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Increased autoantibody reactivity in plasma from Myelodysplastic Syndromes (MDS) patients may provide
novel disease signatures, and possible early detection. In a two-stage study we investigated Immunoglobulin
G reactivity in plasma from MDS, Acute Myeloid Leukemia post MDS patients, and a healthy cohort. In
exploratory Stage I we utilized high-throughput protein arrays to identify 35 high-interest proteins showing
increased reactivity in patient subgroups compared to healthy controls. In validation Stage II we designed
new arrays focusing on 25 of the proteins identified in Stage I and expanded the initial cohort. We validated
increased antibody reactivity against AKT3, FCGR3A and ARL8B in patients, which enabled sample
classification into stable MDS and healthy individuals. We also detected elevated AKT3 protein levels in
MDS patient plasma. The discovery of increased specific autoantibody reactivity in MDS patients, provides
molecular signatures for classification, supplementing existing risk categorizations, and may enhance
diagnostic and prognostic capabilities for MDS.

M
yelodysplastic syndromes (MDS) encompass a diverse range of hematological disorders, with variable
clinical outcomes resulting from individual patients’ clinical and biological features1,2. MDS pathogen-
esis involves multifaceted factors, related to intrinsic hematopoietic precursor cell abnormalities. The

prevalent shared pathogenesis causing the ineffective hematopoiesis in MDS involves varying degrees of apop-
tosis of the hematopoietic cell linage3–5. Recent genomic approaches have concentrated on the effects of specific
gene mutations and their associated signaling pathways, and their role in MDS development and outcome,
including the tendency of transitioning to more aggressive disease stages6,7. Currently, the prognosis of patient
outcomes is greatly facilitated by the establishment of the International Prognostic Scoring System (IPSS8,
recently revised as IPSS-R9). The IPSS takes into account multiple clinical markers to classify lower risk patients
(Low, Intermediate 1) as having improved prognoses compared to those with higher risk features (Intermediate 2
and High).

Autoantibody reactivity profiles in human plasma have been employed in multiple other disorders, including
immune response in severe acute respiratory syndrome10, diabetes11,12, as well as cancer13,14 using protein micro-
arrays. In MDS patients immunologic abnormalities have been observed15. Furthermore, a higher rate of immune
related cell abnormalities has been reported in MDS, predominantly in earlier-stage compared to later-stage MDS
patients, including altered immune cell subpopulations, namely regulatory16,17 and inhibitory18 T cells.
Additionally, disease progression has been found to be concordant with dynamic shortening of telomeres
observed in MDS precursors19,20. Short telomeres and DNA damage in hematopoietic precursors, including those
from MDS patients, have been associated with cellular protein secretion21.

To further assess disease related abnormalities in autoantibody reactivity and the possibility of an immune
related response in MDS patients of various stages, we have utilized high throughput protein arrays that allow the
simultaneous monitoring of changes in autoantibody reactivity to thousands of human proteins. Reactive anti-
body profiling with protein microarray is in principle the same as Enzyme-linked Immunosorbent Assays
(ELISA) with the same antigen-primary antibody-secondary antibody format, with additional advantages includ-
ing 1) a higher throughput and 2) using fluorescent signals from secondary antibodies instead of the less
reproducible enzyme-linked chromogenic signals. Protein microarrays have been reported to have higher
throughput, sensitivity and a wider detection range compared to traditional ELISA methods in various applica-
tions10,22. Our main hypothesis is that MDS elicits specific autoantibody responses, and hence we searched for
autoantigen biomarkers related to various MDS patient subgroups compared to control plasmas using protein
microarray technology (ProtoArrays v. 5 by Invitrogen). We focused on a retrospective classification of subjects
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into stable MDS patients (s-MDS), which had not transformed into
acute myeloid leukemia (AML) for at least 14 months, and generally
for multiple years, transforming MDS (t-MDS), where patients even-
tually acquired AML within a 14-month period, and AML post MDS
(L) where the patients had already transformed to AML, after prev-
iously having being classified as MDS patients23. The MDS and AML
patients were compared to a healthy cohort of individuals.

