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Abstract

Movement is a key characteristic of higher organisms. During mammalian embryogenesis fetal movements have
been found critical to normal tissue development. On the single cell level, however, our current understanding of
stem cell differentiation concentrates on inducing factors through cytokine mediated biochemical signaling. In this
study, human mesenchymal stem cells and chondrogenesis were investigated as representative examples. We show
that pressureless, soft mechanical stimulation precipitated by the cyclic deformation of soft, magnetic hydrogel
scaffolds with an external magnetic field, can induce chondrogenesis in mesenchymal stem cells without any
additional chondrogenesis transcription factors (TGF-β1 and dexamethasone). A systematic study on the role of
movement frequency revealed a classical dose-response relationship for human mesenchymal stem cells
differentiation towards cartilage using mere mechanical stimulation. This effect could even be synergistically
amplified when exogenous chondrogenic factors and movement were combined.
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Introduction

Chemical signaling organizes the structure of biological
tissues[1] and stem cell differentiation during growth or repair.
Diffusion, local release of growth factors and concentration
gradients shape an organism’s 3D structure. Unfortunately,
liquid filled pockets and particularly movement destroy such
local information pattern (e.g. in a joint, see Figure 1) and
challenge our present understanding of static cell-cell
assemblies’ signaling[2,3].

We therefore hypothesize that soft movement is a key local
tissue structuring factor. The role of movement has probably
been best studied in tissue engineering for the growth of
articular cartilage in vitro[4-8] using mechanical top load (i.e.
pressure)[9-11]. Chondrocyte growth has been associated with
demanding physical input such as cell deformation[12],
hydrostatic pressure gradients[13], fluid flow[14], streaming
currents[15] and physicochemical changes[16,17]. Similarly,
substrate strain has also been used to improve hMSC
differentiation into vascular smooth muscle cells for vascular
tissue repair[18]. Clinical evidence provides a clear argument
for the necessity of movement in function-guided, local cell
differentiation[19,20]: Mammalian embryogenesis is

characterized by an early start of intense movement (for
humans, typically in the first third of gestation), a prerequisite to
normal organ development[21] and takes place in a pressure-
free environment. A second piece of evidence comes from the
required absence of movement for healing bone fractures.
Without adequate traumatic surgery or fixation,
pseudoarthrosis may occur at non-fixed bone fracture sites[22].
Continued movement of such non-fixed primary callus then
promotes local stem cell differentiation into cartilage and
ligament tissue instead of bone tissue. A third argument arises
when normal movement is impeded. If a joint is not moved
anymore (e.g. due to arthritis), even an otherwise fully
functional joint stiffens (ankylosis) and the tissue locally
transforms into a bone-type material[23]. A fourth argument is
counter-intuitive: Mechanical stress on ligaments regeneration
has recently been shown by Altmann et al [24] to improve the
healing process.

These clinical facts underline the importance of movement
(Figure 1) and suggest that movement may follow a dose/
response type relationship, similar to classical chemicals. Static
mechanical properties (porosity, matrix elasticity/stiffness) have
recently emerged as key factors in cell lineage
specification[25,26]. In order to test our hypothesis, we took
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normal embryonic movement frequency as a starting dose[21]
to run an in vitro study on the role of movement as a
differentiation factor. We used pressure-free, soft and smooth
deformations of a magnetic hydrogel scaffolds by time-
programmed application of external magnetic fields. Human
mesenchymal stem cells (hMSC) and chondrogenic
differentiation were chosen as representative examples[27-29].

We demonstrate that purely mechanical stimulation provokes
correct differentiation even in vitro and in the complete absence
of any exogenous biochemical differentiation factors. This
shows that mechanical stimulation is a key local organization
factor at the cellular level. In a second series of experiments,
we demonstrated that the frequency of stimulation and overall
number of applied stimulations follow a dose-response
relationship for these stem cells. This is similar to the present
(biochemical) understanding where specific concentrations of
the differentiation factor TGF-β indeed induce
chondrogenesis[30] to a specific level of differentiation[31].

Materials and Methods

Detailed methods on nanomagnet functionalization,
characterization of functionalized nanomagnets and magnetic
hydrogel, cell isolation, expansion and characterization,
biochemical analysis and immunohistochemistry are provided
in the Information in File S1.

