0.11 84

8 PIK3R1 0.19 28 FYN 0.11 46

9 PARK2 0.19 460 BCL2* 0.1 61

10 IL2RA 0.19 55 PAK7* 0.1 127

11 PRKCA* 0.19 123 DGKB 0.1 233

12 ITGB8 0.18 27 LAMA2* 0.1 118

13 TCF7L1 0.18 55 NDUFA4 0.1 7

14 CD80* 0.18 21 DGKH 0.1 70

15 GRIN3A 0.18 60 ADCY2* 0.09 104

16 PRKCB* 0.18 83 LIPC 0.09 69

17 CACNA1C* 0.17 180 SLC8A1* 0.09 240

18 TGFB3 0.16 7 EGFR* 0.09 74

19 PRKACB 0.16 16 PRKAG2 0.09 118

20 KRAS* 0.16 21 CACNA1D 0.09 83

21 VAV3 0.16 97 ITGA11* 0.09 63

22 IL5RA 0.15 38 IGF1R* 0.09 100

23 ITGA1* 0.15 77 SDHC 0.09 9

24 VAV2* 0.15 85 CACNA2D3* 0.08 294

25 EGFR* 0.14 61 RYR2* 0.08 221

26 TPO 0.14 50 ITGA1* 0.08 77

27 CACNA2D3* 0.14 283 ALDH7A1 0.08 23

28 RYR2* 0.14 214 MGST3* 0.08 40

29 NOS1 0.14 49 ALDH2 0.08 12

30 RFWD2 0.13 31 SDHB 0.08 13

Genes falling in the top 30 ranks of the consensus gene set, 244

gene

comparing gene ranking results from both SP2 and SiMES datasets (see Table
13), are marked with a *.
doi:10.1371/journal.pgen.1003939.t008
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First, we consider only genes ranked in one or both datasets. This

seems reasonable, since we can necessarily only compile a distance

measure from variables that are ranked in one or both datasets.

Second, we assume that genes are independent. This makes our

distance measure conservative, in the sense that it will treat all

reordering of genes equally, irrespective of any potential functional

relationship between them.

With these assumptions in mind, we begin by denoting the set of

all p� genes that are ranked in either dataset by L~f1, . . . ,p�g. We

further denote the corresponding sets of ranked genes for SP2 and

SiMES datasets by Lt and Ls respectively. We then have the

following set relations: Lt,Ls5L;Lt=Ls; andDLtD=DLsD.
We now extend the previous Canberra distance measure to

encompass the above set relations. We begin, as before, by

defining two ranked lists corresponding to gene rankings in L for

each dataset, although this time we must account for the fact that

not all variables in L are ranked in both. We denote SP2 rankings

by t(i),i~1, . . . ,p�, where t(i) is the rank of gene i if i[Lt, and

t(i)~p� otherwise. SiMES rankings are defined in the same way,

and denoted by s(i),i~1, . . . ,p�.
Applying this revised ranking scheme, we can then define a top-

k normalised Canberra distance (6) as

Ca�(k,t,s)~
Ca(k,t,s)

E½Ca(k,p�)� : ð9Þ

for any kƒminfDLtD,DLsDg. The restriction on k follows from the

fact that we cannot distinguish between top-k rankings for all

kwminfDLtD,DLsDg.

Figure 14. Empirical and null pathway (top) and SNP (bottom) selection frequency distributions for the SiMES dataset. a~0:95. For
both empirical (red) and null (blue) distributions, variables (pathways and SNPs) are ranked along the x-axis in order of their empirical selection
frequencies.
doi:10.1371/journal.pgen.1003939.g014
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Information summarising the relationship between the two

ranked lists of genes is given in Table 12. We consider normalised

Canberra distances, Ca�(k,t,s), for k~1, . . . ,500 only, and plot

these in Figure 17 (left, blue curve), along with Ca�p(k,t,s) (8) for

Z~10,000 permutations of the SiMES gene rankings,

sp,p~1, . . . ,10,000 (green curve). Once again this latter curve

confirms that the expected value, E½Ca(k,p�)�, is indeed a good

measure of Ca in the random case where there is no agreement

between rankings. We also plot FDR q-values using the same

procedure as described previously for pathways. FDR is controlled

at a nominal 5% level for all kw13 in the region tested

(1ƒkƒ500). The distance Ca� between SP2 and SiMES gene

rankings attains its minimum value when k~244, so that on this

measure, the two gene rankings are in closest agreement when we

consider the top 244 genes in each ranked list only.

Following the same strategy as implemented for pathways, we

then form the consensus set, Ygene
244 , and average rankings ygene

244 .

The consensus set contains 84 genes, and we list the top 30 genes

ordered by their average rank in the two datasets, in Table 13.

Comparisons with SNP GWAS
Finally, we compare gene rankings for each cohort obtained

using our method with those from a standard GWAS in which

SNPs are tested separately for their association with HDLC.

