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ABSTRACT We consider a diploid population and assume
two gene loci with two alleles each, A and a at one locus and
B and b at the second locus. Mutation from wild-type alleles A
and B to deleterious alleles a and b occurs with mutation rates
v, and vy, respectively. We assume that alleles are completely
recessive and that only the double recessive genotype aabb
shows a deleterious effect with relative fitness 1 — ¢. Then, it
can be shown that if v, > v, mutant a becomes fixed in the
population by mutation pressure and a mutation-selection
balance is ultimately attained with respect to the B/b locus
alone. The main aim of this paper is to investigate the situation
in which v, = v, exactly. In this case a neutral equilibrium is
attained and either locus can drift to fixation for the mutant
allele. Diffusion models are developed to treat the stochastic
E:;ocess involved whereby the deleterious mutant eventually

comes fixed in one of the two duplicated loci by random
sampling drift in finite populations. In particular, the equation
for the average time until fixation of mutant a or b is derived,
and this is solved numerically for some combinations of pa-
rameters 4N, v and 4N, €, where v is the mutation rate (v, = v,
= v)and N, is the effective size of the population. Monte Carlo
experiments have been performed (using a device termed
“pseudo sampling variable”) to supplement the numerical
analysis.

It is expected that, in natural populations, deleterious alleles
are constantly arising by mutations at every gene locus. How-
ever, frequencies of such alleles are kept low by natural selec-
tion, unless the deleterious effects are extremely small (smaller
than the reciprocal of the effective population size).

It is common sense in population genetics that the mutation
pressure can not overcome the barrier of negative selection. An
interesting exception to this rule occurs when the environment
changes in such a way that the wild-type allele at one locus
becomes no longer necessary. Then, amorphic mutations at that
locus become selectively neutral and mutation pressure, in
conjunction with random genetic drift, can lead one of such
alleles to eventual fixation in the population. The loss of vitamin
C synthesizing ability in several vertebrates can be explained
in the light of such considerations (1). Gene duplications also
create conditions that enable random drift to operate much
more prominently on recessive deleterious mutants than what
was possible before duplication (as we shall show later). This
allows fixation of mutants that are slightly deleterious for
contemporary conditions but which may have other useful
effects for adaptation to a new environment. Here again we
find that the paradigm of the neutral theory (2) or “hon-Dar-
winian” view (3) gives adequate explanation for phenomena
relating to progressive evolution.

The present paper consists of two parts. In the first part, we
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discuss a situation in which mutation pressure leads to fixation
of a deleterious allele. In the second part, which is the main part
of this paper, we present a new treatment for the problem of
random fixation of a nonfunctional allele at one of two loci after
duplication. Since the present paper was submitted, we dis-
covered that the results of the first part had already been ob-
tained by Christiansen and Frydenberg (4), so in this revised
version we present our results of this part only in an abbreviated
form in order to serve as an introduction to the second part.

FIXATION BY MUTATION PRESSURE

Let us consider a random mating diploid population. We as-
sume that a pair of alleles A and a are segregating in the first
locus and alleles B and b are segregating in the second locus.
We shall refer to a and b as mutant alleles. To simplify the sit-
uation as much as we can, we make additional assumptions. We
assume that the population is large enough so that random
fluctuation of gene frequencies can be neglected (this as-
sumption will be removed in the next section). We also assume
that genes in two loci combine completely at random. Strictly
speaking, under epistatic interaction in fitness, nonrandom
association or linkage disequilibrium will develop, particularly
if linkage is tight. However, if selection coefficients involved
are small and if the linkage is loose, quasilinkage equilibrium
(5-7) will be realized, and we can neglect the linkage disequi-
librium without serious error. Now, we assume that relative
fitnesses of various genotypes are as given in Table 1, in which
s is the selection coefficient against a single recessive mutation
and e denotes the epistatic effect in fitness (s = 0, € = 0). In other
words, € represents the excess selection against the double
homozygote over that expected with multiplicative interaction.
Then the differential equations giving the rates of change of
mutant allele frequencies are

dp/dt = (1 — p) jva — p2s(1 — sq?) + €g|} and
dq/dt = (1 — q) o, — q%s(1 — sp?) + ep?]} [1]

where t denotes time in generations. It is assumed here that the
selection is weak and linkage is loose so that assumption of
complete random combination of genes is essentially valid.
From these equations, we can see that if s > 0 the mutation—
selection balance will be realized at both loci, unless s is ex-
tremely small (at least as small as the mutation rates v, and
op).