Magnetic hydrogel synthesis
Appropriate amounts of 2-hydroxy-ethyl-methacrylate

(HEMA, 5.1 mL, puriss. ≥99%, Fluka), ethylene glycol
dimethacrylate (EGDMA, 4.9 µL, purum ≥97%, Fluka) and
styrene maleic anhydride copolymer (SMA® 1000H, 0.75 g,
36%, Sartomer) solution were mixed in water (25 mL,
Millipore). Subsequently, 4-vinylbiphenyl functionalized
nanomagnets (5 g) were suspended in the mixture using an
ultrasonic probe (UP400S, 24 kHz, Hielscher GmbH) during 5
min. After addition of a rheology additive (BYK® 420, 0.782 g,
Brenntag Schweizerhall AG), tetramethylethylenediamine
(TMEDA, 31.9 µL, 99%, Sigma Aldrich) and ammonium
persulfate (APS, 205 mg, 99+%, DNAse, RNAse and protease
free, for molecular biology, Acros Organics) the mixture was

processed again with the ultrasonic probe for 5 min. The
reaction mixture was then poured into an electrophoresis
casting mold (gel casting mold, kuroGEL Midi 13) and reacted
for 1 h at ambient temperature. The obtained gel was treated
with deionized water for 24 h while the water was changed 3
times. The procedure was repeated with phosphate-buffered
saline (PBS, pH 7.4, GIBCO) to remove unreacted monomer
and nanomagnets and to obtain a stable swelling behavior of
the hydrogel. The obtained deep-black magnetic hydrogel (2
mm thickness) was punched out to the desired shape and
sterilized in 70% ethanol. Sterile scaffolds were rinsed 3 times
with fresh PBS to remove any residual ethanol. A dog-bone like
shape of the scaffold (Figure 2c) was chosen to increase the
flexibility and enable a hammock like deformation. This
structure allowed for minimization of the required magnetic
force.

Scaffold seeding
A homogeneous distribution of seeded cells onto the

hydrogel surface was obtained by using small volumes of
relatively high concentrated cell suspensions (2.4•106 P3
hMSC mL-1) either in control (DMEM, 10% FBS, 1% antibiotic/
antimycotic) or chondrogenic medium (DMEM, 1% antibiotic/
antimycotic, 100 nM dexamethasone (water-soluble, cell
culture tested, Sigma-Aldrich), 6.25 µg mL-1 insulin (bovine
pancreas, Sigma-Aldrich), 50 µg mL-1 ascorbic acid (≥95%,
Sigma-Fine Chemicals), 40 µg mL-1 L-proline (≥98.5%, Sigma-
Fine Chemicals), 6.25 µg mL-1 ITS (BD ITS+ Premix, BD
Biosciences) and 10 ng mL-1 transforming growth factor beta 1
(rh TGF-β1, R&D Systems, [30]). Precut and sterilized hydrogel
scaffolds were fixed with the aid of sterile stainless steel rings
in wells of a 12 well plate (non-tissue-culture-treated, Falcon).
The lower ring acted as a spacer with 2 mm thickness to allow
hydrogel deformation. 250 µL of the respective cell suspension
was seeded onto each scaffold and cells were left for 20 min at
5% CO2 and 37°C to allow adherence on the scaffold surface.
An additional 1.75 mL of the respective medium was then
gently added to each well. All cell culture experiments were
performed in triplicate and the corresponding medium was
replaced three times a week.

Figure 1.  Concentration gradient distortion schematically shown in a joint.  Hip joint (anatomy, a) with a local concentration
profile of a differentiation factor secreted at the interface of the cartilage if the joint is not moved (hypothetical, b) and under
physiologic movement (c). Diffusion alone usually results in rather steep concentration gradients (static situation). Movement
induces liquid mixing through convection (synovial fluid) flattening concentration profiles.
doi: 10.1371/journal.pone.0081362.g001
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Cell attachment and viability
Successful cell seeding and adherence was verified by using

4 mM calcein acetoxymethyl ester (calcein AM, Invitrogen) in
the corresponding medium for 20 min in a humidified incubator
(37°C, 5% CO2). Fluorescence images from cells cultivated on
scaffolds were immediately obtained using an inverted
research microscope equipped with reflected fluorescence
system (IX51, Olympus). Cell cytotoxicity was directly
measured from the supernatant using a cytotoxicity detection
kit measuring the lactate dehydrogenase (LDH) activity
according to the manufacturer’s instructions (Roche Applied
Science).