Results
The study was conducted in two sequential separate stages: (I) The
exploratory stage, in which multiple patient samples and proteins
were tested for Immunoglobulin G (IgG) reactivity, and (II) the
validation stage using a smaller, high-interest subset of the proteins
identified in Stage I based on the retrospective classification, and
expanded to a larger cohort. The use of this focused subset allowed
us to utilize the proteins displaying the greatest degree of differential
IgG reactivity between patient groups and healthy controls. The
different experimental designs are illustrated in Fig. 1a, and described
in detail with the results further below.

In Stage I multiple plasma samples (75) were obtained from male
patients, in the 44–87 (median 70) age range, and a healthy cohort

(34), in the 52–70 (median 61) age range. As discussed in the
Methods, the samples used in our study were obtained early in the
patients’ courses, to enable the assessment of predictive potential for
prolonged clinical courses of the MDS patients (i.e., s-MDS). At the
time of sample collection, the patients were classified using the pro-
spective clinical risk-based IPSS system. Following long-term mon-
itoring of the patients, the same samples were also assigned a
retrospective classification (into s-MDS, t-MDS, L, as stated above
and previously defined23). The patients were compared to a healthy
cohort (Table 1a).

After identifying a high-priority set of 35 markers (Fig. 1b–d) in
Stage I described below, in the validation Stage II (Fig. 2a) the initial
subject pool was enlarged to include both male and female indivi-
duals, with 204 patients (119 s-MDS, 42 t-MDS, 43 L) and 112
healthy controls (Table 1b). We note here that differences in median
ages between patient and healthy groups were taken into considera-
tion in our Analysis of Variance (ANOVA) model below to ensure
they were statistically not a factor for our final results. While Stage I
samples were only obtained from male patients, as prior studies in
patients with ovarian and prostate carcinoma showed gender differ-
ences in antibody reactivity13,14, in Stage II we assessed samples from

Figure 1 | Study Design and Exploratory Stage I Results. The investigation was carried out in two stages, (a), where in Stage I ProtoArrays were used to

identify a high priority set of 35 candidate biomarkers, 25 of which were successfully spotted onto customized arrays for the Stage II focused validation

part of the investigation. Stage II identified 3 biomarker candidates, AKT3, ARL8B and FCGR3A, which were also detected using ELISA assays. The 35

candidate biomarkers from Stage I showed distinct higher reactivity in MDS patients compared to the healthy cohort, (b), with higher standardized

intensities indicated in yellow, low in blue/turquoise, and validated proteins from Stage II marked in red. (c) The binary statistical comparisons between

patient subgroups and healthy cohort resulted in different sets of autoantibodies specific to their respective classification. The Venn diagram indicates the

overlap between these comparisons, with more candidate biomarkers specific to s-MDS patients than in other subgroups. (d) Various associations,

including cancer were discovered using Ingenuity Pathways and Network Analysis (IngenuityH Systems, http://www.ingenuity.com).
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both genders and found no such differences in our results for MDS
patients.

Stage I results. The initial screening of protein arrays containing
9,483 proteins identified 35 autoantigens of high interest showing
aberrantly high reactivity in patient subgroups compared to the
healthy cohort (Fig. 1b). The Venn diagram (Fig. 1c) indicates mini-
mal overlap between the different retrospective MDS classifications,
with the s-MDS group showing the greatest differences compared to
the healthy group, which should be noted has greater numbers of
available samples. Furthermore, considered as a whole the results
support the hypothesis that MDS patients display distinct autoan-
tibody responses compared to a healthy cohort (see also Supplemen-
tary Table S1).