Results from the latter study form part of an ongoing multi-cohort

study and so are reported in summary form only. Further details

are presented in Supplementary Information S1, Section 6. By

considering only SNPs that map to pathways in each cohort, we

find that the top 50 ranked genes using our method are highly

enriched amongst genes mapping to highly-ranked SNPs in their

respective GWAS (pv10{6 by permutation). Furthermore 4 out

of the top 10 ranked genes in the SP2 dataset using our method are

also in the top 10 of 4,734 genes ranked in the SP2 GWAS. The

corresponding figure for the SiMES cohort is 2 out of 10. As with

our gene ranking results (Table 8), we find little concordance

between high ranking genes in both GWAS, with for example no

gene occurring amongst the top 10 gene ranks in both cohorts.

Note that none of the subset of SNPs in either GWAS that map to

pathways in our study achieves genome-wide significance after

correcting for multiple testing (SP2 cohort, 75,389 SNPs,

minimum SNP p-value = 3:4|10{5; SiMES cohort, 78,933

SNPs, minimum SNP p-value = 6:8|10{6).

Discussion

We have outlined a method for the detection of pathways and

genes associated with a quantitative trait. Our method uses a

sparse regression model, the sparse group lasso, that enforces

sparsity at the pathway and SNP level. As well as identifying

important pathways, this model is designed to maximise the power

to detect causal SNPs, possibly of low effect size, that might

otherwise be missed if pathways information is ignored. In a

simulation study we demonstrated that where causal SNPs are

enriched within a single causal pathway, SGL does indeed have

greater SNP selection power, compared to an alternative sparse

regression model, the lasso, that disregards pathways information.

These results mirror previous findings that support the intuition

that a sparse selection penalty that promotes dual-level sparsity is

better able to recover the true model in these circumstances

[20,21].

We then argued from a theoretical standpoint that where

individual SNPs can map to multiple pathways, a modification

(SGL-CGD) of the standard SGL-BCGD estimation algorithm

that treats pathways as independent, may offer greater sensitivity

for the detection of causal SNPs and pathways. A potential

concern is that this gain in power may be accompanied by an

inflated number of false positives. However, in a simulation study

with overlapping pathways we found relative gains in both

sensitivity and specificity under the independence assumption.

This gain in specificity was unexpected, and appears to arise

directly from treating pathways as independent in the model

estimation.

Our method combines the SGL model and SGL-CGD

estimation algorithm with a weight-tuning algorithm to reduce

Figure 15. SiMES dataset: Scatter plots comparing empirical and null pathway (left) and SNP (right) selection frequencies presented
in Figure 14. For clarity, SNP selection frequencies are plotted for the top 1000 SNPs (by empirical selection frequency) only.
doi:10.1371/journal.pgen.1003939.g015

Table 9. SiMES dataset: Pearson correlation coefficients (r)
and p-values for the data plotted in Figure 15.

n r p-value

pathways 185 20.094 0.20

SNPs 20,006 0.058 2.6361026

Refer to Table 6 for details.
doi:10.1371/journal.pgen.1003939.t009
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selection bias, and a resampling technique designed to provide a

robust measure of variable importance in a finite sample. As such,

the latter is expected to confer advantages, in terms of the down

ranking of unimportant predictors, previously observed for the lasso

[45,47]. As with the group lasso, the ability of SGL to recover the

true model is likely to be affected by the complexity of the pathway

overlap structure [64], as well as complex patterns of SNP LD. For

this reason we test our approach in a final simulation study using

real genotype and pathways data. In doing so we confirm previous

findings that in the presence of widespread LD, the use of data

resampling procedures in combination with a lasso penalty for SNP

selection can result in loss of power [49]. However, if we instead

measure gene selection frequencies by recording genes mapping to

selected SNPs at each subsample, our method shows enhanced

power and specificity when compared to a regression-based

quantitative trait test that ignores pathways information.

We do not explore the issue of determining a selection

frequency threshold for the control of false positives here. In

principal such a threshold could be determined by comparing

empirical selection frequency distributions with those obtained

under the ‘null’ through permutations, although this is not a trivial

exercise [65]. An alternative method for error control has been

investigated in the context of lasso selection [45], but the direct

application of this approach to the present case is not feasible,

since overlapping pathways make clear distinctions between causal

and noise variables problematic. We instead develop a heuristic

measure of ranking performance in our application study

identifying genes and pathways associated with serum high-density

lipoprotein cholesterol levels (HDLC). Firstly, by comparing

empirical and null pathway and SNP rankings for each dataset,

we gain some confidence that pathway and SNP signals captured

in the top rankings can be distinguished from those arising from

Table 10. SiMES dataset: Top 30 pathways, ranked by pathway selection frequency, ppath.

