
The Role of Ph Fronts in Tissue Electroporation Based
Treatments
Felipe Maglietti1, Sebastian Michinski1,2, Nahuel Olaiz1, Marcelo Castro3, Cecilia Suárez1,
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Abstract

Treatments based on electroporation (EP) induce the formation of pores in cell membranes due to the application of pulsed
electric fields. We present experimental evidence of the existence of pH fronts emerging from both electrodes during
treatments based on tissue EP, for conditions found in many studies, and that these fronts are immediate and substantial.
pH fronts are indirectly measured through the evanescence time (ET), defined as the time required for the tissue buffer to
neutralize them. The ET was measured through a pH indicator imaged at a series of time intervals using a four-cluster hard
fuzzy-c-means algorithm to segment pixels corresponding to the pH indicator at every frame. The ET was calculated as the
time during which the number of pixels was 10% of those in the initial frame. While in EP-based treatments such as
reversible (ECT) and irreversible electroporation (IRE) the ET is very short (though enough to cause minor injuries) due to
electric pulse characteristics and biological buffers present in the tissue, in gene electrotransfer (GET), ET is much longer,
enough to denaturate plasmids and produce cell damage. When any of the electric pulse parameters is doubled or tripled
the ET grows and, remarkably, when any of the pulse parameters in GET is halved, the ET drops significantly. Reducing pH
fronts has relevant implications for GET treatment efficiency, due to a substantial reduction of plasmid damage and cell loss.
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Introduction

Cancer is one of the leading causes of death worldwide,

accounting for 7.6 million deaths in 2008 and it is projected to

continue rising, with an estimate of 13.1 million deaths in 2030 [1–

2]. Cancer treatment requires a careful selection of one or more

interventions (such as surgery, radiotherapy and chemotherapy).

The goal is to cure the disease or considerably prolong life while

improving the patient’s life quality. To improve efficiency and

reduce side effects, during the last decades a considerable number

of new therapies have been presented, many of which are

currently under study. Among them, new tumor treatments based

on electroporation (EP) emerged during the last years, becoming a

new step in cancer treatment.

EP induces pore formation across the cell membrane by the

application of an electric field [3–4]. During the last decades EP-

based techniques were implemented for medical purposes [5–6].

Theoretical and experimental studies about EP-based techniques

were conducted in the 1970s [7–9] and Neumann et al. [10]

reported for the first time a successful gene transfer into murine

cells using EP. After the development of EP devices this technique

became widespread for delivering molecules inside the cell [11–

13]. The first use of EP for delivering chemotherapeutic agents in

tumors was reported by Belehradek in 1993 [14]. Since then many

tumor treatment modalities using EP, delivering genes or drugs,

have been developed [15–19].

Electrochemotherapy (ECT) is an EP-based technique in which

electric pulses are used to induce transient pore formation across

the cell membrane, thus allowing certain drugs, which are non

permeant to it, to enter the cell [3–4,20–21]. ECT is being used as

a therapeutic option for cutaneous and subcutaneous tumors since

2006, after its clinic standard operating procedures were published

[22–23], and recently a meta-analysis has been published [24]. A

typical ECT treatment in humans consists of a train of 8 square

pulses of a high electric field (around 1000 V/cm) and short

duration (around 100 ms) delivered at 1 Hz [3]. Gene Electro-

transfer (GET, formerly EGT) is another EP-based technique that

uses the same principle to transfer plasmidic DNA instead of a

drug [25–26]. For sufficiently strong electric fields, pores can

remain permanently open, thus killing the cell. This is the case of

irreversible electroporation (IRE) when the cell membrane does

not reseal [27]. Another type of tissue electroporation is

nanoelectroporation, which is characterized by the use of pulses

of nanosecond length. In this case the pores are formed in the

organelles, producing a massive calcium release to the cytoplasm

which triggers cell death mechanisms [28–29].

EP-based treatments aim mainly at a palliative care, providing a

new treatment modality where others have failed. ECT can be
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used also as a neoadjuvant treatment or to extend surgical margins

[30–31]. Additionally efforts are being made to increase the local

immune response generated by the treatment in order to obtain a

systemic response [26,32]. Many efforts are geared towards the

extension of EP-based treatments to other organs such as the brain

[33,59], the liver [34], the lungs [35] and the bones [36].