This initial screening identified relevant molecular associations,
(IngenuityH IPA Knowledge Database, http://www.ingenuity.com,
Fig. 1d) including cancer (14 proteins), apoptosis (12), viral infection
(8), and cell movement (8) (Supplementary Table S2). Additionally,
3 proteins are members of the Role of NFAT (nuclear factor of
activated T cells) in Regulation of the Immune Response canonical
pathway (namely AKT3, FCGR3A and GNAZ), and two are
members of the Thyroid Receptor-Retinoid X Receptor (RT/RXR)
activation pathway (AKT3, TRH) (Supplementary Table S3, Supple
mentary Fig. S1).

Stage II results. The high-interest proteins from Stage I (see Me-
thods for details) were tested for validation, using custom protein
arrays, with 25 proteins successfully produced and spotted (Fig. 2).
To take into account multiple sources of variability, we employed an
ANOVA model, and filtered results to eliminate effects due to print-
ing, replication and batch effect, and subject age (see Methods;
Fig. 3a). We identified 3 proteins, AKT3, FCGR3A and ARL8B
(Fig. 3b), showing aberrantly increased reactivity in patients com-
pared to healthy (P , 0.01, Bonferroni corrected), and with no other
factors considered having a significant confounding effect. The
corresponding binary group comparisons of mean differences were
also statistically significant [Mann-Whitney U-tests, with 1) AKT3
mean intensities P , 3 3 1026, ,3 3 1023, ,4 3 1023 for s-MDS, t-
MDS and L versus healthy respectively, 2) FCGR3A mean intensities
P , 8 3 1024, ,7 3 1023, for s-MDS, and L versus healthy respec-
tively, and 3) ARL8B mean intensities P , 4 3 1025, ,2 3 1023, ,3
3 1026, for s-MDS, t-MDS and L versus healthy respectively].

To classify the different samples into patient subgroups we imple-
mented Kernel Discriminant Analysis (KDA24–26), using the trans-
formed intensities for AKT3, FCGR3A and ARL8B, for successful

classification into retrospective classes, particularly for s-MDS
(Fig. 4a–b). When considering s-MDS and healthy cohort only, s-
MDS samples were classified correctly 87% of the time (103/119,
standard deviation, s.d. ,3.1), and healthy samples at 90% (101/
112, s.d. ,2.7). Expanding the classification to all MDS and L
patients did not significantly affect classification for s-MDS or
healthy cohorts (Fig. 4b). However, the classification was lower for
known t-MDS (38%, 16/42, s.d. ,3.0), and L (30%, 13/43, s.d. ,2.3)
samples. Autoantibody reactivity-based classification worked less
well for classifying samples into their known IPSS classes (Fig. 4c).
The best classification was for Intermediate 1(62%, 46/74 s.d, ,3.2),
while the classification of healthy samples was at 100% (112/112, s.d
,0.6).

We detected all three proteins of interest in plasma using Enzyme-
linked Immunosorbent Assays (ELISAs). For AKT3 and FCGR3A
the differential protein levels were found to be statistically significant
(ANOVA analysis Bonferroni corrected P , 9 3 1028, ,7 3 1025

respectively) (Fig. 3c). For AKT3 the differential protein trend
between retrospective classes reflected the autoantibody reactivity
(post hoc tests, Bonferroni P , 0.01, displaying differences between
all patient groups versus healthy, as well as L versus t-MDS). For
FCGR3A the differential protein levels showed an opposite trend
compared to the corresponding autoantibody reactivity, Fig. 3b–c
(post hoc tests, Bonferroni p , 0.01 displaying differences between
healthy versus both t-MDS and s-MDS, as well as between L and both
t-MDS and s-MDS).

Discussion
Our investigation demonstrated differential autoantibody reactivity
in MDS patient subsets, which was distinct from healthy individuals.
The autoantibodies displaying increased protein reactivity compared
to healthy patients included several unique proteins for t-MDS, s-
MDS, and L in both the initial and validation stages (Stage I and II) of
our investigation. The finding that increased antibody reactivity for
these proteins predominantly occurred in s-MDS patients is consist-
ent with prior data indicating early stage MDS having a higher degree
of immune-related abnormalities than later stage patients16,17. These
proteins are involved in cancer-relevant biological processes such as
apoptosis and have associations involving autoimmune responses.
Differential reactivity of these antibodies between early stage MDS
and healthy individuals also has diagnostic utility since such clinical
distinctions morphologically are often difficult27.