Rank KEGG pathway name ppath
Size (#
SNPs) top 30 ranked genes in pathway

1 Oxidative Phosphorylation 0.314 871 PPA2 NDUFA4 SDHB SDHC ATP6V0A4

2 * Terpenoid Backbone Biosynthesis 0.260 158 PDSS2

3 Regulation Of Autophagy 0.183 215 GABARAPL1

4 Glycerolipid Metabolism 0.095 1074 ALDH7A1 DGKB DGKH ALDH2 LIPC

5 * Dilated Cardiomyopathy 0.078 3177 ADCY2 RYR2 ITGA11 ITGB1 SLC8A1 ITGA1 CACNA2D3 LAMA2 CACNA1C
CACNA1D

6 * Hypertrophic Cardiomyopathy 0.071 2932 PRKAG2 RYR2 ITGA11 ITGB1 SLC8A1 ITGA1 CACNA2D3 LAMA2 CACNA1C
CACNA1D

7 * Ribosome 0.064 270

8 Glutathione Metabolism 0.055 389 MGST3

9 * Arrhythmogenic Right Ventricular Cardiomyopathy 0.053 3899 RYR2 ITGA11 ITGB1 SLC8A1 ITGA1 CACNA2D3 LAMA2 CACNA1C CACNA1D

10 * T Cell Receptor Signaling Pathway 0.052 1624 PAK7 FYN

11 Cardiac Muscle Contraction 0.047 1952 RYR2 SLC8A1 CACNA2D3 CACNA1C CACNA1D

12 Biosynthesis Of Unsaturated Fatty Acids 0.047 282

13 Lysosome 0.046 1322 ATP6V0A4

14 Apoptosis 0.044 954 BCL2

15 Pathogenic Escherichia Coli Infection 0.041 538 ITGB1 FYN

16 Metabolism Of Xenobiotics By Cytochrome P450 0.039 880 MGST3

17 Drug Metabolism Cytochrome P450 0.038 910 MGST3

18 Autoimmune Thyroid Disease 0.037 686

19 Focal Adhesion 0.034 4787 ITGA11 LAMA2 BCL2 FYN EGFR ITGB1 ITGA1 PAK7 PRKCB IGF1R

20 Leishmania Infection 0.034 718 PRKCB ITGB1

21 * Ppar Signaling Pathway 0.032 800

22 Rna Polymerase 0.031 193

23 Lysine Degradation 0.030 423 ALDH7A1 ALDH2

24 Endocytosis 0.030 3436 EGFR IGF1R

25 Glycosaminoglycan Biosynthesis Chondroitin Sulfate 0.029 727

26 Melanoma 0.028 1189 EGFR IGF1R

27 Nucleotide Excision Repair 0.028 330

28 Prostate Cancer 0.026 1419 EGFR IGF1R BCL2

29 Renal Cell Carcinoma 0.026 1004 PAK7

30 Glycine Serine And Threonine Metabolism 0.026 268

The final column lists genes in the pathway that are in the top 30 ranked genes selected in the study (i.e. genes in the top 30 gene rankings in the right-hand side of
Table 8). Pathways falling in the consensus set, Ypath

25 , obtained by comparing pathway ranking results from both SP2 and SiMES datasets (see Table 11), are marked with
a *.
doi:10.1371/journal.pgen.1003939.t010
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noise or spurious associations. Secondly, we take advantage of the

fact that we are able to compare results from two independent

GWAS datasets. On the assumption that similar patterns of

genetic variation are likely to impact HDLC levels in both cohorts,

we set a ranking threshold based on computing distances between

ranked lists of pathways and genes from each dataset.

Interestingly, when a comparison between empirical and null

rankings is made with a reduced value for the regularisation

parameter a, there is evidence of selection bias, in the sense that

pathways and SNPs tend to be highly ranked both empirically and

under the null. Since a smaller a corresponds to a greater number

of SNPs being selected at each subsample, this would seem to

suggest that too many SNPs are being selected. In this case,

pathway and gene rankings (derived from selected SNPs) may in

part reflect spurious associations, with a bias towards SNPs

overlapping multiple pathways.

Many pathways analysis methods can be categorised as being

either competitive or self-contained, according to the type of null

hypothesis that is tested [6,66]. With self-contained or association-

type methods, pathway, SNP or gene statistics are tested against

the null hypothesis of no association. In contrast, competitive or

enrichment-type methods test the null hypothesis that genes or

SNPs in a pathway are no more associated with the phenotype

than those not in the pathway. Methods testing the self-contained

null hypothesis can be more powerful than competitive tests,

although at the expense of increased type-I errors, particularly in

the context of GWAS data where test statistics may be inflated by

stratification or cryptic relatedness [67]. Since our method

performs variable selection and does not perform hypothesis

testing it cannot strictly be classified as a competitive or

association-type method. However, we note that elements of the

approach we take in our HDLC application study bear some

similarity with competitive-type methods. In particular our use of

variable rankings, along with genome-wide comparisons of

empirical and ‘null’ (permuted) pathway and SNP selection

frequencies guard against genome-wide exaggeration of variables’

importance, by comparing variable selection frequencies across all

pathways.