Cyclical magnetically assisted mechanical stimulation
The vertical motion of the magnetic, soft hydrogel scaffold

was controlled by a magnetic field (0.8 T) induced by an
external electromagnet (G MH X 025, Magnet-Schultz GmbH).
12 electromagnets were arranged like a 12 well plate (one per
well) and anchored on an aluminum plate (18 cm x 18cm x 0.8
cm) with an incorporated cooling circuit. Solenoids were
connected with a switching power supply (PSP 1803, Voltcraft)
and controlled by a computer. Cyclic deformation was obtained
using LabView (Version 8.2) for regulating power on/off and
interval time, respectively. Constant temperature (37°C) of the
actuating device was attained using a bath and circulation
thermostat (polystat cc3, Huber Kältemaschinenbau GmbH)

Figure 2.  Magnetic and soft scaffold preparation and human mesenchymal stem cells.  a) Carbon protected metal
nanomagnets (transmission electron microscopy image) were covalently linked into a hydrogel (b, cryo-section) with high porosity
(pore size ~ 10 µm) to facilitate cell attachment. c) Magnetic, soft, cell culture scaffold. The dog-bone shape minimizes the required
magnetic force for soft deformation. d) Good adherence of human mesenchymal stem cells seeded on hydrogel surfaces (Calcein-
AM staining).
doi: 10.1371/journal.pone.0081362.g002
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connected to water cooling system. Equilibrated temperature of
the electromagnets was obtained with the aid of a programmed
ramp function of the bath and circulation thermostat. When
electromagnets were activated the cooling medium was
tempered to 32°C (experimentally determined) to compensate
the generated heat from the electromagnets. That way, the cell
culture medium was always kept at a constant temperature of
37°C within a humidified incubator (data not shown, controlled
with an infrared thermometer (Scantemp pro 440)). The
specific time interval (2 seconds on, 25 seconds off) was
adjusted to stimulate the seeded hMSC on hydrogel scaffolds
for 2 x 30 min within 3 h per day (5 weeks, total cycles: 4666)
when the influence of scaffold type or chondrogenic medium
composition was investigated.

For the impact of mechanical stimulation at different
intensities regarding to differentiation, the stimulus was
performed in 30 min cycles every 1.5 h for 8 h per day during 3
weeks (daytime activity, total number of cycles = 12600, 2016
and 672 respectively) for each group (n = 3). Cell culture
samples were taken after 1, 2 and 3 weeks, respectively.

Statistical analysis
All quantitative data are presented as average ± standard

deviation. Medium composition, biochemical and mechanical
stimulation parameters of chondrogenic differentiation after 5
weeks of culture compared to the control were evaluated by
One-way ANOVA (SPSS, 19.0.0). Bonferroni corrections were
used to account for multiple comparisons. Differences between
groups of p < 0.05 were considered as statistically significant.

Results

Magnetic hydrogels of controlled flexibility
The surface of biochemically inert carbon-coated metal

nanomagnets (C/Co, Figure 2a) was chemically functionalized
with covalently bound vinyl groups (Supporting Information,
Figure S1 in File S1) and crosslinked into a hydrogel polymer
backbone[32]. (See Supporting Information, Table S1 and
Figure S2 in File S1). The produced hydrogels show a water
content close to the one of most mammalian tissues[32]. The
here used metal nanomagnets with high saturation
magnetization (162 emu g-1)[33] allows rapid and controlled
deformation. Analysis (SEM, Figure 2b) of hydrogel
cryosections confirmed a homogeneous distribution and porous
structure (~ 10 µm), essential for good cell adherence[26].
Elasticity measurements resulted in 21 ± 6 kPa (Supporting
Information, Figure S3 in File S1) which is favorable for
chondrogenesis[25].