The three proteins validated in Stage II of our investigation present
a more robust set, showing increased autoantibody reactivity in MDS

Table 1 | Subject Statistics

Subject Group Total IPSS Low Int-1 Int-2 High M F Age5/Years Median (Range)

(a) Stage I1

s-MDS 37 7 25 4 1 37 - 69 (49–87)
t-MDS 22 2 1 10 5 22 - 67 (44–80)
AML post MDS 16 16 - 73.5 (54–86)
Total Patients 75 9 26 14 6 75 - 70 (44–87)
Healthy 34 - 61 (52–79)
(b) Stage II2,3,4

s-MDS 119 33 68 15 2 60 59 68 (31–87)
t-MDS 42 4 6 16 13 30 12 69.5 (44–93)
AML post MDS 43 32 11 69 (47–86)
Total Patients 204 37 74 31 15 122 82 69 (31–96)
Healthy 112 58 54 56 (23–79)
1Stage I IPSS Classification Data Available for 55 MDS Patients.
2Stage II IPSS Classification Data Available for 157 MDS Patients.
3Stage II aggregates included samples from Stage I subjects, except 1 t-MDS sample. N.B. No statistically significant batch effects between Stage I and Stage II samples were found, as ascertained by
analysis of variance analysis.
460 patients (22 t-MDS and 38 s-MDS) received various treatments. The treatment was found not to be a statistically significant factor in classification for proteins of interest.
5Age differences between patients and healthy controls were not statistically different for reported results.
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patients. The detected autoantibody reactivity to the above proteins
offers possible new connections between immune response and
tumor formation and detection. Of these, we particularly note that
AKT3 (v-akt murine thymoma viral oncogene homolog 3 /protein
kinase B, gamma), has been known to be actively involved in multiple
cancers, including breast cancer28,29, tumorigenesis in melano-
mas30,31, lung cancers32 and ovarian cancers33 (cell cycle involve-
ment). In previous studies AKT3 gene overexpression, and
deregulation of AKT pathways, have been detected by gene express-
ion profiling23,34. In addition, our observation of differential autoanti-
body reactivity, and corresponding protein levels, make this a
compelling case for the involvement of AKT3 in MDS and highlight
its potential as a biomarker for the condition in s-MDS. FCGR3A (an
IgG receptor) is involved in multiple antibody processes. Fc-recep-
tors have been the target of multiple therapeutic approaches for
cancer and inflammatory states35, including FCGR3A36 (genotype
association to rituximab response). The FCGR3A protein levels as
determined by ELISA showed an opposite trend as compared to the
corresponding autoantibody reactivity. While the FCGR3A protein
levels may reflect the possibility that the observed autoantibody
reactivity is due to ‘‘non-specific’’ Fc-Receptor interaction rather
than increased amount of specific anti-FCGR3A antibody, it does

not necessarily imply a correlation between the amount of antigen
and the strength of reactivity. In fact, many highly expressed proteins
are not autogenic (e.g. albumin, which is a negative acute-phase
protein with decreased plasma levels during immune response37–39),
while a small amount of allergen could trigger severe immune res-
ponse. ARL8B (ADP-ribosylation factor-like 8B) is involved in lyso-
some trafficking and positioning, influencing mTOR expression
(mammalian target of rapamycin) and autophagosome formation40,
and may also be associated to metastasis and tumorigenesis41. Patient
classification may be made into two separate classification schemes,
prospectively by IPSS or retrospectively (s/t/L or healthy) as consid-
ered above. These classification schemes show good overlap as the
IPSS Low and Intermediate 1 risk categories account for 27% and
68% respectively of our s-MDS patients (85% total). Using the auto-
antibody reactivities we classified patients into each of these two
classification schemes (retrospective or IPSS), showing better con-
cordance of autoantibody reactivity in stable patients with the ret-
rospective classification rather than IPSS, but slightly lower with
healthy patients (90%). As the classification into IPSS does better
on healthy patients (100%), this suggests that combining the IPSS
classification scheme with the autoantibody reactivities may improve
clinical diagnosis of s-MDS patients while maintaining low numbers

