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ABSTRACT The classical polygenic theory of inheritance
postulates a large number of genes with small, and essentially
similar, effects. We propose instead a model with genes of
gradually decreasing effects. The resulting phenotypic distri-
bution is not normal; if the gene effects are geometrically de-
creasing, it can be triangular. The joint distribution of parent
and offspring genic value is calculated. The most readily testable
difference between the two models is that, in the decreasing-
effect model, the variance of the offspring distribution from
given parents depends on the parents' genic values. The more
the parents deviate from the mean, the smaller the variance of
the offspring should be. In the equal-effect model the offspring
variance is independent of the parents' genic values.

In the classical polygenic model of inheritance, the contributions
of a large number of loci with small but similar effects are
summed to produce a phenotypic distribution that is approxi-
mately normal (for exact conditions, see ref. 1). It seems more
plausible to assume that the contributions of the loci are un-
equal, with a few major genes and a larger number of minor
genes. Indeed, it may not be an exaggeration to suggest that
every locus contributes in some way to any given quantitative
trait, although the effects of most loci are vanishingly small. An
example of unequal gene contributions to a continuously
varying trait is heading time in wheat, for which one locus was
detected that accounted for about 80% of the additive variance
in the trait, and three other loci that jointly accounted for about
14% of the additive variance. The remainder presumably
represents the contributions of genes of even smaller effect (2).
The common observation of unequal response of different lines
to selection for a quantitative trait may be explained in some
cases by segregation of major genes of a polygenic character (3).
Because the individual genes contributing to a quantitative trait
affect the phenotype in different ways, it is not surprising to
find their contributions unequal. For example, in Drosophila,
wing size is associated predominantly with variance in cell
number and to a lesser degree with cell size (4).
We assume an infinite number of loci, each with two possible

alleles An, Bn; the two alleles actually present at each locus are
assumed independent of each other and of the alleles at the
other loci. The genetic contributions are additive without
dominance, Xn representing the contribution of the paternal
allele and Yn the contribution of the maternal allele at the nth
locus. The loci are not assumed to have equal effects; the con-
tributions of each allele at the nth locus are 6n + an from An
(probability Pn), n - an from Bn (probability 1 -Pn) (an >
0). 6n is so chosen that the means of Xn and Yn are zero: n=
(1 - 2pn )an. Assume the an are bounded.
The variance of Xn (or Yn) is o2 = 4Pn (1 - pn)a 2. There are

two possibilities: (i) = a = oD; (ii) < a)-
Case i. a2 = a). Let s2 = U2 +... + on. The distribution

of the normalized sum (Xi + . . . + Xn)/Sn tends to the normal
distribution with zero mean and unit variance, as n -a (ref.
5, p. 264).

Case ii. 2n=l 2 < o. Then X1 + . . . + Xn converges almost
surely to a random variable X (ref. 6, p. 502). X is the limit of
the contributions of the paternal alleles only; the distribution
function of genic value G = X + Y is the self-convolution of the
distribution function of X. In this case, X (and therefore G also)
cannot have a normal distribution, because whenever XI + . . .
+ Xn converges to a limit X, X2 + . . . + Xn converges to a limit
X'; X = Xl + X'; and Xl and X' are independent. If the sum
of two independent random variables is normally distributed,
each of them also has a normal distribution (ref. 5, p. 525),
whereas Xl is atomic. On the other hand, for certain models of
this type, the distributions of X and G can be made arbitrarily
close to normal. For example, if Pn = 1/2 (all n), the normalized
distribution F(x) of X satisfies

6 E a

IF(x) - N(x)I n=l

(fE an)

n=1

for all x, by the Berry-Esseen theorem [N(x) is the normal
distribution with zero mean and unit variance] (ref. 5, p. 544).
This quantity can be made vanishingly small by choosing ap-
propriate Ian f; e.g., an = n-b for b near and greater than l/2 or
an = an for a near and less than 1.