Let us assume, then, that the mutant alleles are completely
recessive so that s = 0. In this case, mutant alleles are not only
completely recessive but are also completely hypostatic to
normal alleles at another locus. In other words, only the double
recessive aabb is deleterious with selection coefficient €. This

Abbreviation: PSV, pseudo sampling variable.
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Table 1.  Fitness of various genotypes for the diploid model

(1-p2 20-pp p2
AA Aa aa Marginal w
(1-q)?BB 1 1 1 - sp?
2(1 —q)g Bb 1 1 1 - sp?
q2bb 1-s 1-s (1-5)2—¢ (1—15)(1—sp?) —ep?
Marginal w 1 —sq? 1—sq? (1-35)(1—s¢? @ = (1—sp?) (1 —sq?) —ep?q?
—eq?

The letter w stands for the selective value.

type of epistasis is known as “duplicate” gene in classical ge-
netics; selfing of the double heterozygote AaBb (F)) leads to
15:1 segregation in F; (for example, see ref. 8). In this case, Eqgs.
1 reduce to

dp/dt = (1 — p)(va — ep2q®) and

dg/dt = (1 — q)(v, — ep?q?). (2]

We can then show that, if v, > vp, the mutant allele a increases
by mutation pressure to reach fixation (p = 1); mutation-se-
lection balance will be reached for the allele b (g = V'vp/¢). In
Fig. 1, courses of the frequencies of mutant alleles in an infi-
nitely large population are illustrated assuming mutation rates
vg =2 X 1073, v, = 1 X 1075, and selection coefficient € = 1
X 103 and taking 1/¢ (= 1000 generations) as the unit length
of time (T = te). These are constructed based on the numerical
solution of differential Egs. 2 by the Runge-Kutta method.
In the case of equal mutation rates at both loci (v, = v, =v),
the situation is quite different, and neutral equilibrium will be
reached so that p2g2 = v/e. Then, mutant frequencies are
subject to random drift, and in a finite population the delete-
rious mutant will eventually become fixed in one of the two loci.
We shall investigate the stochastic process involved in the next

section.

FIXATION BY RANDOM DRIFT

Let us consider a diploid population of effective size N, and use
the selection model as shown in Table 1 but with s = 0 so that
only the double mutant homozygote, aabb, is deleterious with
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Time, T
Fi.. 1. Courses of change in the frequencies of deleterious alleles
by mutation pressure (see text for details). —, For allele a; -- -, for

allele b. Both lines start tfrom po = qo = 0.

selective disadvantage €. To treat the process of change of
mutant frequencies, we make use of the diffusion equation
method (9). Because the analytical solution is difficult to obtain
for the present case, we resorted to numerical solution of the
partial differential equation involved, for which the senior
author (M.K.) is responsible. He is also responsible for Monte
Carlo experiments performed to supplement the numerical
analysis.

Let u(p, g; t) be the probability of fixation of mutant allele
a or b by the tth generation, given that the initial (i.e., at ¢ =
0) frequencies are p and q for a and b, respectively. Then, as-
suming random combination of alleles at both loci, we can show
that u(p, g; t) satisfies the following Kolmogorov backward
equation:

ot 2T T BTMGar T R oy T M g
in which

Vip =p(1 = p)/(2N,), Vaq = q(1 — q)/(2Ne),

M;, = (1 = p)v — ep%q?), Msg = (1 — q)(v — ep%q?), (4]

and u stands for u(p, g; t). For the rationale of Eq. 3, see Crow
and Kimura (ref. 10, p. 429). Let T(p, q) be the average time
until fixation of mutant a or b in the population such that

T(p, q) = fo " tou(p, g; 1)/ 0t |dt. (5]

Then, using Eq. 3, we can show that T(p, q) satisfies the fol-

lowing elliptic equation.
1. 92T 1. T oT oT
= Vop— ~ Vg5 M;, — M,’,'—+I=O.
9 op ap2 + 2 q Oqz + op op + q Oq
(6]
Let us denote by y(p, q) the average time until fixation mea-
sured with 4N, generations as the unit, so that T(p, q) = 4N.y(p,
q). Then y satisfies the equation
P(L = plypp + q(1 — @)yeq + (V — Ep’q?)
XHL=plyp + (1 = qlygl +1=0 [7]
in which V = 4N,v, E = 4N,¢, and y, y,p, etc., stand for
dy/ dp, d2y/dp2, etc. Note that y(p, q) depends only on the

products 4N,v and 4N, € but not on N, v, and € separately. The
appropriate boundary conditions are

y(l,q) =y, 1)=0 (8a]
and
y(0, g) = finite, y(p, 0) = finite. |8b]

