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Abstract

The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from
different studies are likely a consequence of systematic error in the tree construction process, rather than random error from
small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional
concatenated data analysis and a “genes as characters” approach. Two datasets were constructed, one with seven species
(human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog) and 4584 orthologous
genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara) but only
1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur
hypothesis), similar to several recent genomic data based studies using similar methods. When using genes as characters
and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that
turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported
by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency
among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of
turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely
suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using
genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data
heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model
selection. Finally, treating genes as characters provides a convenient method for examining gene and genome evolution.
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Introduction

Despite numerous recent attempts, the phylogenetic position of
turtles remains controversial [1-6]. Traditionally, turtles were
placed as the sister-group to A) all other living amniotes (7], or B)
diapsids, but with various affiliations to different extinct groups [8—
11] (see [12] for a review). These views are primarily based on
morphological and fossil data. Most recent studies, however, favor
a more nested position for turtles within diapsids. In addition to
morphological data [13,14], molecular data overwhelmingly
support this placement. Several potential positions have been
proposed, including turtles being the sister-group to C) lepidosaurs
[2,15], D) archosaurs [5,6,16-20], E) crocodilians [1,21-23], and
F) birds [24]. The alternative placements of turtles in the current
phylogeny of living tetrapods are shown in Figure 1.

Conlflicting conclusions are likely a consequence of systematic
error rather than sampling error in the tree construction process,
because most recent studies utilized substantial amounts of data.
For example, Tzika et al. used transcriptome data of 4,689 genes
[1], Lyson et al. used present/absent data of 186 microRNA
families [2], and Wang et al. used 1,113 coding genes [6].
Conventional sequence data analysis uses nucleotide sites (or
amino-acid residues) as characters. When data from a large
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number of genes are available, a supermatrix approach is often
preferentially used (concatenated data analysis; e.g. [25-28]).
Several well-recognized systematic errors are associated with this
approach. Data heterogeneity is probably the most pronounced
error in large dataset analysis, such as in phylogenomics [29,30].
Additionally, when divergence is deep, multiple ‘hits’ in DNA
substitution often lead to long-branch attraction [1,31]. Further-
more, with a large and heterogeneous dataset, a realistic
substitution model becomes elusive. Fitting different parts of the
data with different sets of parameters may over-parameterize the
model [32]. Several recent studies suggested that conventional
concatenated sequence analysis might be problematic for phylo-
genetics with large amounts of data [30,33].

A potentially better alternative in the age of phylogenomics is to
use genes as characters, haplotypes as character states, and gene
trees as character-state trees. Each gene represents one ordered
multi-state character, and parsimony principle can be applied to
reconstruct the species phylogeny (Figure 2). The idea of “locus
(gene) as character” was first discussed in the isozyme community
[34]. Doyle (1992) further explicitly proposed using a gene tree as
one single species tree character [35]. Conceptually, genes are the
unit of inheritance and function in Mendelian genetics, and
arguably are a better choice than nucleotide sites (or amino-acid
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Figure 1. Alternative placements of turtles in the current
phylogeny of living tetrapods.
doi:10.1371/journal.pone.0079348.g001

residues) as characters in evolutionary biology. Theoretically, this
approach is capable of mitigating systematic error associated with
supermatrix analysis using nucleotide sites as characters (e.g., data
heterogeneity). The recent development of DNA sequencing
technology makes massive amounts of sequence data readily
available, which in turn makes the genes as characters approach a
practical alternative. With the rapid development of phyloge-
nomics, advantages associated with the genes as characters
approach should be explored.

In this study, we evaluate the phylogenetic position of turtles
within the vertebrate tree of life using the genes as characters
approach with genomic data. We first sequenced a transcriptome
of a turtle species and retrieved genomic data of ten other
amniotes from other sources. Both concatenated data analysis and
genes as characters approach were then applied and compared.
Finally, utilization of phylogenetic information to understand
genome evolution, including gene modular evolution and gene
function association, was explored.
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Figure 2. The procedural flowchart of using genes as charac-
ters in phylogenomic analysis.
doi:10.1371/journal.pone.0079348.9g002
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Results

Data acquisition

We first acquired high quality transcriptome data of a turtle
species (Chinese pond turtle, Mauremys reevesit) by RNA sequencing.
A total of 35,399,774 reads were generated through Illumina
sequencing. After de novo assembly, 61,810 transcripts were
produced with an N50 length of 1,571 base pairs (bps) and an
average length of 1,072 bps. Sequence lengths ranged from
295 bps to 19,374 bps. Sequence information and the length
distribution of transcripts are presented in Table S1 and Figure S1.
Transcriptomic or genomic data of another ten vertebrate species
were acquired from online databases, including green anole (4nolis
carolinensis), Nile crocodile (Crocodylus niloticus), chicken (Gallus gallus),
human (Homo sapiens), opossum (Monodelphis domestica), soft-shelled
turtle (Pelodiscus sinensis), royal python (Python regius), zebra finch
(Taeniopygia  guttata), tuatara (Sphenodon punctatus), and western
clawed frog (Xenopus tropicalis).

Putative orthologous genes were identified using the program
HaMSTR (Hidden Markov Model based Search for Orthologs
using Reciprocity; [36]) and the Amniota Orthology Dataset.
Based on the six species in the Amniota Orthology Dataset, 5,587
putatively orthologous proteins and 5,584 coding genes of AL
reevesti were initially identified. After removing the dubious
orthologs based on the individual gene tree (see below), 4,584
genes remained for both amino-acid and nucleotide data for these
seven species. When we added the transcriptome data of the other
four species, Pelodiscus sinensis, Crocodylus niloticus, Python regius, and
Sphenodon  punctatus, the number of orthologous genes sharply
decreased to 1,638 in the final amino-acid and nucleotide data.
Considering the levels of details of the acquired data, we
constructed two datasets for phylogenetic analysis. Seven species
(human, opossum, zebra finch, chicken, green anole, Chinese
pond turtle, and western clawed frog) had many more orthologous
genes than the other species, and formed a 7-species dataset. The
second dataset, the 11-species dataset, had more taxa but fewer
genes. The transcriptome raw data of M. reevesii are deposited at
the NCBI Sequence Read Archive (accession number
SRA098741), and the putative orthologous gene sequence data
of M. reevesii are deposited at GenBank (accession number

GANJ01000000).