Moreover, an endoscopic electrode was developed for endolum-

inal applications [37]. GET has become an efficient and safe

transfection method in medicine to treat many diseases. Among

them it can be used to produce a protein which is deficient due to

a genetic abnormality, or a protein with a therapeutic effect.

Clinical trials have been performed in Parkinson’s disease,

retinoblastoma, age related macular degeneration, cystic fibrosis,

coronary artery disease, peripheral vascular disease, muscular

dystrophies, junctional epidermolysis bullosa, HIV/AIDS, hemo-

philia, severe combined immunodeficiency, a1-antitrypsin defi-

ciency and cancer [30,26]. Recently a phase I clinical trial in

patient with metastatic melanoma concluded with very promising

results [32].

Whether ECT, GET or IRE, all these techniques have

undesired side effects (loss of cell viability, uncontrolled necrosis,

plasmid damage) that must be minimized. To elucidate how much

electric pulses can change the pH solution in the electroporation of

a cell suspension, the changes of pH in NaCl solutions buffered

with different amount of sodium phosphate under high voltage

electric pulses was studied in [38]. Using stainless steel anode and

different materials in the cathode, it was found that variations in

the whole volume of the electrolytic chamber can exceed 1–2 pH

units in average, though it was observed that near the cathode this

variation is significantly greater. It was also conjectured that the

change of pH, in some cases, might be one of the factors causing

cell death. In conclusion, to minimize pH effects, it was

recommended to use strongly buffered solutions and bipolar

electric pulses. In a previous paper [39] we looked into the

electroporation process from a new angle apparently overseen in

the literature, the role of pH in ECT modeling based on ion

transport during the treatment. The analysis was developed

through in vitro gel measurements and theoretical modeling

drawing from previous experience in the electrochemical treat-

ment of tumors (EChT, another electrochemical-based antitu-

moral treatment that uses constant electric fields with the aim of

eliminating tumors mainly by necrosis, see for instance [39–43,58])

and in electrochemical deposition in thin layer cells [44]. It is well

known that, during EChT, two opposing pH fronts emerge from

both electrodes (acid from the anode and basic from the cathode)

until there is a collision somewhere between them. These pH

fronts can be used to predict the extent of the tumor necrotic area

[45] which may be, in part, attributed to electrodenaturation [43].

While in EChT tumor necrosis is the main goal of the treatment,

and in IRE it contributes to tumor destruction, in ECT and GET,

it is an undesired effect. On the other hand, although GET has

high in-vitro efficiency, it is far from its optimal efficiency in vivo,

compared to other transfection methods [32–46]. It has been

suggested that both effects (uncontrolled necrosis and loss of

efficiency) may be strongly dependent on pH alterations induced

by electrolysis during the process. Significant pH changes of the

medium may induce deleterious effects over the plasmids used in

GET, as DNA denaturation is prominently affected by pH.

Plasmids are usually denatured when exposed to an alkaline

medium above pH 8.4, and it takes less than 1 second to

permanently denaturate them at pH 12.5 [47–49]. Thus, it seems

relevant to quantify the extent and evolution of pH changes during

EP-based treatments. A way to reduce the effects of pH changes

could be by minimizing voltages and the number of pulses while

maximizing pulse length as far as possible. In fact, this new low-

current, low-voltage and long-duration pulse procedure was

proved recently to be safer and more efficient in DNA and GET

[5,50,26].

As an extension of our previous results [39], the aim of this

paper is to show that pH fronts generated by EP-based techniques

produce non negligible pH changes in a tissue regardless of the

presence of natural buffers. pH fronts are measured through the

evanescence time (ET), that is, the time required for the tissue

buffer to neutralize them. The ET is studied for different sets of

pulse parameters (corresponding to IRE, ECT or GET modali-

ties).

Materials and Methods

Experimental measurements are based on the application of EP

under different pulse parameters to chicken muscular tissue.