To apply the numerical method, we cover the domain (0 = p
= 1,0 = g = 1) by n X n square meshes each with side length
h (“mesh size”). Let p = hi and g = hj, in which i and j are
integers (i, j =0, 1,. .., n). Then Eq. 7 may be converted to a
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set of finite difference equations in which symbol y; ; is used
to represent y(ih, jh). Boundary conditions 8 can be incorpo-
rated as follows. Condition 8a is straightforward and we have
Yn,j = Yin = 0. Condition 8b is more subtle, but we can replace
itby yo; =y1; + (17— yz,)and yi0 = yi1 + (i1 — Yi2).

For given values of V and E, this set of equations for y; ; can
be solved numerically by using a computer (details will be
published elsewhere). We chose mesh size h = 0.1, and the
Gauss-Seidel method was used (for the numerical solution of
partial differential equations see, for example, ref. 11, p. 391).
The solid curve in Fig. 2 illustrates, for the case 4N, v = 2, the
average time until fixation of mutant a or b, starting from p =
g = 0, as function of 4N,¢ for value of 4N,¢ < 50. In other
words, the ordinate represents T(0, 0) or 4N,y(0, 0)

In order to supplement these results, Monte Carlo simulation
experiments were performed with assumed various population
sizes (N, ) ranging from 25 to 2500, 4N,v = 2, and 4N, € ranging
from 1 to 10%. Note that T/(4N,.) depends only on 4N,v and
4N, Starting from p = q = 0, the average time until fixation
of a or b was investigated. (In nature, newly tetraploid popu-
lations presumably are the immediate descendants of one or
a few individuals and can be assumed to reach the effective
population size N, quickly before accumulating any mutant
alleles.) Each solid circle in Fig. 2 represents the average of 100
replicate trials, except for a few cases (4N,¢ > 1000) for which
each point is the average of 10-50 replicate trials. The broken
line at the tail of the solid curve for 4N.v = 2 represents values
of T(0, 0) inferred from these simulation experiments for higher
values of 4N, €. Thus, the broken-line curve represents crude
approximation values only. Fig. 2 also shows the results of
simulation for 4N,v = 0.4 (each open circle is the average of
1000 replicate trials). In the simulation experiments, each
generation consists of random sampling drift followed by
mutation and selection.

To simulate the gene frequency change by random sampling
of gametes in one generation, instead of actually sampling
gametes 2N, times as is usually done in Monte Carlo experi-
ments in population genetics (for example, see ref. 12), we
simply generated a random number (called a “pseudo sampling
variable” or PSV) and a realized value of this variable was
added to the gene frequency (p) to produce the frequency (p’)
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FIG. 2. Average time until fixation of a deleterious mutant at one
of two *“duplicate loci.” Relationship between the average time, T (0,
0), and 4N, ¢ is illustrated for two cases, 4N.v = 2 and 4N.v = 0.4. N,
effective population size; ¢, selection coefficient against the double
mutant individual; v, mutation rate per locus (see text for details).
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after sampling drift. The essential point is that it is a uniform
random number that has mean = 0 and variance 02 = p(1 —

p)/(2N,). In other words, if £psy is a PSV, then £psy = V302 .
U 1, in which U, is a random variable that follows a uniform
distribution between —1 and +1 and is commonly used in
Monte Carlo experiments. If p’ (= p + £psy) becomes negative
by chance, which may sometimes happen when p is near zero,
then p’ is set to zero to continue the experiment. On the other
hand, if p” becomes larger than 1 — 1/(2N,), p’ is set equal to
unity and the run is ended. The reason why PSV can substitute
for the actual sampling comes from the nature of the continuous
stochastic process—namely, only the mean and the variance
(but not the detailed shape of the distribution) of the change
per generation determine the process, as long as the higher
moments are negligible in magnitude (see ref. 10, p. 374). Note
that this scheme of pseudo sampling simulates the diffusion
process itself rather than the discrete, binomial sampling pro-
cess, for which the diffusion model is usually regarded as an
approximation.