Phylogenetic inferences

Phylogenetic trees were constructed based on both amino-acid
and coding region nucleotide sequences. Alignments were
conducted for each individual gene. The western clawed frog
served as outgroup in all phylogenetic analyses.

We first analyzed each gene separately to obtain gene trees
using maximum likelihood (ML) method. We noticed that some
gene trees produced by nucleotide sequences had unusually long
branches, and careful inspection of the data suggested that low
quality alignments, non-orthologous genes, or potential assembling
errors might have contributed to the long branches. Consequently,
gene trees with the longest branch length greater than 1.5, which
included 1004 genes for the 7-species dataset and 642 genes for the
11-species dataset, were excluded from subsequent analyses.

Concatenated data analysis. All amino-acid and nucleotide
sequences were pooled together, respectively. The data were
analyzed using maximum parsimony (MP), ML, and Bayesian
inference methods. The concatenated 7-species amino-acid dataset
included 2,630,903 amino-acid residuals. Both the ML and MP
tree strongly supported turtles being the sister-group to archosaurs
(the archosaur hypothesis; Figure 3 A-B). The concatenated
nucleotide sequence was 7,843,295 bp long. For parsimony
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Figure 3. The phylogenetic hypotheses derived from the 7-species data. Amino-acid and nucleotide sequences were analyzed by maximum
parsimony (MP) and maximum likelihood (ML) methods, respectively. Numbers near the nodes are bootstrap values.

doi:10.1371/journal.pone.0079348.g003

analysis, due to computation constraints, the dataset was reduced
to 3,824,484 bps by removing all constant sites. The ML and MP
analyses produced the same topology as that of amino-acid
sequences (Figure 3 C-D).

The concatenated 11-species amino-acid dataset included
808,806 amino-acid residuals, and both the ML and MP trees
again placed turtles as sister-group to archosaurs (Figure 4 A-B).
The concatenated nucleotide sequences included 2,431,766
nucleotide sites. All ML, MP, and Bayesian trees supported turtles
being the sister-group to archosaurs (Figure 4 C-E). They had
however, different placement for tuatara; while ML and Bayesian
trees placed tuatara as the sister-group to squamates (= lizards+s-
nakes), MP tree placed tuatara as the basal clade to the
(archodaurs+turtles) clade (Figure 4 C). Removing the hyper-
variable 8™ codon position, the MP analysis resulted in tuatara
being the sister-group to squamates (Figure 4 F). In all cases of
concatenated analysis, all nodes received high bootstrap support
(=100) or Bayesian posterior probability support (=99 or 100).

Genes as characters method. We used two methods to
summarize the information from gene trees into species trees.
First, we used a simple count method, similar to the gene-support
frequency measurement [30]. The numbers of genes that support
various hypotheses were counted and compared. The hypothesis
supported by the highest number of genes was preferred. Second,
we performed a more elaborated parsimony analysis following the
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arguments of Doyle [35]. Each gene was treated as a single
ordered multi-state character. Haplotypes of a gene were treated
as character states and the gene trees were treated as the
character-state trees. Step matrices were used to describe the
character-state trees. We weighted all characters (genes) equally.
The maximum pairwise distance in each step matrix was set to ten
and all other steps were proportionally scaled. Finally, a parsimony
analysis was performed. The procedure is summarized in Figure 2.

For the 7-species data, 4,584 individual proteins (~574 amino-
acids per protein) and coding genes (~1,711 base pair per gene)
were analyzed to reconstruct gene trees. Among them, 1,868
proteins (41%) and 2,117 coding genes (46%) supported the
archosaur hypothesis. In contrast, only 811 proteins (18%) and
798 coding genes (17%) supported the lepidosaur hypothesis.
Surprisingly, there were 535 (12%) proteins and 460 (10%) coding
genes that supported the diapsid hypothesis (Table 1). For the 11-
species data, 1,638 individual proteins and coding genes were
analyzed to reconstruct gene trees. Among them, 80 proteins (5%)
and 222 coding genes (14%) supported the archosaur hypothesis,
80 proteins (5%) and 121 coding genes (7%) supported the
lepidosaur hypothesis, 22 proteins (1%) and 90 coding genes (5%)
supported the crocodilian hypothesis, and 17 proteins (1%) and 47
coding genes (3%) supported the bird hypothesis (Table 1).
Generally, the archosaur hypothesis received support from the
largest number of genes. Noticeably, however, both the archosaur
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arsimony (MP) and maximum likelihood (ML) methods, respectively. A Bayesian tree from nucleotide sequences and a MP tree from the
codon position sequences are also presented. Numbers near the nodes are bootstrap values or Bayesian posterior probabilities (E).

4 November 2013 | Volume 8 | Issue 11 | e79348



hypothesis and the lepidosaur hypothesis received support from
the same number of proteins in the 11-species data. The diapsid
hypothesis also received substantial support from a large number
of genes (10-12%). In addition, amino-acid sequences were less
informative than nucleotide sequences, and a larger portion of the
gene trees from amino-acid sequences included polytomies.