Induced pH effects are measured indirectly by the evanescence

time of a pH indicator. The experimental setup is shown in

figure 1. Muscular tissue samples of 36261 cm were sliced from

fresh chicken (no ethical approval was required since the ex vivo

experiments where performed with chicken muscular tissue

acquired from a retailer). All cuts were made right before each

data acquisition in order to prevent the tissue from drying out. To

estimate the hydroxyl production around the cathode inside the

tissue, a pH indicator dye (phenolphthalein, C20H14O4, transition

pH range 8.0–9.6, from colorless to red) was used, each sample

placed in a plastic plate. One drop of phenolphthalein was applied

over the surface of the samples and two electrodes (parallel surgical

steel needles 0.8 mm thick, 2.5 cm long, their surfaces separated

from each other by 0.4 cm) were laid horizontally over the region

of interest. The surgical steel needles were chosen since it is the

material used in many publications and in clinical practice, also

because it induces less pH changes [51–52]. In all of the

experiments, a uniform weight of 46.6 grams was applied on top

of the needles to exert the same pressure over the tissue. Only the

hydroxyl production at the cathode was studied as it is equivalent

to the proton production at the anode by the following hydrolysis

stechiometric equations [40,52]:

At the anode,

2 H2OuO2z4 Hzz4 e{

At the cathode,

4 H2Oz4 e{u2 H2z4 OH{

The oxidation of the anion of the solute,

2Cl{[Cl2z2e{

The electric pulses were applied using a BTX ECM 830 square

wave electroporator (Harvard Apparatus, Massachusetts, USA).

Immediately after pulse delivery, electrodes were removed

allowing video capturing of the image area by a CASIO EX-

FH25 high-speed camera. Videos were recorded at 30 fps with a

12806720 pixel resolution. For ET estimation, one frame per

second was considered and, in each frame, the region of interest

was manually cropped around the cathode. The dye is better

depicted in the green channel and it was therefore chosen as the

pH in Tissue Electroporation Based Treatments
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only component for analysis (ImageJ, http://rsbweb.nih.gov/ij).

This choice produced a more accurate segmentation. Immediately

after the onset of pulse delivery, the pH indicator dye in the

sample changes from colorless to red. After the end of the pulse

delivery and as hydroxyls are neutralized by the tissue buffer, the

sample turns to colorless again, indicating a neutralizing

phenomenon. We define ET as the time when 90% of the dye

changed from red to colorless after the end of the pulse delivery.

This ET, which is an indirect measure of the amount of hydroxyls

produced, is estimated by the time needed for the tissue buffer to

turn the pH value to less than 8 (nearly neutral). To make this

measure accurate and reproducible, real time videos of the

samples after pulse delivery were captured showing the color

change of the dye over time. Afterwards, the video was analyzed to

automatically determine the time required for 90% of the dye to

turn colorless.

Different sets of pulse parameters, corresponding to different

experimental series, were studied by changing the standard

number of pulses, pulse length and pulse amplitude. During all

the experiments electric current and potential were measured

using an Agilent DSOX2012A Oscilloscope: 100 MHz, 2

Channels (Agilent Technologies, Santa Clara, CA, USA). A

statistical analysis of the results was made by ANOVA and a

p,0.01 was considered significant.

The treated animal shown in figure 2 is not from a laboratory or

from research; it is a veterinary patient with a spontaneous disease,

whose only alternative was euthanasia. This is why the veterinary

doctor decided to perform ECT. Because it was a veterinary

patient and the decision of making a treatment was not based on

research but on disease treatment, the owner’s consent was

obtained. Also, owner’s consent was obtained to use the dog’s

image in scientific work. In any case, all recommendations by the

Consejo Profesional de Médicos Veterinarios de Buenos Aires

were followed. The local normative law in Argentina, law

No. 14072 regulating the practice in veterinary medicine, was

followed too.

Results and Discussion

As previously discussed, experimental measurements are based

on the application of EP under different pulse parameters to

chicken muscular tissue.

The parameters for GET found in the literature are very diverse

[26]. Here we followed those suggested in [25] because we were

familiar with them, and also because we applied them in other

experiments with good results. Parameter variations were chosen

according to the expected variations in the pH changes, in order to

confirm that a lower Coulomb dose calculated will correspond

with a lesser pH change in the tissue, and a higher Coulomb dose

will induce the opposite. The frequency was kept as high as

possible in order to diminish patient discomfort in future

applications. Higher frequencies are preferred in clinical practice

since they induce lesser muscle contractions and reduce treatment

time, diminishing patient discomfort [33,53–54]. Induced pH

effects are measured indirectly by the evanescence time of a pH

Figure 1. Experimental setup. a. the two-needle electrode was placed over the tissue sample (under a uniform weight) and connected to the
electroporator, during the pulses the electric current and potential were monitored with an oscilloscope, color changes in the dye after the pulses
were recorded with a video camera and analyzed in a PC; b. zoom of the tissue sample with the two-needle electrode placed over it; c. cross section
(A-A9) of the tissue sample and the two-needle electrode.
doi:10.1371/journal.pone.0080167.g001