Magnetic-force controlled stimulation and
chondrogenesis

Movement in cell cultures has a long tradition based on
mechanically connected systems to distort a specific culture
surface[12,34]. For very porous, soft and elastic materials,
however, such design is unfavorable[25] and leads to scaffold
distortions. Binding nano-sized metal magnets to the polymer
strands of soft and flexible hydrogels, however, allows in

principle to apply a force at each polymer strand, since an
external magnetic field will pull each metal nanomagnet, and
therefore all polymer strands will move in a similar way. This
smooth scaffold deformation is schematically depicted in Figure
3 and Figure S4 in File S1 (Supporting Information). Cells were
seeded on magnetic scaffolds (Figure 2d) in control medium or
serum-free chondrogenic medium, respectively, and optionally
subjected to mechanical stimulation (Supporting Information,
Figure S4 in File S1). Cells were cultured for 5 weeks. We
further introduced various control experiments: hMSC were
cultivated on tissue culture plates (no scaffold), pure hydrogels
without nanomagnets and non-stimulated magnetic hydrogels
(control experiments to rule out any other influences).
Chondrogenesis (i.e. successful differentiation) was
quantitatively assessed by measuring sulfated
glycosaminoglycan (GAG) deposition, a major component of
cartilage extracellular matrix. Importantly, GAG deposition was
detected only when cells were cultivated with chondrogenic
medium or when cultivated in control medium under
mechanical stimulation (Figure 3a). This shows that
mechanical stimulation is sufficient to induce and promote
chondrogenesis in hMSC. In agreement with the reported
literature[35,36], control medium (no movement, no
differentiation factors) allows bone marrow derived hMSC to
proliferate, but does not induce any differentiation. The
absence of GAG formation in control experiments further
confirmed that all materials, protocols and treatments used in
this work indeed did not significantly influence the hMSC
differentiation behavior. The only difference between
differentiating and non-differentiating hMSC seeded on the
scaffolds used here, was the application of the external
magnetic field and the resulting reversible, soft deformation of
the scaffold.

The combination of exogenous chondrogenic factors and
mechanical stimulation even amplified the chondrogenesis and
resulted in a synergistic effect as evidenced by a significantly
higher GAG deposition than non-stimulated scaffolds using
chondrogenic medium (p < 0.001; Figure 3a). In contrast, no
GAG deposition could be observed for cells cultured in 2D on
standard tissue culture plates. Terminal DNA quantification
assays confirmed normal hMSC proliferation on tissue culture
plates or on control samples in the absence of mechanical
stimulation (Figure 3b). A high DNA value obtained for all cell
cultivation methods indicated good cell expansion and
decreasing LDH activity demonstrated good cytocompatibility
(Supporting Information, Figures S5 and S6 in File S1) of the
scaffolds and no negative impact by soft, magnetic hydrogel
deformation. Nanomagnet-free hydrogels showed comparable
cell growth and differentiation behavior if compared to magnetic
hydrogels without external magnetic fields (i.e. no mechanical
stimulation). This confirms the absence of cytotoxicity, in
agreement with earlier studies[37,38].

Chondrogenesis – The influence of mechanical
stimulation combined with different chondrogenic
factor concentrations

Chondrogenesis inducing factors (TGF-β1 and
dexamethasone[35,39]) and mechanical stimulation together

Movement Based Stem Cell Differentiation
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were investigated at various dilutions and showed a strongly
synergistic effect (Figure 3; p < 0.001). The GAG deposition
levels indicated a strong influence of mechanical stimulation
directing hMSC into chondrogenic lineage even in the absence
of any chondrogenesis inducing factors. hMSC cultured at a

50% decreased chondrogenic factors concentration in
combination with soft mechanical stimulation displayed a
significantly higher degree of chondrogenic differentiation (p <
0.001, Figure 3) compared to standard chondrogenic
differentiation medium (classical, non-stimulated cell culture

Figure 3.  Mechanical stimulation induced chondrogenesis.  a) Cell numbers (DNA amount per scaffold) confirmed good cell
expansion and growth. Below is the glycosaminoglycan (GAG) deposition per scaffold over a period of 5 weeks. Control medium
(white bars) and chondrogenic medium (grey bars) were applied on cells seeded into either tissue culture plate (no scaffold),
hydrogel scaffold (no nanomagnets, i.e. no movement is possible) or magnetic hydrogel. Mechanical stimulation (arrow) triggered
higher GAG deposition. b) Comparable DNA amount indicated good cell growth for cells seeded into magnetic hydrogels with both
medium types and no negative effects from mechanical stimulation. GAG deposition using diluted chondrogenic (grey) versus
control medium (white bars). Mechanically stimulated hMSC in control medium showed comparable GAG deposition as in standard
chondrogenic medium under magnetic actuation (indicated by ↕). * p < 0.01 cells cultured with control medium under mechanical
stimulation versus non stimulated and mechanically stimulated hydrogel using both cell culture media.
doi: 10.1371/journal.pone.0081362.g003
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conditions). In addition, chondrogenesis was quantitatively
characterized beyond GAG deposition by immunostaining of
the cartilage specific proteoglycan core protein aggrecan[40],
collagen type II and transcription factor SOX9[41] (Figure 4)
providing an independent confirmation of our results. The
effects of exposure to both low concentrations of differentiation
factor and mechanical stimulation (Figure 3) are complex and
require more detailed studies.