Using each individual gene tree as a character-state tree,
parsimony analyses produced very different results. The 7-species
amino-acid dataset placed turtles as sister-group to the (bird-
stlizards) clade (=diapsids; Figure 5 A), while the nucleotide
dataset placed turtles as sister-group to lizards (= lepidosaurs;
Figure 5 B). Furthermore, the 1l-species amino-acid dataset
suggested turtles being the sister-group to the (birds+crocodilians)
clade (=archosaurs; Figure 5 C), while the nucleotide dataset
suggested turtles being the sister-group to the (squamates+tuatara)
clade (=lepidosaurs; Figure 5 D). Noticeably, none of the above
solutions received particularly high bootstrap support; the values
of related nodes varied from 73 to 91.

Incongruence analysis. We examined the incongruence
among genes with two methods. A SplitsTree analysis [37] was
used to identify where, on the species tree, most incongruence
occurred among the gene trees. A Phylcon analysis [38] was used
to detect different levels of support of various genes to a particular
topology.

The SplitTree analysis clearly pointed most uncertainty to the
placement of turtles in the networks (Figure 6). With the 7-species
data set, the uncertainty is located at the node that includes turtle,
birds, and lizards (Figure 6A), although the nucleotide data further
extended the uncertainty to include mammals (Figure 6 B). For the
11-species data, the uncertainty was one node, among turtles, birds
and crocodilians (Figure 6 C-D). Figure 6 presents results with a

Genes as Characters in Phylogenomics

threshold value of 0.15, which most clearly demonstrates the main
contradictory splits.

The Phylcon analysis revealed a substantial amount of
incongruence among genes (Figure 7). For the 7-species data,
the archosaur hypothesis (H1) was clearly better supported by a
larger number of genes (lighter colored genes) than the lepidosaur
hypothesis (H2) and the diapsid hypothesis (H3). For the 11-species
data, the archosaur hypothesis (H1) and the crocodile hypothesis
(H3) were slightly better supported than the lepidosaur hypothesis
(H2) and the bird hypothesis (H4). The most noticeable feature of
these heatmaps, however, was the amount of conflict among
genes; even for the best supported topologies by the concatenated
data (the archosaur hypothesis), a large number of genes strongly
rejected them (dark colored genes), particularly in the 11-species
data.

Gene evolution

Within a phylogenetic framework, we explored two aspects of
gene evolution: the impact of genes experienced positive selection
on phylogenetic inferences and gene modular evolution.

Positive selection. We used a maximum likelihood approach
and the branch-site models [39] and detected signature of positive
selection for 272 genes (out of 4,461) in the 7-species data and 31
genes (out of 957) in the 11-species data. We further performed a
Chi-square test to examine any association between genes under
selection and two primary alternative hypotheses, the archosaur
and the lepidosaur hypotheses. For the 7-species dataset, 143 of
the 272 genes supported the archosaur hypothesis and 37 of them
support the lepidosaur hypothesis. The Chi-square test indicated
that the proportion of the positively selected genes that support the
archosaur hypothesis was significantly higher than expected and/

Table 1. A simple tally of genes that support alternative hypotheses.

Hypothesis Tree topology

Number of genes (nucleotides) Number of proteins (amino-acid)

7-species dataset
((F,Ch),PT)
(((ZF,Ch),PT)An)
((((zF,Ch),PT),An),(Hu,0p)),Fr)
(PT,An)
((PT,An),(ZF,Ch))
((((PT,An),(ZF,Ch)),(Hu,Op)),Fr)
((ZF,Ch,An),PT)
(((((zF,Ch),An),PT),(Hu,0p)),Fr)

Archosaur Hypothesis

Lepidosaur Hypothesis

Diapsid Hypothesis

Other topologies

11-species dataset

(((ZF,Ch),Cn),(PT,ST))
((((ZF,Ch),Cr),(PT,ST)),((An,Py),Tu))

(((An,Py),Tu),(PT,ST))
((((An,Py),Tu),(PT,ST)),((ZF,Ch),Cr))

((Cr,(PT,ST)),(ZF,Ch))

(((zF,Ch),(PT,ST)),Cr)

Archosaur Hypothesis

Lepidosaur Hypothesis

Crocodilian Hypothesis

Bird Hypothesis
Other topologies

2117 (46%) 1868 (41%)

1502 1327
1281 1149
798 (17%) 811 (18%)
618 597
500 501
460 (10%) 535 (12%)
379 450
1209 (26%) 1370 (30%)

222 (14%) 80 (5%)
106 32
121 (7%) 80 (5%)
32 21
90 (5%) 22 (1%)
47 (3%) 17 (1%)
1158 (71%) 1439 (88%)

doi:10.1371/journal.pone.0079348.t001
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Hu =Human (Homo sapiens), Fr = Western Clawed Frog (Xenopus tropicalis), ZF = Zebra Finch (Taeniopygia guttata), Ch = Chicken (Gallus gallus), An = Green Anole (Anolis
carolinensis), PT = Chinese Pond Turtle (Mauremys_reevesii), ST=Soft-shelled Turtle (Pelodiscus sinensis), Py =Royal Pyth& (Python regius), Tu=Tuatara (Sphenodon
punctatus), Op = Opossum _(Mono_delphis domestica), Cr=Nile Crocodile (Croc?)dylus niloticus). - -

For example, the clade ((ZF,Ch),PT) appears on 2117 gene trees without regarding other relationships. The 7-species dataset includes 4,584 putatively orthologous
proteins and coding genes; the 11-species dataset includes 1,638 putatively orthologous proteins and coding genes.
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doi:10.1371/journal.pone.0079348.9005

or genes that support the lepidosaur hypothesis was significantly
lower than expected (P=0.0331; Table 2). Therefore, positive
selection clearly had significant influence on the final tree
topology.