There are other potentially interesting areas to explore with

regard to the subsampling method used here. For example,

standard approaches consider only the set of variables selected at

each subsample, and ignore potentially relevant information

captured in the coefficient estimates themselves. The use of this

additional information would result in a set of ranked lists, one for

each subsample, and the joint consideration of these lists has the

potential to provide a more robust measure of variable impor-

tance, by taking account of the relative importance of each

variable for each subsample [68–70].

Turning to the study results, we conduct two separate analyses

on independent discovery and replication datasets. Since subjects

from both datasets are genotyped on the same platform, the large

majority of SNPs mapping to pathways in one dataset do so also in

the other dataset. Thus 99.3% of SNPs mapping to pathways in

the SP2 dataset are similarly mapped in the SiMES dataset. For

the SiMES dataset, the corresponding figure is 94.8%. As

expected, the concordance of gene coverage is even greater. Thus

99.8% of mapped genes in the SP2 dataset are also mapped in the

SiMES dataset, and 99.5% of mapped genes in the SiMES dataset

are also mapped in SP2. This large overlap in gene (and pathway)

coverage between datasets is likely to occur even when datasets are

genotyped on different SNP arrays. Indeed this is one advantage of

methods such as the one described here that enable comparisons

between pathway and gene rankings.

We obtain consensus pathway and gene rankings by considering

only the top k ranks in each dataset, with k obtained as the value

that minimises the distance between the two rankings. We

additionally derive a significance measure for each top-k distance

Figure 16. Comparison of top-k SP2 and SiMES pathway rankings. Left: Variation of normalised Canberra distance, Ca� with k (7) (blue curve).
Corresponding mean values over Z~10,000 permutations of SiMES rankings (8) (green curve). Right: FDR q-values (blue curve). Dotted green line
shows the threshold for FDR control at the 5% level.
doi:10.1371/journal.pgen.1003939.g016

Table 11. Consensus set of pathways, Ypath
25 , for SP2 and

SiMES datasets with k = 25.

Pathway Average rank (y
path
25 )

Dilated Cardiomyopathy 4.5

Hypertrophic Cardiomyopathy 7.5

T Cell Receptor Signaling Pathway 11.0

Terpenoid Backbone Biosynthesis 11.0

Arrhythmogenic Right Ventricular
Cardiomyopathy

12.0

Ribosome 13.0

Ppar Signaling Pathway 18.5

Consensus pathways are ordered by their average rankings in Ypath
25 .

doi:10.1371/journal.pgen.1003939.t011
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by comparing empirical distances against a null distribution

obtained by permuting ranks in one list. We note that this can only

be an approximation of the true null, since in reality rankings for

both datasets may be influenced by the extent to which genes and

SNPs overlap multiple pathways. However, some support for the

reasonableness of this approximation can be gained from our

earlier analysis, showing that the correlation between empirical

and null pathway and SNP rankings is low, so that rankings under

the null are indeed approximately random.

Considering the consensus pathway rankings in Table 11, three

out of the seven consensus pathways (ranked 1, 2 and 5), are

related to cardiomyopathy. These three pathways are the only

cardiomyopathy-related pathways amongst the 185 KEGG

pathways used in our analysis, so it is noteworthy that all three

fall within the consensus pathway rankings. The link between

HDLC levels and cardiomyopathy is already well established

[31,71–74]. Furthermore, numerous references in the literature

also describe the links between lipid metabolism and T cell

receptor (consensus pathway ranking 3) and PPAR signaling (rank

7) [75–78].

Turning to a consideration of the top 30 consensus genes

presented in Table 13 and (and see also pathway ranking tables 7,

10 and 11, and extended results in Tables S1, S2, S3, S4). We

found that many are enriched in one of several gene families:

1. L-type calcium channel genes, including CACNA1C, CACNA1S,

CACNA2D1, CACNA2D3 and CACNB2

2. Adenylate cyclase genes, including ADCY2, ADCY4 and ADCY8

3. Integrin and laminin genes, including ITGA1, ITGA9, ITGA11,

LAMA2, and LAMA3

4. MAPK signaling pathway genes, including MAPK10 and

MAP3K7

5. Immunological pathway genes, including PAK2, PAK7, PRKCA,

PRKCB, VAV2 and VAV3

These genes are highly enriched in several high ranking

pathways from both datasets. Notably, the focal adhesion pathway

alone has 12 gene hits, as does the dilated cardiomyopathy

pathway. Cardiomyopathy pathways as a whole have 30 genes hits

(several of the genes overlap more than one cardiomyopathy

pathway). 10 of these genes feature in the MAPK signaling

pathway, while GnRH (8 genes), T and B cell receptor (8), calcium

(7), ErbB (5), and Wnt signling (4) pathways also contain several

genes in the list. To elucidate the biological relevance of these gene

families and the connections between them, we investigated their

known functional links with cardiovascular phenotypes (not

restricted to HDLC) by referencing the KEGG and Genetic

Association (http://geneticassociationdb.nih.gov) databases.