Figure 2 | Stage II Design, Analysis and Customized Arrays. In Stage II focused arrays were analyzed (a), including multiple normalization steps, and

analysis of variance (ANOVA) to ascertain statistical significance in obtaining a high-priority candidate set of three proteins. Each custom array contained

12 blocks, such as the example (b), and was scanned for Immunoglobulin G, IgG, reactivity [using wavelength 532 nm (green) Laser Emission

Fluorescence] and protein levels [GST fusion tag expression levels using wavelength 635 nm (red) Laser Emission Fluorescence], with the superposition

of both green and red emission spectra from scanning as shown. The protein arrays from patient signals (c) show increased reactivity to IgG as compared

to a negative control. Black and low luminosity indicate no and lower reactivity respectively.
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of false positives in healthy individuals. Furthermore, autoantibody
reactivity-based classification relies on direct molecular marker sig-
natures, and may have possible application as an alternative or sup-
plement to the IPSS risk estimation, especially for early detection of
s-MDS patients. Finally, the detection of autoantibody reactivity
would only require plasma, and be minimally invasive for the patients.

Our study discovered differential autoantibody reactivity in MDS,
and identified autoantibodies particular to prognostic MDS subsets,
demonstrating that protein microarrays provide a powerful
approach to identify unique biomarkers associated with this disease.
In our investigation we chose the more sensitive focused protein
array approach over traditional chromogenic ELISA for our
validation purposes. While we envision that high-throughput, fluor-
escence-based methods such as protein microarrays may eventually

replace traditional chromogenic ELISA in clinical tests, we expect
ELISA clinical tests may also be developed in the future based on our
findings. Regarding the possible specificity of our findings, although
such autoantibody studies have not as yet been reported in other
hematologic malignancies, the combined autoantibody reactivity
we observed in our MDS patients was distinct from those reported
in patients with ovarian13 and prostate14 cancer, diabetes11 and after
respiratory infections10. We expect our findings of the increased
autoantibody reactivity in MDS patients with relatively prolonged
clinical courses will encourage future studies with larger patient
cohorts, that will be helpful to further substantiate the prognostic
importance of such data and exploration of the underlying molecular
mechanisms. The identified autoantibody reactivity may greatly
enhance our diagnostic and prognostic capabilities for MDS.

Figure 3 | Stage II Analysis of Autoantibody Reactivity and Corresponding Protein Levels. The statistical methods (a) included analysis of variance

(ANOVA) to take into account variation from multiple effects for each protein, filtering of interaction effects and post hoc Bonferroni correction to arrive

at a set of three proteins, AKT3, FCGR3A and ARL8B. The box plots (b) illustrate the differences between the MDS patients and the healthy cohort for

autoantibody reactivity to each protein of interest, with corresponding protein levels assessed by ELISA assays shown in (c). [The thickness of each box

plot reflects the corresponding subject numbers (112 Healthy, 119 s-MDS, 42 t-MDS, 43 L) – see also Table 1b].
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Methods
MDS patients. Patient recruitment and all plasma sample collections were carried out
at Stanford University Medical Center with informed consent, under approval of the
Stanford Internal Review Board for Human Subjects. The plasma samples were
randomly obtained from a group of MDS patients (seen 2001–2010), for whom long-
term followup was available. Samples were obtained at either the time of MDS
diagnosis or during their disease course [median 3 months from diagnosis (range 0–
99), mean 1/2 SEM 11.5 1/2 1.5 months].