Three genes (RUFY3, ENSG00000018189, GO: developmen-
tal protein; NUP37, ENSG00000075188, GO: Cell division,
carbohydrate metabolic process and glucose transport; COGI1,
ENSG00000166685, GO: Golgi transport complex) were detected
positive selection signal in both the 7-species and 11-species data.
The function of these genes mainly involved biological regulation
and cellular process. How these genes may have contributed to the
evolution of turtles is worth exploring.

Gene function. To assess gene modular evolution, we tested
whether genes supporting a particular topology were over-
represented in a particular function category or metabolic
pathway. The Gene Ontology (GO) annotation and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) were used to
classify gene function. At least 22 GO categories were over-
represented among genes that support the archosaur hypothesis or
the lepidosaur hypothesis (Table 3). For example, 61 genes that
support the archosaur hypothesis were in the functional category
of ‘organophosphate metabolic process’, which was higher than
expected (49 under a random distribution). Similarly, 76 genes

PLOS ONE | www.plosone.org

that support the lepidosaur hypothesis were in the functional
category of ‘cell activation’, which was higher than expected (61
under a random distribution). In general, it appeared that genes
assoclated with metabolic process and binding function were likely
to support the archosaur hypothesis, while genes associated with
fertilization, digestion, and development were more likely to
support the lepidosaur hypothesis (Table 3).

We detected five KEGG pathways that had biased represen-
tation. Genes involving the phosphatidylinositol signaling system,
inositol phosphate and arginine and proline metabolism were
more likely to support the archosaur hypothesis while genes
mvolved with glycerolipid and glycerophospholipid metabolism
were more likely to support the lepidosaur hypothesis (Table 3).

Discussion

Turtles as sister-group to Archosauria?

Using genes as characters, our analysis suggested that turtles are
possibly the sister-group to diapsids, archosaurs, or lepidosaurs
(Figure 5). Furthermore, considering the large amount of data,
none of these solutions received a particularly high bootstrap
support (77-91). This is clearly different from our concatenated
data analysis, which supports the archosaur hypothesis with high
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doi:10.1371/journal.pone.0079348.9g006

bootstrap support (=100). Several recent genomic data based
studies, such as Shaffer et al. [5] and Wang et al. [6], also used a
concatenated approach and supported the archosaur hypothesis
with high bootstrap support (= 100). Rather than providing a clear
answer, the genes as characters approach maintains the uncer-
tainty about the phylogenetic position of turtles.

The observed level of gene incongruence suggests that the
apparent solid support for the archosaur hypothesis is an artifact of
concatenated analysis. Most studies supporting the archosaur
hypothesis used a conventional concatenated analysis [5,6,19,20],
and problems associated with this approach in a phylogenomic
context are well recognized [30,33]. With a large amount of data,
a putatively wrong phylogeny may be strongly supported with
100% bootstrap probability, and a topology can also be well
supported even without support from any single gene [30,33]. The
high bootstrap values represent an over-estimate of confidence as
consequence of large numbers of characters, and therefore, they
are not appropriate measure of confidence for large concatenated
datasets and should be abandoned in such cases [30]. Further-
more, our incongruence analysis clearly demonstrated that there is
a large amount of inconsistency among genes and most of the
conflict is surrounding the placement of turtles (Figure 6 & 7). The

PLOS ONE | www.plosone.org

relatively low bootstrap values on our trees from genes as
characters approach (Figure 5) are likely a reflection of the true
state of nature, including conflict among gene trees and the
uncertainty of the species tree. Different data treatment may favor
one hypothesis over another, but they will unlikely provide any
solution with statistical confidence.

Studies using other types of data and analyses reached different
conclusions, and these studies cannot be discounted. For example,
Lyson et al. [2] used microRNA data and supported the lepidosaur
hypothesis. These data do not suffer the same problem as the
concatenated sequence analysis and are proven to be reliable for
phylogenetic information [40]. Hill’s [12] intensive sampling of
taxa, both fossil and extent, and morphological characters also
resulted in turtles being the sister-group of lepidosaurs. All these
conflicting results suggest that a solid conclusion of a turtle-
archosaur affinity is pre-mature. This “turtle problem” is likely
one of these cases that a solid phylogenetic solution is difficult, if
not impossible, to achieve for several reasons, such as rapid
speciation/divergence or ancient lineages, which have been
extensively discussed by Delsuc et al. [41], Philippe et al. [42],
and others.
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Figure 7. Heatmaps from the Phylcon analysis. Each vertical line represents a gene and different colors represent different p values from the AU
tests. A small p value (dark green) indicates that a gene rejects a topology. Topologies examined: 7-species data: 1. (((((ZF, Ch), PT),An),(Hu, Op)), Fr); 2.
((((ZF, Ch),(PT, An)),(Hu, Op)), Fr); 3. (((((ZF, Ch),An), PT),(Hu, Op)), Fr). 11-species data: 1. ((Hu, Op),(((ZF, Ch), Cr),(PT, ST)),((An,Py),Tu))),Fr); 2. ((Hu,
Op),(((ZF, Ch), Cr),((PT, ST),((An,Py), Tu)))),Fr); 3. ((Hu, Op),((ZF, Ch),(Cr,(PT, ST))),((An,Py),Tu))),Fr); 4. ((Hu, Op),(((ZF, Ch),(PT, ST)), Cr),((An,Py), Tu))),Fr).
Hu=Human (Homo sapiens), Fr=Western Clawed Frog (Xenopus tropicalis), ZF =Zebra Finch (Taeniopygia guttata), Ch=Chicken (Gallus gallus),
An=Green Anole (Anolis carolinensis), PT = Chinese Pond Turtle (Mauremys reevesil), ST =Soft-shelled Turtle (Pelodiscus sinensis), Py =Royal Python
(Python reglus) Tu=Tuatara (Sphenodon punctatus), Op Opossum (Monodelphis domestica), Cr = Nile Crocodlle (Crocodylus niloticus).
doi:10.1371/journal.pone.0079348.g007

Genes as characters in phylogenomics

Using genes as characters offers an alternative to concatenated
analysis for large genomic data. The debate between consensus
tree versus total evidence approaches has been at the centre of
modern phylogenetics for decades, and benefits of analyzing each

Table 2. Chi-square test of the relationship between genes
under positive selection and alternative hypotheses.

