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Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met
with limited success. We sought to increase statistical power to detect disease loci by conducting a
GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million
autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent
and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the
MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50
695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with
P< 0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-
analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved
genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-
planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset,
pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In
the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance
(P<5×10−8), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083–53 822 102,
minimum P= 5.9×10−9 at rs2535629). Although this is the largest genome-wide analysis of MDD
yet conducted, its high prevalence means that the sample is still underpowered to detect genetic
effects typical for complex traits. Therefore, we were unable to identify robust and replicable
findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP
finding should be interpreted with caution as the most significant SNP did not replicate in MDD
samples, and genotyping in independent samples will be needed to resolve its status.
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Introduction
Major depressive disorder (MDD) is a genetically complex trait. The lifetime prevalence of
MDD is ~15%.1,2 As a recurrent course is most common,3 MDD is accompanied by
considerable morbidity4–6 excess mortality5,7 and substantial costs.8 The World Health
Organization projects MDD to be the second leading cause of disability by 2020.9

The heritability of MDD is 31–42%,10 although certain subsets of MDD may be more
heritable (for example, recurrent, early-onset MDD or clinically ascertained MDD).11,12 The
modest heritability of MDD could reasonably be expected to complicate attempts to identify
genetic loci that confer risk or protection. However, heritability is not necessarily a key
determinant for the identification of strong and replicable genetic associations.13 For
example, there have been notable successes in genome-wide searches14 for susceptibility
loci for breast cancer (heritability ~25%), lung cancer (26%), Type 2 diabetes mellitus
(26%), Parkinson’s disease (34%), multiple sclerosis (41%), systemic lupus erythematosus
(44%) and age-related macular degeneration (46%).15–20

The most important determinant of success in identifying associations for complex traits is
the underlying genetic architecture (that is, the number of loci and their frequencies, effect
sizes, modes of action and interactions with other genetic loci and environmental factors).
Heritability alone reveals little about genetic architecture. In the absence of a detailed
understanding of genetic architecture, sample size and phenotypic homogeneity are the
critical determinants of discovering robust and replicable genetic associations. Eight
genome-wide association studies (GWAS) for MDD have been published,21–28 with one
locus of possible genome-wide significance. 26 When these studies were planned, there were
few data to guide sample size requirements. Several had historically notable sample sizes
and far more comprehensive genomic coverage than any prior study. However, it has
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become clear that the effects of common genetic variants for most complex human diseases
are considerably smaller than many had anticipated.14 This implies that sample sizes
necessary for identification of common genetic main effects were far larger than could be
attained by single-research groups or existing consortia.

Meta-analysis has thus become essential in human complex trait genetics. There are now
many examples where meta-analyses combining dozens of primary data sets have
illuminated the genetic architecture of complex traits such as height,29 body mass,30 Crohn’s
disease31 and Type 2 diabetes mellitus.32 Following this proven model, we created the
Psychiatric GWAS Consortium (PGC)33,34 to conduct field-wide combined analyses for
MDD as well as ADHD,35 bipolar disorder (BIP),36 schizophrenia37 and autism. Our goal
was to evaluate the evidence for common genetic variation in the etiology of MDD using the
largest and most comprehensively genotyped sample hitherto collected.

Materials and methods
Overview

In the discovery phase, we conducted mega-analysis for MDD using nine primary samples.
All groups uploaded individual genotype and phenotype data to a central computer cluster,
and the PGC Statistical Analysis Group conducted uniform quality control, imputation and
association analyses. Mega-analysis and meta-analysis yield essentially identical results in
theory38 and in practice.37 However, mega-analysis of individual phenotype and genotype
data was used to allow more consistent quality control and analysis, disentangle the issue of
control subjects used by multiple studies, allow conditional analyses and to enable efficient
secondary analyses. In the replication phase, we evaluated the top loci in seven independent
MDD samples and in the PGC BIP megaanalysis36 given the phenotypic and genetic overlap
between MDD and BIP.39,40 Finally, we conducted exploratory analyses of MDD sub-
phenotypes in an attempt to index clinical heterogeneity. Most of the primary genotype data
and the results have been deposited in the NIMH Human Genetics Initiative Repository
(Supplementary Methods).