Classification of limit distributions
According to a remarkable theorem of Jessen and Wintner (7),
a convergent convolution of atomic distributions is either (i)
atomic, (ii) absolutely continuous, or (iii) continuous but sin-
gular. No mixed cases are possible. In other words, either (i) X
takes only a discrete set of values; (ii) X has a probability density
(not necessarily continuous or bounded); (iii) no single value
has positive probability, but there is a set of Lebesgue measure
zero such that X is in this set with probability 1. In order to
construct a model that is suitable for genetic applications, it is
reasonable to consider only absolutely continuous limits with
densities that are continuous or at least bounded.
A necessary and sufficient condition that X have a continuous

distribution function is HII=i max (pn,,l - Pn) -, 0 (ref. 6, p.
537); alternatively, "S=1 min (pnl -Pn) = I. For further
study of the classification problem, we will assume Pn = 1/2 (all
n). The limit distribution is then continuous, although not
necessarily absolutely continuous. The characteristic function
of X is ¢(t) = HOn=1 cos (ant) because An = 0. Wintner (8) dis-
cusses such characteristic functions in detail. For example, if
an = n-b for b > 1/2, the corresponding distribution has an in-
finitely differentiable density (ref. 8, p. 147).

If an = an anda= (/2)/k (k = 1,2,.. .),then¢(t)0= 0(ItI-k)
(refs. 8, 9), so the characteristic function of G is 0(1t 2k). G
therefore has a continuous density with at least 2k - 2 contin-
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uous derivatives (ref. 8, p. 118). We will treat the case a = 1/2
more fully later, because it leads to a computable derity-.

Surprisingly, even though the distribution corresponding to
a = (1/2)1/k is absolutely continuous for k = 1,2,. . ., 1/2 < a < 1
does not guarantee the existence of a density for G. An example
isa = 1/2(x/5- 1), forwhich ¢(t)doesnot - 0as It -o (ref.
8, p. 142), so its self-convolution cannot have a density (ref. 5,
p. 514).

If an = an, in which a = 1/k (k = 3,4,. . .), 0(t) does not
0 as I t I o (ref. 8, p. 140), so G is singular. For general a in
the range 0 < a < 1/2, it is known that X is singular (ref. 8, p.
140). This suffices to show that G does not have a bounded or
continuous density, because whenever the self-convolution of
a symmetric probability distribution F has a bounded density,
F itself has a density. Indeed, the characteristic function 0 of
F satisfies O2 > 0 because F is symmetric (ref. 5, p. 499) and
furthermore 42 e L because F * F has a bounded density (ref.
5, p. 510). Consequently 0 e L2, and the appropriately nor-
malized inverse Plancherel transform of 0 is the required
density. A continuous density for F * F is also impossible be-
cause F * F is concentrated on a finite interval.

Distribution of genie value when pn = 1/2 (all n)

When pn = 1/2 (all n), G has characteristic function 0(t) = [H1,
cos (ant)]2. Because the an are bounded, for ItI sufficiently
small log 0(t) can be expanded as 2 Ik 1 log cos (akt), and each
term has the power series expansion

log cos (akt) = a, (-)n 2 (2 1)B2na 2n

n=1 n(2n)! a 2~

in which Bn is the nth Bernoulli number. This expression is
derived by integrating term by term the expansion for the tan
function (ref. 9, p. 20). The double series can be rearranged
because all terms are negative, and when compared with the
expansion of characteristic functions in terms of cumulants (ref.
10, p. 115),

log 0(t) = h-(it)h,
h=i h!

yields for the cumulants:
22n(22n - 1)B2n 2n

K2n Ea n> )
n k=i

the odd cumulants vanishing. From the cumulants, the mo-
ments may be derived (ref. 11, p. 69).

If, in addition, the an satisfy an = 2-(n+l), X is uniformly
distributed in [-'/2, l/2] (ref. 6, p. 557). The self-convolution of
a uniform distribution is triangular (ref. 5, p. 27), so the density
function of G is 1 - IxI for Ixi < 1 and 0 for IxI > 1 (Fig.
1).