Numbers genes support a clade ((ZF, Ch), PT) (PT, An) dataset separately are well-recognized (see review [41,43]). In the
Under positivelselaction 143 (130.66) 37 (49.34) era of phylogenomics, there are additional advantages of treating
h i : haracter. Fi i
Neutral 1917 (1929.35) 741 (728.66) cach gene as an independent ¢ aracter. First, using genes as
characters likely reduces systematic error. With the massive
Total 2060 778 . :
amount of data, random error in phylogenomics becomes smaller,
Chi-square value 454 but systematic error, such as data heterogeneity, is often amplified
P 0.0331 [29,41,44]. Both theoretical exploration and empirical case studies

have demonstrated that concatenated analysis may produce

ZF =Zebra Finch (Taeniopygia guttata), Ch = Chicken (Gallus gallus),

PT =Chinese Pond Turtle (Mauremys reevesii), An = Green Anole (Anolis
carolinensis).

Numbers in parentheses are expected numbers of genes under random
distribution. Significantly more positively selected genes support the archosaur
hypothesis.

doi:10.1371/journal.pone.0079348.t002

PLOS ONE | www.plosone.org

misleading results with high bootstrap supports [30,33], and
analyzing genes separately is capable of reducing these errors
[29,30,44]. Using genes as characters will also reduce the long-
branch attraction problem. The ultimate cause of the problem is
that there are only four alternative states (A, C, G, T) for any
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Table 3. Chi-square tests of the relationship between genes functions and phylogenetic hypotheses.

GO/KEGG category A+ A— o+ o- x? P

A. Test of the Archosaur Hypothesis [((Zebra Finch, Chicken), Chinese Pond Turtle)]

Biological Process

organophosphate metabolic process (GO:0019637) 61 (49) 1975 (1987) 46 (58) 2342 (2030) 53 0.0210
hormone metabolic process (GO:0042445) 49 (39) 1987 (1997) 35 (45) 2353 (2343) 5.2 0.0223
macromolecule metabolic process (GO:0043170) 1180 (1148) 856 (888) 1314 (1346) 1074 (1042) 3.8 0.0500
primary metabolic process (GO:0044238) 1419 (1385) 617 (651) 1590 (1624) 798 (764) 49 0.0269
Cellular Component

organelle lumen (GO:0043233) 682 (648) 1354 (1388) 726 (760) 1662 (1628) 4.8 0.0276
extracellular matrix (GO:0031012) 77 (65) 1959 (1971) 64 (76) 2324 (2312) 43 0.0376
extracellular matrix part (GO:0044420) 37 (25) 1999 (2011) 18 (30) 2370 (2358) 10.1 0.0015
Molecular Function

nucleotide binding (GO:0000166) 409 (381) 1627 (1655) 419 (447) 1969 (1941) 47 0.0307
hormone binding (G0:0042562) 25 (18) 2011 (2018) 15 (22) 2373 (2366) 44 0.0357
cofactor binding (GO:0048037) 72 (60) 1964 (1976) 59 (71) 2329 (2317) 43 0.0372
KEGG pathway

inositol phosphate metabolism (map00562) 28 (18) 318 (328) 10 (20) 375 (365) 11.2 0.0008
phosphatidylinositol signaling system (map04070) 31 (22) 315 (324) 15 (24) 370 (361) 7.9 0.0049
arginine and proline metabolism (map00330) 24 (18) 322 (328) 14 (20) 371 (365) 4.0 0.0448
B. Test of the Lepidosaur Hypothesis [(Pond Turtle, Green Anole)]

Biological Process

cell activation (GO:0001775) 76 (61) 701 (716) 274 (289) 3373 (3358) 4.5 0.0334
translational initiation (GO:0006413) 17 (10) 760 (767) 40 (47) 3607 (3600) 6.0 0.0143
cellular component disassembly (GO:0022411) 45 (34) 732 (743) 149 (160) 3498 (3487) 44 0.0350
fertilization (GO:0009566) 14 (8) 763 (769) 33 (39) 3614 (3608) 4.9 0.0268
pollination (GO:0009856) 16 (10) 761 (767) 40 (46) 3607 (3601) 4.7 0.0293
system process (GO:0003008) 156 (135) 621 (642) 610 (631) 3037 (3016) 5.0 0.0250
digestion (GO:0007586) 13 (6) 764 (771) 23 (30) 3624 (3617) 8.6 0.0033
stem cell maintenance (GO:0019827) 14 (8) 763 (769) 34 (40) 3613 (3607) 45 0.0336
regulation of multi-organism process (GO:0043900) 15 (9) 762 (768) 34 (40) 3613 (3607) 5.8 0.0158
Cellular Component

cell projection (GO:0042995) 130 (110) 647 (667) 499 (519) 3148 (3128) 4.9 0.0271
membrane part (GO:0044425) 329 (296) 448 (481) 1355 (1388) 2292 (2259) 7.3 0.0068
Molecular Function

protein complex scaffold (GO:0032947) 12 (5.6) 765 (771) 20 (26) 3627 (3621) 8.8 0.0029
KEGG pathway

glycerolipid metabolism (map00561) 14 (7) 119 (126) 25 (32) 573 (566) 87 0.0032
glycerophospholipid metabolism (map00564) 13 (7) 120 (126) 28 (34) 570 (564) 53 0.0210

doi:10.1371/journal.pone.0079348.t003

nucleotide sites, and multiple hits are unavoidable when diver-
gence is old. Consequently, the high homoplasy leads to long-
branch attraction [31,45]. With haplotypes as character states, the
potential number of states has no limit, and the chance of ‘multiple
hits” at a haplotype level is remote. Second, the genes as characters
approach provides a convenient way to detect incongruence and
to apply weighting schemes. With genomic data, data quantity is
no longer an issue; conveniently determining incongruence and
properly weighting the high quality data are becoming not only