Figure 2. Minor tissue injuries observed seven days after a
standard ECT treatment in the mouth of a canine patient.
Injuries are evidenced as light red halos surrounding central red spots in
the mucosa (encircled in yellow). The dog owner’s hand is shown in the
picture.
doi:10.1371/journal.pone.0080167.g002
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indicator. Table 1 presents all pulse parameters tested and the

corresponding Coulomb dose. A surrogate of the Coulomb dose

(here on Coulomb dose) is calculated as electric current density

times pulse duration times number of pulses delivered. Each

experimental series was repeated four times. The standard set of

pulse parameters for ECT, GET and IRE were obtained from the

literature (experimental series 1, 2 and 3) [22,25,33]. The GET

test consists of one high voltage (HV) pulse followed by four low

voltage (LV) pulses. Since the HV pulse did not produce significant

changes in the tissue (from previous experiments data, not shown

here), only the four LV pulses were taken into account. Electric

pulses were delivered at the maximum frequency allowed by the

thermal damage threshold. Nevertheless, to avoid tissue thermal

damage during an IRE application, the frequency was kept at

1 Hz. The rise of temperature in the tissue due to pulse delivery

was not studied, although we speculate that it is not negligible. In

fact, it will probably contribute to more plasmid denaturation and

tissue damage, and be more significant in the case of higher pulse

parameters [55–57].

Figure 3 illustrates a typical set of images obtained and the way

they were processed. The initial frame immediately after pulse

delivery (figure 3 B) was used to generate a segmented image

(figure 3 A). In this image the region where the pH change took

place was automatically identified and set to the lowest intensity

value (dark region) by means of a four-class hard fuzzy-c-means

algorithm (MIPAV, http://mipav.cit.nih.gov). For each experi-

ment, the intensity-based clustering algorithm finds the optimum

threshold separating different classes of intensity ranges (4

categories in figure 3 A) and the dye matching one of these

categories is chosen. In order to monitor the pH neutralization

process the number of pixels whose intensity remained within that

range was calculated at each video frame using an Octave script

(GNU Octave 3.6.2). Figure 3 B–F shows snapshots of the dye

turning colorless. The last image, figure 3 F corresponds to the

stage at which the pH change is completely neutralized by the

tissue buffer.

Figure 4 shows the evolution of the number of pixels

corresponding to the dye in time, in this case for a GET

application with 4 pulses of 160 V/cm, 100 msec long, at 5 Hz.

As seen in the figure, as the dye turns colorless the algorithm

counts an increasingly smaller number of pixels that meet the

criterion. Finally, when the dye completely turned colorless, no

pixel of intensity within the range was present. The ET was

defined as the time when the number of pixels corresponding to

the dye was reduced by 90%.

Figure 5 presents a chart of ET for each experimental series.

Optimal pulse parameters for IRE, ECT and GET are depicted,

as well as the different experimental series (described in detail in

table 1). It is observed that pH changes in GET last longer than in

ECT and IRE, ranging from 30 seconds to about 2 minutes. Even

when standard GET pulse parameters are considered, plasmid

exposition times at these extreme pH conditions are enough to

produce their denaturation. When any of the pulse parameters

(pulse length, pulse amplitude or number of pulses) is halved, ET is

significantly lowered as compared with standard GET. This result

may have relevant implications for treatment efficiency, since less

exposition time results in less plasmid damage and less cell loss.

Also, there is a significant increase in the ET when doubling or

tripling pulse amplitude, pulse length or the number of pulses, as

compared with standard GET. It is important to note that the

electric field, current density and heating distributions are

nonlinear (spatially distributed), thus electrochemical reactions

and pH changes. Nevertheless in this work we focused in the

strongest pH changes produced in the vicinity of the electrodes.
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Higher Coulomb doses correlate with stronger pH changes and

thus with longer evanescence times. This could contribute to less

tissue sparing in ECT and less plasmid expression in GET. These

results suggest that the effect of pulse parameters variation

determining the Coulomb dose and thus pH fronts must be taken

into account to improve GET efficiency, make more accurate

treatment planning and design models that predict the outcome of

different GET protocols better.