Samples
Full sample details are given in the Supplementary Methods. For the discovery phase, we
included all identified primary MDD samples21–25,27,28,41 that conducted genome-wide
genotyping (> 200K single-nucleotide polymorphisms (SNPs)) on individual subjects of
European ancestry. Cases were required to have diagnoses of DSM-IV lifetime MDD
established using structured diagnostic instruments from direct interviews by trained
interviewers (two studies required recurrent MDD and one recurrent, early-onset MDD) or
clinician-administered DSM-IV checklists. Most studies ascertained cases from clinical
sources, and most controls were randomly selected from the population and screened for
lifetime history of MDD. The sample sizes reported here differ from the primary reports due
to different quality control procedures and apportioning of overlapping controls. We
determined the relatedness of all pairs of individuals using genotypes of SNPs present on all
platforms, and excluded one of each duplicate or closely related pair. The discovery mega-
analysis consists of 18 759 independent and unrelated subjects of recent European ancestry
(9240 MDD cases and 9519 controls).

There were two sets of analyses conducted on additional samples. For MDD replication, we
used meta-analysis to combine the autosomal discovery results (554 SNPs with P< 0.001)
with summary association results from independent samples42–48 (6783 MDD cases and 50
695 controls). The discovery SNP results were grouped into regions defined by linkage
disequilibrium using an iterative process after ranking all SNPs by association P-value: for
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SNPs with r2 > 0.2 in a 1Mb window (based on HapMap3 CEU+TSI), the most strongly
associated SNP was retained. In addition, given the close genetic and phenotypic
relationships between MDD and BIP, we combined the MDD discovery sample and the
PGC BIP mega-analysis36 to evaluate 819 autosomal SNPs with P < 0.0001 in either of the
separate analyses. (See Sklar et al.36 for complete description). In effect, we tested for
associations with a more broadly defined mood disorder phenotype. After resolving
overlapping control samples, there were 32 050 independent subjects (9238 MDD cases/
8039 controls and 6998 BIP cases/7775 controls).

SNP genotyping
SNP genotyping is described in the Supplementary Methods and summarized in
Supplementary Table S2. Briefly, all samples were genotyped with SNP arrays intending to
provide genome-wide coverage of common variation. Imputation was performed within
each study in batches of 300 individuals. Batches were randomly assigned to keep the same
case–control ratios as in the primary studies. We used Beagle 3.0.4 [ref. 49] with the CEU
+TSI HapMap3 data as reference (410 phased haplotypes)50 to impute 1 235 109 autosomal
SNP allele dosages. We had previously evaluated this approach by masking and then
imputing genotyped loci and found a high correlation between the genotyped and imputed
allele dosages (Pearson r > 0.999).37

Quality control
Genotyping coordinates are given in NCBI Build 36/UCSC hg18. For the discovery phase,
quality control was conducted separately for each resolved sample. SNPs were removed for
missingness ≥0.02, case–control difference in SNP missingness ≥0.02, SNP frequency
difference from HapMap3 [ref. 50] ≥0.15, or exact Hardy–Weinberg equilibrium test in
controls <1×10−6. Subjects were removed for excessive missingness (≥0.02), identical or
closely related to any subject in any sample (π̂> 0.2 based on common autosomal SNPs) and
if there was evidence for diverging ancestry. Ancestry was estimated using
multidimensional scaling applied to 8549 SNPs directly genotyped in all samples and in
approximate linkage equilibrium.

Statistical analysis
We used logistic regression to test the association of MDD diagnosis with imputed SNP
dosages under an additive model. This test has correct type 1 error with imputed data.51

Covariates included study indicators and five principal components reflecting ancestry. For
the MDD replication samples, the top SNP in each region was tested for association, and
fixed-effect meta-analysis was used for the replication samples, and for the combination of
PGC discovery and replication data.

Chromosome X
Female sex is an established risk factor for MDD, and analysis of chromosome X is
particularly salient (although not included in many GWAS). Imputation using HapMap3
reference genotypes (as in the primary analysis) was not possible due to persisting
difficulties with the phased chromosome X data, but we were able to impute using 1000
Genomes Project data.52 Chromosome X imputation was conducted for subjects passing QC
for the autosomal analysis and with SNP call rates > 0.95 for chrX SNPs. SNPs with
missingness ≥0.05 or HWE P<10−6 (females) were excluded. Phasing was conducted using
MACH53 in female subjects. Imputation was performed separately for males and females
using MINIMAC with haplotypes from 381 European samples from the 1000 Genomes
Project as reference (1.45 million chrX SNPs, but many were monomorphic in our sample).
Chromosome X SNPs in HapMap2 and HapMap3 with r2≥0.3 were carried forward for
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further analysis (122 602 SNPs). Association was tested under an additive logistic regression
model implemented in PLINK (meta-analysis of male and female association results) using
the same covariates as for the autosomal analysis.