PLOS ONE | www.plosone.org

Only significant results are presented. A: the archosaur hypothesis; L: the lepidosaur hypothesis; O: other hypotheses. +: number of genes which have a particular GO
category or KEGG pathway; —: number of genes which do not have the GO category or KEGG pathway. Numbers in parentheses are expected numbers of genes under
random distribution. For example, of the 2117 genes that support the Archosaur hypothesis, 2036 genes have the GO category of “biological process”; among them, 61
have the GO category of “organophosphate metabolic process” and 1975 genes do not have the term.

possible but also necessary [30,46]. We weighted all genes equally
in this study; this scheme was aimed to scale back the impact of
highly variable genes, which produce many informative characters
in a concatenated analysis but are often considered less reliable
[47]. Several indices have recently been proposed to measure gene
reliability, such as gene stationarity [46], gene informativeness
[48], and internode certainty [30]. They can potentially be used to
establish weighting schemes. Third, using gene as the unit of
evolutionary studies makes better biological sense. What consti-
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tutes a character in evolutionary biology is a contentious issue
[49], but gene is arguably the unit of inheritance and the unit of
function. These traits make it a better choice as a unit of evolution
than nucleotide site or amino-acid residue. One major criticism of
analyzing each dataset (gene) separately is the loss of information
when converting datasets into gene trees (see [43] for a review).
With all branch length information being preserved in the
conversion, however, this loss 1s minimum. Perhaps more
importantly, a minimum loss of information is significantly
outweighed by the aforementioned benefits with large genomic
data.

At the operational level, the genes as characters approach also
offers several advantages. First, selecting a best-fit model for each
individual gene is relatively easy, and it is difficult to fit a realistic
model for complex and heterogeneous data [41,47]. Second, this
approach can largely avoid the problems associated with
computation time. Existing models and algorithms are challenged
when applied to genome-wide combined phylogenetic analysis
[32,33]. Parsimony analysis, however, is computationally inex-
pensive, and has potential to handle large dataset. Lastly, with
large dataset, errors are unavoidable. Our weighting scheme can
effectively minimize the impact of several types of errors. During
our analysis, we found some gene trees having one or more
unusually long branches, and they were likely results from low
quality alignments, non-orthologous genes, or potential assembling
errors. Our weighting scheme is capable of making these gene
trees almost uninformative by scaling their branches, and
effectively weeds out these errors.

Although consensus tree and supertree approaches have been
widely implemented [37,41,43,50], exploring their use with
genomic data is just beginning [51]. With the gene incongruence
problem being at the center of phylogenomic analysis
[30,41,44,52], separated analysis of individual gene appears to
be a necessary first step. How to summarize the individual gene
trees Into species tree, however, still need more investigation
[51,52]. Several approaches have been proposed, including
consensus trees, minimizing deep coalescent events, and likelihood
or Bayesian based probabilistic estimates of species tree methods
[52]. More recently, Liu et al. [51] proposed a new coalescence
based approach and compared various nonparametric and
parametric methods. Salichos and Rokas [30], on the other hand,
emphasized on selecting more reliable genes for phylogenetic
reconstruction. We subscribe to a Popperian view on hypotheses
regarding historical events. History is unknown, and the best-
corroborated hypothesis represents the best guess with the
available data [41,53]. In this regard, parsimony analysis provides
a computationally easy and philosophically sound approach in
phylogenomics.

From phylo- to genomics

Not only genomic data can improve the phylogenetic resolution
of the tree of life, phylogenetic analysis can make significant
contributions to the understanding of genomics as well. Phylog-
enies have always been the foundation for comparative studies of
many aspects of genomes, such as genome size [54]. Additionally,
phylogenetic analysis has a unique opportunity to contribute to
genomics. Eisen (1998) early on suggested phylogenetic analysis as
a tool to improve functional predictions for uncharacterized genes
in a genome [55]. Recently, Lee et al. went further and suggested
that genes or gene clusters that changed at a particular node could
be used to derive or test hypotheses regarding the biological
processes that are potentially responsible for the more interesting
organismal level evolution [56]. In this regard, genes that are in
conflict with the species tree may be the most interesting. Other
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aspects, such as modular evolution of genomes as in the case of the
study of the origin of life [57], can also be explored in a
phylogenetic context.

We have found clear evidence that the evolution of turtles was
accompanied by positive selection on many genes (Table 2). On
one hand, these genes may cloud the evolutionary history of turtles
and make phylogenetic reconstruction difficult. In the case of
turtles, genes that have experienced positive selection have a
higher tendency to support the archosaur hypothesis (Table 2),
which may contribute to the confusion regarding the phylogenetic
position of turtles. On the other hand, they may offer important
clues with respect to how turtles evolved, as Lee et al. suggested
[56]. Along this line, detailed analysis with more genomic data
may reveal genes that are responsible for the novel turtle body
plan, which is a hot topic in modern evolutionary biology [58].

We also found clear evidence for modular evolution (Table 3).
Genes in the same function category tend to support the same
hypothesis. Although our study on turtles is not as pronounced as
prokaryote to eukaryote dichotomy [57], it is not surprising that
genes evolve in modular fashion. With the rapid accumulation of
genomic data, genome wide evaluation of gene interactions and
functional modules is an attractive direction for future research
[59].