Plasma autoantibody reactivity profiling with protein arrays. In Stage I the
autoantibody reactivity was profiled on the retrospective patient subsets (Table 1a)
using Invitrogen ProtoArray Protein Microarrays, v5.0 (9,483 unique human
proteins spotted in duplicate, 23,232 signals total including controls), as described
previously12,13. In parallel, duplicate negative control arrays were probed. The plasma
samples were diluted 1:100 in 5 ml Washing Buffer (13 PBS, 0.1% Tween 20, 13

Roti-Block). The ProtoArrays were dried and scanned using a Genepix 4200AL
Microarray Scanner (Molecular Devices, Sunnyvale, CA). The obtained array images
were analyzed (Genepix Pro 6.1, Molecular Devices), obtaining feature locations,
signal foreground and background intensity quantification and corresponding
identification information (.gpr file format). In addition to probing for IgG reactivity
(532 nm channel), the arrays were spotted with proteins containing a glutathione S-
transferase (GST) fusion tag, and a second channel (635 nm) screening allowed us to

probe GST intensity, which is used as a proxy for protein concentration per array spot
(see also Supplementary Fig. S2).

In Stage II a custom protein array was created to probe autoantibody reactivity in
an enlarged cohort (Table 1b, Figure 2a). Each array was produced through
Invitrogen, using ProtoArray technology (Figure 2b–c), and comprised of 12 blocks,
[176 duplicated protein spots (total 352) per block]. 150 proteins from Stage I were
used in analyzing protein reactivity (one subject sample per block), including 25 of the
differentially reacting proteins of interest identified in Stage I, and 125 randomly
selected control proteins. The probing procedure was carried out as in Stage I
described above, including a negative control. The array images were analyzed as in
Stage I to obtain signal information, with each block considered separately, including
probing for GST intensity.

Array analyses, stage I. The arrays were analyzed in a multi-step process, involving
inter- and intra-array normalization, and signal comparisons between groups to
identify initially a high-interest protein set that displayed increased IgG reactivity in
patient subgroups (Fig. 1a). For each array, per channel intra-array normalization was
performed via implementing the ProCAT algorithm42 (with sliding window
parameter length 15), which takes into account local background subtraction and
local intensity normalization across each array. This local intensity adjustment is
necessary to correct for array variations stemming from the printing and probing
procedures. To adjust for probing and scanning procedure variations, inter-array
intensities were quantile normalized43. The probed intensities were compared

Figure 4 | Classification of MDS Patients Using Autoantibody Reactivity Levels. The standardized reactivity of each of the three proteins of interest was

used as a three-dimensional coordinate to classify patient subgroups. (a) Classification into retrospective s-MDS and healthy subsets was the most

successful. The example figure indicates the original data points (green: healthy samples, blue: s-MDS), superimposed on the corresponding classification

results, kernel density estimates, as computed using Kernel Discriminant Analysis (KDA). Introducing all retrospective categories (b) did not affect s-

MDS or healthy classification, though t-MDS and AML displayed lower classification based on the protein of interests. Subject total numbers are as

indicated for Stage II in Table 1. The actual data points are superimposed over the densities computed by the KDA for all MDS subgroups, showing more

overlap than in (a). (c) Equivalent classification into IPSS risk groups does not perform as well as classification into retrospective subsets. (d) All shown

classifications, (a–c), were performed by KDA, using AKT3, FCGR3A and ARL8 standardized autoantibody reactivities to represent three coordinates, for

assigning each sample to a point in a three-dimensional space. The classification involved 5-fold cross-validation and 1,000 repetitions for each data

partitioning to assess variance and median classification (see also Supplementary Tables S4–S6). N.B. The above classification matrices display

classification medians, which might lead to lower sums due to rounding, mismatching the total sum of samples used in each row.
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between all binary comparisons of patient retrospective and healthy groups. The
procedure has been previously shown to be highly reproducible (R2 . 0.89 for both
technical replicates and duplicated spots12).