Finally, we should remark that, because the time until fixa-
tion of @ or b has a large standard deviation around its mean (T),
this mean time, in very rough sense, may represent the time by
which fixation occurs in half of the cases—i.e., To5 =~ T. Ac-
tually, the distribution of fixation time has a positive skewness
of roughly unity, so that T 5 is somewhat smaller than T.

DISCUSSION

It is clear that the remarkable phenomenon of a deleterious
allele reaching fixation in one of the two loci is possible only
when the “duplicate” type epistasis is complete in fitness. In
addition, mutation rates (v, and vp) must be significantly dif-
ferent at the two loci for the mutation pressure to control the
process deterministically. Under these conditions, mutant a at
the first locus goes to fixation if v, > vp and b reaches muta-
tion—selection balance, and vice versa. This confirms the results
obtained earlier by Christiansen and Frydenberg (4). The rate
of increase of a is roughly proportional to the difference in
mutation rates, v, — vp. In other words, a is pushed by the
pressure that comes from the excess mutation rate.

From the standpoint of evolution, the most likely origin of
“duplicate” type epistasis is gene duplication, especially as it
occurs in the formation of allotetraploids. Considering the
prevalence of gene duplication in evolution, it might be ex-
pected that “duplicate” genes are commonly found in plants
and, to a lesser extent, in animals. Duplicate genes are indeed
not uncommon, but loss of duplicate genes and reversion to
functional diploidy are certainly common and perhaps more
usual (13).

Where duplicate genes persist, it is of course possible that
complete hypostasis and recessivity of deleterious mutants may
be lacking. Slightly deleterious mutants in Drosophila usually
show considerable dominance, so that they are mainly selected
against in the heterozygous condition (14, 15). For “null” mu-
tants at enzyme loci, on the other hand, it is possible that the
heterozygotes with the wild-type (active) allele are so nearly
normal that we can regard the mutant alleles, for practical
purposes, as being completely recessive. Presumably, such
mutants at duplicate enzyme loci might also be completely
hypostatic. However, unless we see evidence to the contrary,
it seems likely that mutation rates stay the same in duplicated
loci, and the effect of unequal mutation rates at duplicate loci
may seldom be important in and of itself.

The situation is less clear for unequal epistasis—e.g., where
the B allele is completely epistatic but the A allele is not. If
multiple alleles are considered, it seems likely that slightly
hypomorphic alleles might occur and increase at one or the
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other locus, through mutation and drift in the absence of strong
selection. Once one dupllcate locus had such a slightly delétg:
rious allele either fixed or in a significantly high frequency, the
symmetry of selection would be ended and additional, more
severe, mutant alleles should also increase in frequency at the
same locus.

Loss of gene expression in one or the other of duplicated loci
has recently been reported in some groups of fish. In this case,
fixation of “null” alleles by mutation and drift appears to be the
most likely explanation. According to Allendorf (13), species
in both salmonid and catostomid fish have lost approximately
50% of the gene duplication produced by tetraploidy. We can
show that the time needed for such an evolutionary loss (T¢5)
depends much on the mutation rate, assuming that the popu-
lation starts from the state having no null mutants. This as-
sumption may be realistic because the tetraploidization must
have started from a single individual or a few related individ-
uals free of null alleles. As shown in Fig. 2, if 2N,v = 1 (i.e., one
new mutation appears in each generation), it takes roughly 9N,
generations if 4N, e = 10,000. If the mutation rate for appro-
priate null alleles is much lower, the time needed for 50% loss
must be longer. Our rough estimation based on Monte Carlo
experiments suggests that, if 4N,v = 0.1 and 4N,¢ = 1000, the
average time (T') until fixation of a null allele in one of the loci
is about 20N, generations which must be somewhat larger than
the time needed for 50% loss. These results do not seem to agree
with those of Bailey et al. (16) who claim that To5 ~ 15N, +
v~%4, Clearly, T35 can be much shorter than 15N, if 4N,v is
larger than unity. A more detailed study of the problem in-
cluding the situation in which epistasis is not complete has been
done by N. Takahata and T. Maruyama (personal communi-
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cation), and the results will be published in the near future. In
patticular; they found that T 5 becomes much larger if null
alleles show small deleterious effects in combinations other than
the double null homozygote.
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