Chondrogenesis – The impact of stimulation
frequencies

The impact of different mechanical stimulation intensities
were investigated with cells cultured in medium with reduced
chondrogenic factors (50%) and with control medium. The
external magnetic field pulse was kept constant in all groups for
2 seconds. The break intervals (electromagnets = off) were set
to 10, 75 and 225 seconds (Figure 5). Non-stimulated magnetic
hydrogel scaffolds (no movements) served as control. After
only 3 weeks of cultivation and stimulation, the amount of GAG
deposition had reached at least the same level as described

above with less actuation and longer cultivation time (5 weeks).
hMSC cultivated with control medium and a break interval of 10
seconds showed almost the same amount of GAG deposition
compared to cells cultured in chondrogenic medium (Figure 5).
Mechanical stimulation increased the chondrogenic lineage
considerably. Fluorescence microscopy analysis again
confirmed the biochemical assay results and large, correctly
differentiated cell assemblies were observed for cultures in
control medium stimulated with 10 seconds break intervals
(Supporting Information, Figure S7 in File S1). DNA assays
(Supporting Information, Figure S8 in File S1) revealed no
negative effect on proliferation when the stimulation frequency
was increased and the obtained results were again in line with
the controls and previous studies.

Discussion

Mesenchymal stem cells in healthy and diseased cartilage
retain the potential to regenerate tissue[40,42]. While these
multi-potent cells have been investigated in tissue engineering
of cartilage or bone[4,43-45], our results suggest the possibility

Figure 4.  Chondrogenesis on magnetic hydrogels with and without mechanical stimulation.  Aggrecan (antibody labeling,
red), SOX9 (antibody labeling, green) and Collagen II expression (green) immunohistochemistry of hMSC over a period of 5 weeks.
Cell cultures were either not stimulated or underwent repeated mechanical stimulation (left). The role of movement was investigated
both in control medium (top rows) and in standard chondrogenic medium (bottom rows). Samples were counterstained with DAPI to
make cell nuclei visible. Mechanical stimulation resulted in clear up-regulation of all chondrogenic markers if compared to the non-
stimulated control cultures.
doi: 10.1371/journal.pone.0081362.g004
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Figure 5.  Frequency dependent hMSC
differentiation.  Mechanical stimulation frequency influences
the differentiation and formation of tissue-typical extracellular
matrix (amount of GAG formed) in both control and
chondrogenic medium. Cells were pressure-free stretched on
soft scaffolds for 2 seconds (stimulation period). Non-moved
scaffolds (left) served as additional controls. The amount of
GAG deposition indicated differentiation on all mechanical
stimulated scaffolds particularly at high frequency. This
behavior shows that mechanical soft movement follows a dose-
effect type response similar to a classical response of specific
cells to a given biochemical factor.
doi: 10.1371/journal.pone.0081362.g005

of purely mechanical, and therefore local stem cell
differentiation. At present, most hMSC studies make use of
commercially available or self-designed chondrogenic
differentiation mediums with TGF-β, BMP and dexamethasone
as key components to chemically induce hMSC differentiation
into cartilage associated cells. This obviously creates
homogeneous differentiation conditions all over a cell/tissue
culture and all structuring must happen through introduction of
pre-shaped scaffolds.

Stem cell differentiation is a combination of intrinsic genetic
programs, static factors and microenvironment[46]. Stem cells
then dynamically respond and actively modify the properties of
their environment by synthesizing or degrading the extracellular
matrix, secreting cytokines, and communicating with other cells
and matrix by molecular and physical signals[47,48]. All these
interactions, however, are based on diffusive processes, or
existing organization within a tissue segment and well explains
how complex cell assemblies remain stable. This current
understanding, however, is unable to explain how large area
tissue regeneration is influenced through movement. Our study
demonstrates that soft movement in the correctly flexible
environment indeed strongly directs hMSC differentiation. Our
result is further in line with fundamental clinical observations
such as the fact that purely physical stimulation is highly
efficient in the treatment of arthritis[49], or, more recently, that
mechanical loading alone, without specific growth factors,
induces cell alignment and the accumulation of ligament-
specific cells in tendons[24].