Figure 6 presents a log-log scale of ET as a function of the

applied Coulomb dose corresponding to GET protocols. A linear

regression analysis shows a linear law of ET as a function of

Coulomb dose, i.e. ET = 289 D1.16 with an R-squared of 0.985.

The graph shows that ET scales almost linearly with the Coulomb

dose. This may be relevant in clinical applications, since knowing

the Coulomb dose allows estimation of the ET value and thus, a

priori knowledge of whether pH effects are admissible.

ET depends not only on the Coulomb dose applied but also on

the way it is applied. For instance doubling the voltage would be

the same as doubling the pulse length in terms of the Coulomb

dose, but not in terms of evanescence time where doubling the

voltage produces longer evanescence times. This result in tissues

has been previously reported in gels [38]. One possible reason of

this discrepancy is that by applying the same current divided in

more pulses, the sum of the time between pulses is larger, so there

is a longer time for the diffusion of electrolysis end products

outside the electrode zone (gas bubbles isolating the needles and

the other electrolytes such as hydrogen and hydroxyls). Also, there

is a longer time for water molecules to reach the area between the

electrodes and be the substrate for the electrolysis in the next pulse

delivery. Further experiments are needed to corroborate these

conjectures.

Table 1 and figure 5 show that the ET induced by standard

ECT and IRE lasts a very short time, usually less than 5 seconds,

though enough to contribute to tissue necrosis near the electrodes.

This might be irrelevant in IRE (all tissue near electrodes is

intended to be ablated), but not in ECT where the treatment must

be as specific to tumor cells as possible. As an example, figure 2

shows minor tissue injuries observed seven days after a standard

ECT procedure (8 pulses, 1000 V/cm, 100 us, 1 Hz) was applied

to a canine patient (an 8 year-old male Doberman) with a

squamous cell carcinoma located in the anterior part of the mouth.

The area depicted in the figure corresponds to healthy tissue

margins treated to prevent tumor recurrence (security margins).

Tissue injuries are evidenced as light red halos surrounding central

red spots in the mucosa (corresponding to points where electrodes

were placed). These injury halos can be the consequence, at least

partially, of the extreme pH changes induced by the electric pulses

applied.

Conclusions

EP-based treatments have proven its efficacy in clinical

medicine, and became a valuable option where other treatments

failed or were not applicable. GET is an effective technique for

delivering genes inside the cell, and very promising for treating not

only cancer related diseases but also a wide spectrum of other

pathologies. Though lacking the side effects and potential dangers

of viral vector transfection techniques, it’s in vivo efficiency is still

rather poor compared to them. Nevertheless, there is still room for

improvement. Although many efforts have been made in recent

years to fully understand the basic mechanism of GET, there are

very few publications studying the effects of pH changes in GET, a

phenomenon which is very well studied in other problems

involving electric fields. Here we presented experimental evidence

of the existence of substantial pH fronts during GET procedure in

conditions that are typical in many studies found in the literature.

pH fronts were measured through the ET, that is, the time

required for the tissue buffer to neutralize them. While in EP-

based treatments such as ECT and IRE, the ET is very short, in

GET it is much longer. This raises the risk of plasmid

denaturalization and cell damage with the consequent loss of

GET efficiency. We speculate that reducing pH fronts effects, as

far as possible, may have relevant implications for GET efficiency.

Figure 3. Typical set of images obtained and the way they were
processed. The initial frame immediately after pulse delivery (frame
3B) was used to generate a segmented image (frame 3A). Frames 3B to
3F show the dye turning colorless. Frame 3F shows the stage at which
the pH change was completely neutralized by tissue buffer.
doi:10.1371/journal.pone.0080167.g003

Figure 4. Time evolution of the number of pixels correspond-
ing to the dye after a GET of 4 pulses of 160 V/cm, 100 msec
long, at 5 Hz was applied.
doi:10.1371/journal.pone.0080167.g004

pH in Tissue Electroporation Based Treatments
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These tissue pH effects must be taken into account for more

accurate treatment planning and model design, and to predict the

outcome of the application for predefined pulse parameters in

different tissues better. Understanding and controlling pH in EP-

based treatments may significantly contribute an increase in its

effectiveness. This will also help to achieve a better understanding

of the whole electropermeabilization phenomenon.
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