Joint distribution of parents and offspring
Assume pn = 1/2 (all n) and an = -2(n+l), other assumptions as
above. The joint distribution of the genic values of two parents
(G, G') and one child (GC), assuming random mating, can be
computed explicitly by using characteristic functions. We will
show that the conditional distribution of offspring genic value,
given the parents' genic values, is trapezoidal. Most important,
the genic variance of the offspring is not independent of the
parents' genic values, and this constitutes a major difference
from the classical "polygenic" model.

Let the contribution of the father's paternal allele at the nth
locus be Xn (= ±2-(n+l)) and that of his maternal allele be Yn;
the same quantities for the mother will be called X, and Y'. The
contributions of the child's paternal and maternal allele will be
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FIG. 1. Frequency distribution of genic value in the population
according to the geometrically-decreasing-effect model. The curves
on the right include independent normally distributed environmental
components with standard deviations 0.1, 0.25, and 0.5 (from top to
bottom at frequency intercepts).

called Xn and Y'. The characteristic function of the random
variable (Gn, Gn, Gn) is On(t,,t2,t3) =

E fexp [iti(Xn + Yn) + it2(Xn + Yn) + it3(Xn + Yn)JJ
For fixed Xn, Yn, Xn, Yn, Xn, takes on the values Xn and Yn with
equal probability and Y' independently takes on the values
X, and Y' with equal probability. Consequently

E $exp [it3(Xn + Yn')]iXnYnXnYn
X exp [it,(Xn + Yn) + it2(Xn + Yn)]

= 1/4 exp [i(t1 + t3)Xn + itlYn + i(t2 + t3)Xn + it2Yn]
+ 1/4 exp [i(t, + t3)Yn + itlXn + i(t2 + t3)Xn + it2Yn]
+ 1/4 exp [i(t, + t3)Xn + itlYn + i(t2 + t3)Yn + it2Xn]
+ /4 exp [i(t + t3)Yn + itlXn + i(t2 + t3)Y'n + it2Xn].

Because Xn, Yn, X', and Y' are independent with identical
distributions, the expected value of each term is the same,
and

0n(tI,t2,t3) = (nk(tl + t3)On(t1)On(t2 + t3)/n(t2),
in which On is the characteristic function of Xn. Because of the
independence of the alleles at distinct loci, the characteristic
function of the random variable (G,G',G") is the product of the
an; 0(t,,t2,t3) = 4(t1 + t3)4(t1)/(t2 + t3)0(t2), in which X is
the characteristic function of X. Setting t2 = 0 yields the
characteristic function 0(t1,t3) = 4(t1 + t3)0(t,)k(t3) of
(G,G"). Let ub denote the uniform density in [-'/2 - 6, 1/2 - 6].
us(x) = u(x + 6). Let g(s,xI, x2) = ((uU1) * (uuX2)) (s), in which
uuX denotes the product of u and ux and * denotes convolution.
Consider the Fourier transform of g(X3 - -X2; X1, X2)

A A+Isv-sl
Genic value

FIG. 2. Conditional distribution of offspring genic value for given
parents' genic values. it, s, and s' are defined in the text. h =

1/[2max(ss')l.
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FIG. 3. Joint distribution of the genic values of parent and off-
spring.

fSf((uu.1) * (uu.2))(X3 - XI -X2)
X exp[i(tlxl + t2x2 + t3x3)] dxldx2dx3

= SSS((uuXI) * (UUX2))(s)exp[i(tlxl + t2X2 + t3(xI + X2))]
X exp (it3s) dsdxldx2

= fJ'(t3) exp[i(t, + t3)xl]dxl
Xfr 3(t) exp[i(t2 + ts)X2] dX2

(A denoting Fourier transform) because (uuX,) *(uu2) =
uiiux-i2. The first of these integrals is
5J u(s)u(s + xI) exp(itlxI) exp[it3(s + x1)] ds dxI

= f u(s)u(w) exp[i(tI + t3)w] exp(-it s) dw ds
(W = S + xi)