The genes as characters approach offers convenient tools for
evaluating character evolution. In our case, we classified the genes
mto “‘supporting the archosaur hypothesis”, “supporting the
lepidosaur hypothesis” and others with simplified nodes. In a
more complex situation, genes can potentially be classified using
several well-characterized indices, such as consistency index (CI)
or retention index (RI). For example, a gene (character) has a CI
greater than 0.9 on a particular topology (hypothesis) may be
considered as “supporting the hypothesis”.

Conclusions

Using genes as characters, our analysis of 4500+ genes suggested
that the phylogenetic placement of turtles within vertebrates
remains uncertain. Gene heterogeneity and hence conflicting
information from various genes is likely the cause of this
uncertainty. Although different data treatment may point to one
way or another, a confident solution may be elusive.

The genes as characters approach may lessen systematic error
associated with phylogenomic analysis. It may also offer conve-
nience in substitution model selection and computation. Perhaps
more importantly, it provides us with an opportunity to
simultaneously understand the evolutionary history of individual
genes as well as the whole genome. Recent advances in genomics
will undoubtedly expedite the final resolution of the tree of life. In
return, phylogenetics has much to offer for a better understanding
of genomics.

Materials and Methods

Data acquisition

We first acquired high quality transcriptome data of a turtle
species by RNA sequencing. Two adult Chinese pond turtles (M.
reevesii) were purchased from a pet store at Chengdu, China. The
specimens were euthanized by an overdose injection of sodium
pentobarbital, and dissected immediately after death. RNA was
separately extracted from brain, muscle, liver and heart tissues and
mixed in approximately equal quantities. A cDNA library was
constructed and subsequently sequenced on an Illumina Hi-
Seq2000 platform; both were carried out by BGI Inc (Shenzhen,
China). A total of 5G of raw read data were obtained.
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A de novo assembly was performed. The raw reads were first
cleaned by filtering out the adapter sequences. Reads with more
than 5% unknown base calls, low quality reads (<Q20), and
possible human and Escherichia coli contamination were also
discarded. We used a multiple K-mer length and coverage cutoff
value approach for assembly [60]. Thirty raw assemblies were
produced using the program Velvet and OASES [61,62] with five
K-mer lengths (21, 31, 41, 51, and 61) and six coverage cutoff
values (2, 3, 6, 10, 15, and 20). Sequence overlaps and
redundancies were then eliminated to produce the final assembly
using the programs CD-HIT-EST and CAP3 [63,64]. All reads
were mapped back to the final assembly to revisit all potential
assembling errors using program SOAP2 [65].

Transcriptomic or genomic data of another ten vertebrate
species were acquired from online databases. We first acquired
genomic data of six vertebrate species from the Amniota
Orthology Dataset (http://www.deep-phylogeny.org/hamstr/
download/datasets/hmmer3/), which include green anole (4nolis
carolinensis), chicken (Gallus gallus), human (Homo sapiens), opossum
(Monodelphis domestica), zebra finch (Taenwopygia guttata), and western
clawed frog (Xenopus tropicalis). Additionally, we downloaded
transcriptomic data of the soft-shelled turtle (Pelodiscus sinensis),
Nile crocodile (Crocodylus niloticus), royal python (Python regius), and
tuatara (Sphenodon punctatus) [1,66-68]. After adding the Chinese
pond turtle, our dataset included a total of 11 species, and had at
least two representatives of each major lineage of living amniotes
(with the exception of a single crocodilian). The western clawed
frog served as outgroup for phylogenetic analysis.

Putative orthologous genes were identified using the program
HaMSTR (Hidden Markov Model based Search for Orthologs
using Reciprocity; [36]) and the Amniota Orthology Dataset. For
each core ortholog in the Amniota Orthology Dataset, HaMSTR
searches a set of “unigenes” and identifies the best putative
orthologs. The default parameters were used in all searches.

Phylogenetic analysis

Phylogenetic trees were constructed based on both amino-acid
and nucleotide sequences. Coding regions of the cDNA sequences
were extracted and the UTRs were removed using local BlastX
based on the amino-acid sequences. During this process, a small
portion of coding sequences received low hit values of BlastX (e-
value cut-off of le-5), and genes associated with these sequences
were excluded from the subsequent analyses. Sequences of 1* and
2" codon positions were also extracted for subsequent analyses.

Two datasets were constructed for phylogenetic analysis based
on the levels of detail of the acquired data. Seven species (human,
opossum, zebra finch, chicken, green anole, Chinese pond turtle,
and western clawed frog) had many more orthologous genes than
the other species, and formed a 7-species dataset. The second
dataset, the 11-species dataset, had more taxa but fewer genes.
These two datasets would allow us to test the effect of sampling,
more genes or more taxa, and the 11-species dataset would also
provide opportunity to test the crocodilian hypothesis.

Alignment. For amino-acid sequences, a newly developed
fast and high-quality protein alignment method, Clustal Omega
[69], was employed with its default parameters. All nucleotide
sequences were aligned using a perl script with guidance from the
amino-acid sequence alignment. Alignments of a random sample
of genes were also manually checked to ensure the performance of
the program. Poorly aligned columns and gap-rich regions were
removed using TrimAl 1.2 [70] with the heuristic automated
method.

Gene tree construction. We first analyzed each gene
separately to obtain gene trees. Gene trees were constructed using
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maximum likelihood (ML) method with RAXML7.3.2 [71]. The
JTT-F+G model for amino-acid sequences and GTR+G model for
nucleotide sequences were used for all genes as a compromise to
simplify the analysis process. Gene trees with unusually long
branches (>1.5), which might have caused by low quality
alignments, non-orthologous genes, or potential assembling errors,
were excluded from subsequent analyses.