Voltage dependent L-type calcium channel gene

family. The genes in this family encode the subunits of the

human voltage dependent L-type calcium channel (CaV1). The

a{1 subunit (encoded by CACNA1C, A1S, A2D1 and A2D3 in our

study) determines channel function in various tissues. CaV1

function has significant impact on the activity of heart cells and

smooth muscles. For example, patients with malfunctioning CaV1

develop arrhythmias and shortened QT interval [79–81].

Furthermore, CACNA1C polymorphisms have been associated

with variation in blood pressure in Caucasian and East Asian

populations by pharmacogenetic analysis. In 120 Caucasians, 3

SNPs in this gene were significantly associated with the response to

a widely applied antihypertensive CaV1 blocker [82]. Kamide et

al. [83] also found that polymorphisms in CACNA1C were

associated with sensitivity to an antihypertensive in 161 Japanese

patients. The CaV1 b subunit encoding CACNB2 has also been

associated with blood pressure [84].

This gene family was mapped to several pathways in our study,

with the KEGG dilated cardiomyopathy pathway achieving

highest rank both within individual datasets, and in the consensus

pathway rankings. Dilated cardiomyopathy is the most common

form of cardiomyopathy, and features enlarged and weakened

heart muscles. Although high levels of serum HDLC lowers the

Figure 17. Comparison of top-k SP2 and SiMES gene rankings, for k~1, . . . ,500. Left: Variation of normalised Canberra distance, Ca� with k
(9) (blue curve), and corresponding mean values over 10,000 permutations of SiMES rankings (8) (green curve). Right: FDR q-values (blue curve).
Dotted green line shows the threshold for FDR control at the 5% level.
doi:10.1371/journal.pgen.1003939.g017

Table 12. Summary of genes analysed and ranked in SP2 and
SiMES datasets.

SP2 SiMES

number of genes mapped to pathways 4,734 4,751

number of genes mapping to both datasets 4,726

number of ranked genes ( Ltj j, Lsj j) 3,430 2,815

number of genes ranked in either dataset (p*) 3,913

number of genes ranked in both datasets ( Ltj j\ Lsj j) 2,332

doi:10.1371/journal.pgen.1003939.t012
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risk of heart disease [31,85], there is still no direct evidence that

CaV1 is involved in HDLC metabolism.

Adenylate cyclase gene family. Three adenylate cyclases

genes, ADCY2, ADCY4 and ADCY8 were highly ranked in our

study. Currently, there are no reported associations of these genes

with cardiovascular disease or lipid levels. Adenylate cylcase genes

catalyse the formation of cyclic adenosine monophosphate (cAMP)

from adenosine triphosphate (ATP), while cAMP servers as the

second messenger in cell signal transduction. Note that ADCY2 is

insensitive to calcium concentration, suggesting that any associa-

tion of this gene family with HDLC levels may not be due to any

interactions with the CaV1 gene family.

Among high ranking pathways, ADCY2 and ADCY8 feature in

the dilated cardiomyopathy pathway.

Integrin and laminin gene families. We found 3 genes

encoding integrin subunits in our study. Integrins hook to the

extracellular matrix (ECM) from the cell surface, and are also

important signal transduction receptors which communicate

aspects of the cell’s physical and chemical environment [86].

Interestingly, laminins are the major component of the ECM, and

are relevant to the shape and migration of almost every type of

tissue. Both of these two families of genes are therefore highly

relevant to the survival and shape of heart muscles. A recent

GWAS conducted in a Japanese population confirmed a previous

association between ITGA9 and blood pressure in European

populations [87].

Integrin family genes and LAMA2 were selected primarily within

high-ranking cardiomyopathy, focal adhesion and ECM receptor

signaling pathways, with once again the dilated cardiomyopathy

pathway achieving the highest ranks. However, evidence for

LAMA3 association is weaker, since it was not in the top 30

consensus genes.

MAPK signaling pathway. TAK1 (MAP3K7) and JNK3

(MAPK10) are kinases which regulate cell cycling. They activate or

depress downstream transcription factors which mediate cell

proliferation, differentiation and inflammation.

JNK activity has been associated with obesity in a mouse model,

where the absence of JNK1 (MAPK8), a protein in the same family

as MAPK10, protects against the obesity-induced insulin resistance

[88]. The negative correlation between HDLC level and obesity is

well accepted [89].

Immunological pathways. PAK (PAK2 and PAK7) genes

feature in the high ranking T cell signaling pathway in both SP2

and SiMES datasets. PRKC (including PRKCA and PRKCB), along

with VAV (VAV2 and VAV3) genes also feature in various high

ranking immunological pathways including T cell signaling,

Pathogenic Escherichia Coli Infection and Natural Killer Cell

Mediated Cytotoxicity. Genes from all 3 of these families are

frequently top ranked in these pathways.