- 40(-t1)1(t + t3),
and the second, likewise, is 4(-t2)4(t2 + t3). Because O(-t)
= k(t), the Fourier transform of g(X3 - xI -x2; xI, x2) is
O(tl,t2,t3). Consequently g(X3 - XI -x2; x,,x2) is the density
of the random variable (G,G',G"). It is easy to verify that g(X3
- XI -x2; xI, x2) is the Lebesgue measure of the intersection
[x3 -X -X2-/2,X3- XI -X2 + 1/2] n [x3 -X2- /2, X3 -X2
+ 1/21 f [-1/2,1/21 n [-X2 - 1/2, X2 + 1/2]; i.e., g(X3 - X- X2; xI,
x2) = max[O,l + min(x3 -xx3,x2,0) - max(x3 -xI,x3,x2,0)J.
It follows that the conditional distribution of offspring genic
value given the parents genic values is trapezoidal (Fig. 2), in
which ,u = 1/2(G + G') is the mean of the offspring distribu-
tion;l s = 1/2(1- IGI) and s' = 1/2(1- IG'I ). Similarly, the
density of the random variable (G,G") is max[O,1 + min(x3-
x1,x3,0) - max(x3 -x1,x3,0)] (Fig. 3).11
Nonhomoscedasticity of offspring variances
The variance of the offspring distribution from given parents
is '/3[s2 + (s')2]. In the classical polygenic model, the variance
of offspring genic value does not depend on the parents, because
of the assumption of multivariate normality. The nonhomo-
scedasticity of the new model is its most distinctive and readily
testable feature. The more the parents deviate from the mean,
the smaller the offspring variance should be. In this respect the
model behaves as if there were a small number of loci (12).
The correlation between within-sibship variance and an es-

timator of familial deviation from the mean has been proposed,
as a method of detecting major locus effects, by Fain (13) and
by Smith et al. (14). In order to estimate familial deviation from
the mean, Smith et al. use the phenotypic values of the parents;
Fain uses the within-sibship mean itself. The latter measure has
the advantage that data on only one generation is needed; it
turns out, however, to be less powerful for testing the decreas-
ing-effects model (see below).

It is possible to calculate exactly the theoretical correlation,
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FIG. 4. Expectation value of the correlation between within-
sibship variance and mean-square parental deviation, as a function
of sibship size and rate of decrease of gene effects.

rt, between the within-sibship variance for an n-sib family,
1nV =-

I (G;- &)2'
n -1 j=i

in which Gj" are the genic values of the sibs and C" their mean,
and either the mean-square parental deviation

D 2= '/2(G2 + (G')2)
or the square of the within-sibship mean (G"2) itself. A gene
frequency of '/2 is assumed at each locus, but the gene effects
an are allowed to be arbitrary. Both correlations depend on only
two parameters: the sibship size n and a measure of the rate of
decrease of gene effects at successive loci

1: a4
n =1

a)2

In particular, if the effects at successive loci decrease geomet-
rically (an = an), X = (1 - a2)/(l + a2). The results of these
calculations are:

E[rt(V,D2)] =

E[rt(V,G"2)] =

-x
2 + - n -2 )xI1/24 -2X]1/2

_ n3-2n2+5n -4 X
12n2(n -1)

2 + _n -2 1/2

x42(n + 1)2 n3+6n2-3n +4x11/2(Figs. 4 and 5). From a practical point of view, large sibships
are needed to test these predictions.
A model of continuous variation based on genes with grad-

uated effects may be useful in the analysis of common diseases
without evident Mendelian patterns of inheritance. Gottesman
and Shields have proposed that such a model may account for
the transmission of schizophrenia: "Some high value genes may

1i The offspring mean can be shown to be the average of the parents'
genic values whenever 2=,a2 < a,.

11 The joint parent (G)-gamete (g) distribution is uniform within the
rhomboid IG,gI IgI < 1/2, jG - glI 1/21.
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FIG. 5. Expectation value of the correlation between within-
sibship variance and the square of the within-sibship mean.

be rather specific for some partitionable aspects of the disorder
(e.g., catatonia, paranoid features, or some aspect of blood
chemistry, brain protein, or neurophysiology); such possibilities
would then encourage both formal segregation analyses and
searches for linkage relationships to known genetic markers,
but for facets of the syndrome." (ref. 15, p. 520).
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