In our study we compared different patient subgroups to one another. We were
specifically interested in signals showing increased reactivity in the retrospectively
analyzed MDS patients versus the healthy control group, particularly s-MDS, and
assessed statistical significance through a two-tailed Mann-Whitney test
(Mathematica 9.0; multiple hypotheses Bonferroni adjusted P , 0.01).

After filtering control signals and protein spots inconsistently printed on the array
(i.e. displaying differential GST-tag signals due to variability in array printing), a total
of 35 proteins showed increased reactivity at a cutoff of P , 4 3 1027 (Bonferroni
adjusted P , 0.01) and were identified as high-interest proteins from comparisons of
MDS subsets to the healthy cohort (Fig. 1b–c). These were used for pathway and
functional analysis through IPA (IngenuityH Systems, http://www.ingenuity.com), to
identify relevant biological functions in the Ingenuity Knowledge Base (Fig. 1d). To
determine the probability that each biological function assigned to the data set was
due to chance alone, P values were calculated using right-tailed Fisher’s exact tests (P
, 0.05). Additionally, canonical pathways from the IPA library that were most
statistically significant were ascertained based on p-value (p , 0.05, Fisher’s exact
test) and ratio of molecules from the data set as compared to the total in the network
(see also Supplementary Information).

Array analyses, stage II. Subsequently, in the validation stage of the study we
successfully expressed 25 of these proteins onto customized focused arrays as
described above. We note here that 10 proteins from the initial list of 35 candidates
were not included in the validation because these could either not be successfully
expressed, isolated or printed (lack of the proper clone; low viability for a specific
clone; low yield in isolation, printing error, etc.) or did not pass our strict secondary
quality control during selection for focused array printing, as an added measure for
validation reproducibility (large GST-signal variation, negative flags raised in
scanning, saturation of signal and non-reproducible variance stability in signal
analysis). Additionally, the study was expanded to a much larger cohort (Table 1b).
The protein arrays were scanned as described above, with each block corresponding
to a different patient, and patient samples performed in duplicates. We used the same
inter- and intra-array normalization as in Stage I (Fig. 2a), applied per block, and the
signals for each protein spotted were transformed to a normal distribution using a
Box-Cox transformation44. Each protein was analyzed using an ANOVA model45,
checking for variance in subject subgroup (retrospective classification), replication
(duplicate samples, duplicate protein spots), subject age, gender, marrow blast levels
(healthy, IPSS blast categories, leukemic status), and randomization effects (batch
effects between Stage I or II of the investigation), Fig. 3a. The possible interactions
between all the above were also considered. Signals showing significant primary
effects but no significant interactions, using Bonferroni post-hoc tests to correct for
multiple group and feature comparisons, were selected as high–confidence signals of
interest. Additionally, the ANOVA was used to screen out signals showing significant
effects due to replication, subject age and randomization. Furthermore, to ensure that
protein levels were not varying between arrays, statistically significant differential
GST signals were eliminated.

Based on the ANOVA, standardized transformed reactivity levels of AKT3,
ARL8B, FCGR3A were found to be higher in patients versus healthy cohort (Fig. 3b).
These proteins were then used for classifications, namely KDA (R46 package ks47,
using unconstrained smoothed cross-validation method for bandwidth selection) and
Linear Discriminant analysis (LDA; R46 package MASS48, see Supplementary Tables
S4–S6). KDA outperformed LDA for retrospective and IPSS classifications. Both
methods involved assigning classes with 5-fold cross-validation and performing 1,000
random data partitions (Fig. 4).

ELISAs. Utilizing ELISA kits we measured plasma levels of AKT3 (dilution 1:5,
PathScanH Catalog No. #7934, Cell Signaling), FCGR3A (dilution 1:10, Catalog No.
E91278Hu, Uscn Life Science Inc.) and ARL8B (dilution 1:10, MyBioSource Catalog
No. MBS946943), using samples from 20 subjects (80 total) for each of s-MDS, t-
MDS, L and healthy subjects tested in triplicate, following each manufacturer’s
instructions (Fig. 3c).
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