PAK and VAV are activated by antigens, and regulate the T cell

cytoskeleton, indicating a possible impact on T cell shape and

mobility. In a candidate gene association analysis, PRKCA was

reported to be associated with HDLC at a nominally significant

level, but was not significant after adjusting for multiple testing

[90].

In summary, genes enriched in the above gene clusters and

pathways may be relevant to heart muscle cell signal transduction,

shape and migration, and may thus have functional relevance to

the onset of cardiovascular diseases. Many highly ranked genes in

our study are also involved in neurological pathways. For example

polymorphisms in CACNA1C have been associated with bipolar

disorder, schizophrenia and major depression [91–93]. This points

to an interesting hypothesis that serum HDLC levels might be

regulated not only by metabolism but also by neurological

pathways, although the elucidation of any putative biological

mechanism underlying such an association obviously exceeds the

scope of this study.

Despite the well established links between lipid metabolism and

PPAR signaling noted above, no genes in this high-ranked

pathway fall in the top 30 gene rankings for either dataset (see

Tables 7, 8 and 10). This could be because the association signal in

this pathway is more widely distributed, compared to other high

ranking pathways, perhaps indicating heterogeneity in genetic

causal factors within our sample, so that different genes and SNPs

are highlighted in different subsamples. This would result in

reduced gene selection frequencies. Also, genes that overlap

multiple putative causal pathways are more likely to be selected in

a given subsample, meaning that associated genes mapping to

pathways with relatively few overlaps may have lower selection

frequencies. This may be the case with genes in the PPAR

signaling pathway, whose 63 genes map to an average 2:7+1:8
pathways. As a comparison, the 84 genes in the top-ranked dilated

cardiomyopathy pathway map to an average 7:2+3:8 pathways.

Table 13. Top 30 consensus genes ordered by their average
rank, ygene

244 .

Rank Gene Average rank (ygene
244 )

1 LAMA2 9.0

2 ADCY2 11.0

3 CACNA1C 11.5

4 PRKCB 11.5

5 PRKCA 21.0

6 EGFR 21.5

7 ITGA1 24.5

8 CACNA2D3 25.5

9 RYR2 26.5

10 IGF1R 30.5

11 PAK7 36.5

12 ADCY8 37.5

13 VAV2 41.0

14 SLC8A1 41.5

15 CACNB2 42.5

16 CACNA2D1 43.0

17 ITGA9 44.0

18 KRAS 47.5

19 MAPK10 50.5

20 CACNA1S 51.0

21 VAV3 54.0

22 PLCG2 55.5

23 BCL2 57.0

24 CD80 60.0

25 ITGA11 60.5

26 CTNNA2 61.0

27 ALDH1B1 61.5

28 MGST3 63.0

29 NEDD4L 63.0

30 PRKAG2 66.0

doi:10.1371/journal.pgen.1003939.t013
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Our study failed to highlight genes mapping to HDLC-

associated SNPs identified in previous GWAS (see for example

www.genome.gov/gwastudies for an up to date list). A primary

reason for this is that the large majority of SNPs identified in

previous studies do not map to pathways in our study, either

because they fall in intergenic regions, or because they do not

feature on the Illumina arrays used here. In addition our method is

designed to highlight distributed, small genetic effects that

accumulate across gene pathways, and so may fail to identify

those SNPs and genes with significant marginal effects targeted by

GWAS. Furthermore, where there are common mechanisms

affecting phenotypes in both cohorts, we would expect to observe

the most concordance between the two studies at the pathway

level, followed by genes, and lastly SNPs. Indeed this increased

heterogeneity at the SNP, and to a lesser extent at the gene level is

one motivation for adopting a pathways approach in the first place

[40,58,94]. This reduced concordance at the SNP level may be

due to increased heterogeneity of genetic risk factors between the

two datasets.

Some insight into these matters is gained by comparing our

gene ranking results with those from a separate HDLC SNP

GWAS in both SP2 and SiMES cohorts. By considering only

SNPs that map to pathways in each cohort, we find that highly

ranked genes using our method are significantly enriched amongst

genes mapping to highly ranked SNPs in their respective GWAS.

No pathway-mapped SNPs achieve statistical significance in either

GWAS after correcting for multiple testing. There is thus some

evidence that our method is able to highlight SNPs or genes with

moderate or small marginal effects that would otherwise be missed

using standard approaches, although this of course will depend on

their distribution across pathways. As noted in our study, there is

little concordance amongst the highest ranking GWAS SNPs and

genes in both cohorts.