The possibility to use pressure-free movement in the present
study has allowed mimicking early embryonic conditions where
the development of musculoskeletal apparatus is linked to
healthy embryonic movement and where corresponding stem
cells differentiate into numerous lineages and highly organized
tissues[41].

Our finding that mechanical stimulation alone, without any
chondrogenic differentiation factors, can induce
chondrogenesis and cartilage-type tissue formation confirms
the initial hypothesis that tissue hierarchy cannot be explained
on the basis of diffusive processes and polarity alone.
Movement induced differentiation, in this regard, is a form of
function-driven tissue specialization, where the regenerating
tissues execute a function and thereby locally define specific
cell’s biological needs and specialization. Mechanical signals
have long been shown to trigger cell-surface stretch receptors
and adhesion sites, resulting in activation of genes responsible
for the synthesis and secretion of extracellular cartilage
components[50]. This is in line with the dose-response type
correlation between the mechanical stimulation and GAG
expression. An alternative explanation based on movement
induced fluid flow and increased mass transfer (nutrients or
oxygen) as key reasons for improved chondrogenic
differentiation can be rejected based on the here used small
tissue size (single layer of cells; low metabolic activity) with
respect to the available surface for gas and nutrient exchange,
and the use of a highly porous substrate. Interestingly, our
study is related to the observation that blood flow (also a
dynamic component) during embryogenesis has recently been
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identified as a conserved regulator for hematopoietic stem cell
(HSC) formation[51].

Another potential discussion point, namely the use of fetal
bovine serum (FBS) in standard cell culture medium, can be
answered based on the observation that all non-moved control
experiments also contained the same amount and batch of
bovine serum. FBS was indeed suggested to have an influence
on hMSC differentiation[52] but this was not observed during
this study. The effect of low frequency electromagnetic fields
was suggested to have a positive effect on the chondrogenic
differentiation[53]. The controls used here, i.e. hydrogels
without nanomagnets in the presence of the same
electromagnetic fields did not show any differentiation. This
again proves that actual soft movement is indeed the critical
stimulus to differentiation even in the absence of any chemical
signals or factors.

For all parts of the study, normal proliferation was observed
and the absence of cytotoxitiy confirmed excellent
cytocompatibility of the used chemically stable and reliably
bound nanomagnets. Immunohistochemistry underlined the
biochemical assay’s results. Moreover, cells cultured in
standard control medium combined with stimulation showed
more of chondrogenic characteristics compared to cells
cultivated with chondrogenic medium only. Chondrogenesis
was clearly accelerated by mechanical stimulation of hMSC
cultured in chondrogenic medium. The here observed effects
motivate for further studies: The purely mechanically induced
stimulation might be the result of local production of growth and
differentiation factors and subsequent self-influencing
stimulation. Such mechanism would be in line with many
growth factors’ capability to stably bind to the basolateral matrix
of the cells. Alternatively, the soft, repetitive mechanical
deformation might directly have promoted expression of pro-
chondrogenic factors.

The here presented elastic, soft, mechanical stimulation cell
culturing device uses the highly magnetic, active part of
hydrogel scaffolds to convey force through external application
of electromagnetic fields. This simple setup allows the same

easy handling (seeding, cultivation, medium exchange) as in
standard cell culture plates and opens the way for more in
depth studies on the relationship between physical
deformation, force and local development of tissue function,
particularly for the musculoskeletal apparatus, but also in
understanding organ barriers (basal membranes), the role of
peristaltic movement in maintaining homeostasis in the
intestine, and cardiac regeneration. Simple bioreactors may be
constructed for larger, 3D magnetic scaffolds and driven by
external magnetic forces to mechanically stimulate functionally
correct development of larger tissues. With respect to cartilage
regeneration, soft and highly magnetic scaffolds are suggested
to combine the role of cell culture supports and actuators in
tissue engineering of 3D artificial cartilage to treat osteoarthritis
patients with their own bone marrow derived stem cells.

Supporting Information

File S1.  Additional Materials and Methods, Table S1,
Figures S1, S2, S3, S4, S5, S6, S7 and S8.
(PDF)
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