Concatenated data analysis. After removing dubious
orthologs, the remaining amino-acid and nucleotide sequences
were pooled together, respectively. The 7-species data (both
amino-acid and nucleotide sequences) were analyzed using
maximum parsimony (MP) and ML methods. For the 11-species
data, the amino-acid sequences were analyzed using MP and ML
methods, and the nucleotide sequences were analyzed using MP,
ML and Bayesian inference. A separate MP analysis was also
applied to the 1l-species nucleotide data after removing all 3™
codon position sequences.

The parsimony analysis was carried out using PAUP 4.10b [72].
Searching parameters included TBR branch swapping and 100
random addition replicates. A non-parametric bootstrap [73] with
1000 replicates was used to assess nodal support. For the large 7-
species concatenated dataset, the data exceeded the memory limit
of our PC (8G) and subsequently, all constant sites were removed
prior to tree search. This would not impact the searching process
but might have a small impact on bootstrap values [74].

Likelihood analysis was performed using RAxML. The JTT-
F+G model for amino-acid sequences was selected as the best-fit
model by a perl script (ProteinModelSelection.pl) implemented in
the program. We used the GTR+G model for nucleotide
sequences, which was the most commonly used DNA substitution
model in RAxML. Nodal support was assessed by a non-
parametric bootstrap with 100 replicates for amino-acid sequences
and 1000 replicates for nucleotide sequences.

Bayesian inference was performed using PhyloBayes 3.3f with
the CAT model [75,76]. The model is a site-specific infinite
mixture model, which is particularly suitable for phylogenomic
studies with a large number of genes. We only applied this analysis
to nucleotides of the 11-species dataset, because the 7-species
dataset was too large to run this program (memory limited). We
also removed all constant sites to improve the mixing as
recommended by the authors. CAT-GTR model was used and
two independent chains were executed. Trees were sampled every
10 cycles, and the first 20% of sampled trees were discarded as
burn-in. The maximum difference and minimum effective size
between the two independent runs were used to test the
convergence; when the maximum discrepancy was <0.3 and
minimum effective size was >50, the results were considered
acceptable. The automatic stopping rule was employed; searches
automatically stopped when the two chains reached convergence.

Genes as characters approach. Following the arguments of
Doyle [35], each gene was treated as a single character. We used
two methods to summarize the information from gene trees into
species trees. First, we used a simple count method. The numbers
of genes that support various hypotheses were counted and
compared. The hypothesis supported by the highest number of
genes was preferred. Second, we performed a more elaborated
parsimony analysis following a systematic procedure (Figure 2).

Each gene was treated as a single ordered multi-state character.
Ordered multi-state characters have high information content in
their transformation series and are often considered “ideal”
characters [77]. We assumed that these genes evolved largely
independently to satisfy the independent character assumption of
parsimony analysis.
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Haplotypes of a gene were treated as character states and the
gene trees were treated as the character-state trees. Step matrices
were used to describe the character-state trees. The pairwise
distance between two haplotypes on a gene tree represents the cost
in tree-length units of the corresponding transformations on the
species tree.

We weighted all characters (genes) equally. The maximum
pairwise distance in each step matrix was set to ten and all other
steps were proportionally scaled. Two digits after the decimal
points were kept in the step matrices in order to force the use of
floating-point evaluation of tree lengths rather than integer
lengths. An in-house perl script was used to batch convert the
ML gene trees into step matrix formats.

Finally, parsimony analyses were performed in PAUP. Heuristic
search was employed with TBR branch swapping and 100
random addition replicates. Bootstrap values were estimated with
1000 replicates. The procedure is summarized in a flowchart and
presented in Figure 2.

Detecting incongruence

It is well recognized that data heterogeneity is a major problem
in phylogenomic analysis [29,30]. Different genes may have
experienced different evolutionary histories and support different
topologies. We examined the incongruence among genes with two
methods.

SplitsTree anmalysis. We used a SplitsTree analysis to
identify where, on the species tree, most incongruence occurred
among the gene trees. All gene trees produced from separated
analyses of genes were fed into the program SplitsTree 4 [37].
Consensus networks were constructed from those gene trees with
split threshold values ranging from 0.15 to 0.30. The hyper-
dimensional boxes (loops) in the networks represent areas with
incompatible splits. The degree of denseness of boxes in a network
reflects the intensity of contradictory evidence for grouping certain
taxa, and the length of an edge is determined by the weight
assigned to it [37]. In contrast, a network without boxes represents
complete congruence.

Phylcon analysis. This analysis was used to detect different
levels of support of various genes to a particular topology. Three
rooted topologies of the 7-species data and four rooted topologies
of the 1l-species data were examined, which represented the
primary alternative hypotheses. RAxXML was used to compute the
per-site log likelihood values for these topologies, with JTT-F+G
(amino-acid) or GTR+G (nucleotide) substitution model. An AU
test [78] was performed with CONSEL [79] based on these
likelihood values. For any gene, a small P value (e.g., <0.05) for a
topology indicates that the topology is significantly worse than the
best tree, hence the gene rejects the topology. The P values for
cach individual gene and each topology were converted to
heatmaps using the Phylcon package in R [38], which could be
casily visualized.

Exploring gene (character) evolution

Within a phylogenetic framework, we explored two aspects of
gene evolution. It is well known that positive selection has a major
impact on the evolutionary history of genes and may mislead
phylogenetic construction [80,81]. In addition, genes may evolve
in a modular fashion. Genes with a similar function may co-evolve
and support a particular tree topology [57].
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Test of positive selection. We employed a maximum
likelihood approach [39] to test for positive selection using the
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case the gene might have experienced positive selection. We
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Gene functions and metabolic pathways. To assess gene
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