As observed in our simulation study using real genotype data,

the tendency of the within-pathway lasso penalty to select one of a

group of highly correlated SNPs at random can lead to reduced

SNP selection frequencies within LD blocks harbouring causal

SNPs. For this reason we do not report SNP rankings here. An

alternative approach would be to consider a different penalty

within selected pathways, for example the elastic net [13], which

selects groups of correlated variables jointly, although this comes at

the cost of introducing a further regularisation parameter to be

tuned.

Finally, as with all pathways analyses, a number of limitations

with this general approach should be noted. Despite great efforts,

pathway assembly is still in its infancy, and the relative sparsity of

gene-pathway annotations reflects the fact that our understanding

of how the majority of genes functionally interact is at an early

stage. As a consequence annotations from different pathways

databases often vary [59], so that the choice of pathways database

will impact results [58,95]. Results are also subject to bias resulting

from SNP to gene mapping strategies, so that for example SNP to

gene mapping distances will affect the number of unmapped SNPs

falling within gene ‘deserts’ [18]; SNPs may map to relatively large

numbers of genes in gene rich areas of the genome; and the

mapping of a SNP to its closest gene may obscure a true functional

relationships with a more distant gene [39]. Indeed recent research

from the ENCODE project indicates that functional elements may

in fact be densely distributed throughout the genome [96,97], and

this information has the potential to radically alter future pathways

analysis. These issues, together with the fact that pathways genetic

association study methods are by construction designed to

highlight distributed, moderate to small SNP effects, serve to

further illustrate the point that pathways analysis should be seen as

complementary to studies searching for single markers [6].

Supporting Information

Information S1 Supplementary information and references.

(PDF)

Table S1 SP2 extended pathway ranks.

(TXT)

Table S2 SP2 extended gene ranks.

(TXT)

Table S3 SiMES extended pathway ranks.

(TXT)

Table S4 SiMES extended gene ranks.

(TXT)

Author Contributions

Conceived and designed the experiments: MS GM. Performed the

experiments: MS. Analyzed the data: MS. Contributed reagents/

materials/analysis tools: MS. Wrote the paper: MS GM PC RL. GWAS

data study design and data collection: CYC TYW EST YYT.

References

1. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, et al. (2008)

Genome-wide association studies for complex traits: consensus, uncertainty and

challenges. Nature Reviews Genetics 9: 356–69.

2. Visscher PM, Brown Ma, McCarthy MI, Yang J (2012) Five years of GWAS

discovery. American journal of human genetics 90: 7–24.

3. Manolio Ta, Collins FS, Cox NJ, Hindorff LA, Goldstein DB, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

4. Goldstein DB (2009) Common genetic variation and human traits. The New

England journal of medicine 360: 1696–8.

5. Schadt EE (2009) Molecular networks as sensors and drivers of common human

diseases. Nature 461: 218–23.

6. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-

wide association studies. Nature Reviews Genetics 11: 843–854.

7. Fridley BL, Biernacka JM (2011) Gene set analysis of SNP data: benefits,

challenges, and future directions. European journal of human genetics : EJHG

19: 837–843.

8. Shi G, Boerwinkle E, Morrison AC, Gu CC, Chakravarti A, et al. (2011) Mining

Gold Dust Under the Genome Wide Significance Level: A Two-Stage Approach

to Analysis of GWAS. Genetic epidemiology 35: 117–118.

9. Cho S, Kim K, Kim YJ, Lee JK, Cho YS, et al. (2010) Joint identification of

multiple genetic variants via elastic-net variable selection in a genome-wide

association analysis. Annals of human genetics 74: 416–28.

10. Ayers KL, Cordell HJ (2010) SNP selection in genome-wide and candidate gene

studies via penalized logistic regression. Genetic epidemiology 34: 879–91.

11. Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide association

analysis by lasso penalized logistic regression. Bioinformatics (Oxford, England)

25: 714–21.

12. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 58:

267–288.

13. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67:

301–320.

14. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and

smoothness via the fused lasso. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 67: 91–108.

15. Tibshirani R, Wang P (2008) Spatial smoothing and hot spot detection for CGH

data using the fused lasso. Biostatistics (Oxford, England) 9: 18–29.

16. Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, et al. (2010) Insights into

Colon Cancer Etiology via a Regularized Approach to Gene Set Analysis of

GWAS Data. American Journal of Human Genetics 86: 860–871.

17. Silver M, Janousova E, Hua X, Thompson PM, Montana G (2012)

Identification of gene pathways implicated in Alzheimer’s disease using

longitudinal imaging phenotypes with sparse regression. NeuroImage 63:

1681–1694.

18. Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, Jarvelin MR, et al.

(2009) Pathway analysis of GWAS provides new insights into genetic

susceptibility to 3 inammatory diseases. PloS one 4: e8068.

Pathways-Driven Sparse Regression - HDLC

PLOS Genetics | www.plosgenetics.org 26 November 2013 | Volume 9 | Issue 11 | e1003939



19. Eleftherohorinou H, Hoggart CJ, Wright VJ, Levin M, Coin LJM (2011)
Pathway-driven gene stability selection of two rheumatoid arthritis GWAS

identifies and validates new susceptibility genes in receptor mediated signalling

pathways. Human molecular genetics 20(17):3494–506.

20. Simon N, Friedman J, Hastie T, Tibshirani ROB (2012) A sparse-group lasso.

Journal of Computational and Graphical Statistics In press: 1–13.

21. Friedman J, Hastie T, Tibshirani R (2010) A note on the group lasso and a

sparse group lasso: 1–8.

22. Zhou H, Sehl ME, Sinsheimer JS, Lange K (2010) Association Screening of
Common and Rare Genetic Variants by Penalized Regression. Bioinformatics

(Oxford, England) 26: 2375–2382.

23. Peng J, Zhu J, Bergamaschi A, Han W, Noh DY, et al. (2010) Regularized

multivariate regression for identifying master predictors with application to

integrative genomics study of breast cancer. The Annals of Applied Statistics 4:
53–77.

24. Chatterjee S, Banerjee A, Chatterjee S, Ganguly AR (2011) Sparse Group Lasso
for Regression on Land Climate Variables. 2011 IEEE 11th International

Conference on Data Mining Workshops : 1–8.

25. Zhao P, Rocha G, Yu B (2009) The composite absolute penalties family for
grouped and hierarchical variable selection. The Annals of Statistics 37: 3468–

3497.

26. Huang J, Zhang T, Metaxas D (2011) Learning with Structured Sparsity.
Journal of Machine Learning Research 12: 3371–3412.

27. Jenatton R, Bach F (2011) Structured Variable Selection with Sparsity-Inducing
Norms. Journal of Machine Learning Research 12: 2777–2824.

28. Brenner DR, Brennan P, Boffetta P, Amos CI, Spitz MR, et al. (2013)

Hierarchical modeling identifies novel lung cancer susceptibility variants in
inammation pathways among 10,140 cases and 11,012 controls. Human

genetics 32(5):579–89.

29. Wang L, Jia P, Wolfinger RD, Chen X, Grayson BL, et al. (2011) An efficient

hierarchical generalized linear mixed model for pathway analysis of genome-

wide association studies. Bioinformatics (Oxford, England) 27: 686–92.

30. Silver M, Montana G (2012) Fast Identification of Biological Pathways

Associated with a Quantitative Trait Using Group Lasso with Overlaps.
Statistical Applications in Genetics and Molecular Biology 11(1):Article 7. doi:

10.2202/1544-6115.1755.

31. Toth PP (2005) Cardiology patient page. The ‘‘good cholesterol’’: high-density
lipoprotein. Circulation 111: e89–91.

32. Namboodiri KK, Kaplan EB, Heuch I, Elston RC, Green PP, et al. (1985) The

Collaborative Lipid Research Clinics Family Study: biological and cultural
determinants of familial resemblance for plasma lipids and lipoproteins. Genetic

epidemiology 2: 227–54.

33. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proceedings of the National Academy of Sciences
of the United States of America 106: 9362–7.

34. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al.
(2010) Biological, clinical and population relevance of 95 loci for blood lipids.

Nature 466: 707–13.

35. Tseng P, Yun S (2009) A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming 117: 387–423.

36. Jacob L, Obozinski G, Vert Jp (2009) Group Lasso with Overlap and Graph
Lasso. In: Proceedings of the 26th International Conference on Machine

Learning.

37. Kim YA, Wuchty S, Przytycka TM (2011) Identifying causal genes and
dysregulated pathways in complex diseases. PLoS computational biology 7:

e1001095.

38. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic

mapping of genetic interactions in Caenorhabditis elegans identifies common

modifiers of diverse signaling pathways. Nature genetics 38: 896–903.

39. Wang K, Zhang H, Kugathasan S, Annese V, Bradfield JP, et al. (2009) Diverse

Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn
Disease. American journal of human genetics 84: 399–405.

40. Holmans P, Green EK, Pahwa JS, Ferreira MaR, Purcell SM, et al. (2009) Gene

ontology analysis of GWA study data sets provides insights into the biology of
bipolar disorder. American journal of human genetics 85: 13–24.

41. Zhao J, Gupta S, Seielstad M, Liu J, Thalamuthu A (2011) Pathway-based

analysis using reduced gene subsets in genome-wide association studies. BMC
bioinformatics 12: 17.

42. Chen X, Liu H (2011) An Efficient Optimization Algorithm for Structured
Sparse CCA, with Applications to eQTL Mapping. Statistics in Biosciences 4: 3–

26.

43. Hastie T, Tibshirani R, Friedman J (2008) The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, New York, 2nd edition.

44. Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, et al. (2011) Sparse
reduced-rank regression detects genetic associations with voxel-wise longitudinal

phenotypes in Alzheimer’s disease. NeuroImage 60: 700–716.
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