Secondary analyses
MDD is suspected to have important phenotypic heterogeneity, and association analyses
might yield clearer findings if clinical features are incorporated into genetic analyses. Thus,
we conducted predefined secondary analyses intended to index plausible sources of
phenotypic heterogeneity in MDD cases. (a) Sex. As the lifetime prevalence of MDD is
approximately two times greater in females,54,55 we conducted association analyses
separately in males and females to evaluate sex-specific genetic risk variants. (b) Recurrence
and age of onset. As recurrence and age of onset may index heterogeneity in MDD,10,56 we
analyzed early-onset MDD (≤30 years), recurrent MDD (≥2 episodes), pre-pubertal onset
MDD (≤12 years, see Weissman et al.57) and age of onset of MDD as a quantitative trait. (c)
Symptoms. As MDD is phenotypically heterogeneous, we obtained MDD symptom data
from 88% of all MDD cases (the nine DSM-IV ‘A’ criteria disaggregated to code increase
and decrease in appetite, weight, sleep and energy level). Latent class cluster models were fit
to binary responses for these MDD ‘A’ criteria, and identified three latent classes in MDD
cases characterized by weight loss/insomnia, weight gain/insomnia and hypersomnia (see
Supplementary Methods for more details). The predominant latent class was consistent with
‘typical’ MDD58,59 and we analyzed cases indexed by this class.

Results
In the discovery stage, we conducted a GWAS megaanalysis for MDD in 18 759
independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519
controls, Table 1). There were considerable similarities across samples: all subjects were of
European ancestry, all cases were assessed with validated methods and met DSM-IV criteria
for lifetime MDD, and most controls were ascertained from community samples and
screened to remove individuals with lifetime MDD (Supplementary Methods and
Supplementary Figures S6–S9).

An overview of the results is in Figure 1. The quantile–quantile plot shows conformity of
the observed results to those expected by chance. The overall λ [ref. 60] (the ratio of the
observed median χ2 to that expected by chance) was 1.056 and λ1000 was 1.006 (that, λ
rescaled to a sample size of 1000 cases and 1000 controls).61 The Manhattan plot depicts the
association results in genomic context, and no region exceeded genome-wide significance
(P<5×10−8).62 We conducted imputation with Hap-Map2 [ref. 63] and 1000 Genomes
Project data52 in addition to HapMap3 and obtained similar genomewide association results.

The minimum P-values for the main analysis were at rs11579964 (chr1: 222 605 563 bp, P =
1.0×10−7) and rs7647854 (chr3:186 359 477 bp, P = 6.5×10−7; Supplementary Tables S16
and S17). Bioinformatic analyses of 201 SNPs with P < 0.0001 and the 1655 SNPs in
moderate linkage disequilibrium (LD, r2 > 0.5) showed no overlap with literature findings in
the NHGRI GWAS catalog,14 with transcripts differentially expressed in post-mortem brain
samples of individuals with MDD,64 or with SNPs that were genome-wide significant or
notable in the PGC association analyses of ADHD, BIP, or schizophrenia. We noted that a
few of these 201 SNPs were ±20 kb of genes previously studied in MDD (ADCY9 and
PDLIM5),65 or notable in prior hypotheses of the etiology of psychiatric disorders (GRM7,
HTR7 and RELN).
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In the analyses of chrX, no SNP achieved genome-wide significance in analysis of all
samples or in separate analyses of females and males. The most significant SNP across all
analyses was rs12837650 in the female-only analysis (P = 5.6×10−6).

In the MDD replication phase, 554 SNPs with P < 0.001 from the discovery mega-analysis
were evaluated in independent samples totaling 6783 MDD cases and 50 695 controls (Table
1). For these SNPs, the replication samples did not produce logistic regression β coefficients
in the same directions as the discovery analysis more frequently than expected by chance
(sign test, P = 0.05). No SNP exceeded genome-wide significance for a joint analysis of the
discovery and replication samples (Supplementary Table S18). The minimum P-value was
for rs1969253 (P = 4.8×10−6, chr3:185 359 206), located in an intron of the disheveled 3
gene (DVL3). Given the probable etiological heterogeneity of MDD, we also conducted
replication analyses of subtypes of MDD. For analyses restricted to female cases and
controls, the direction of effects tended to be consistent between the discovery and
replication samples (sign test, P = 0.006) although no SNP neared genome-wide significance
(minimum P = 4.8×10−6 at rs1969253, chr3: 185 359 206). For male cases and controls, the
sign test was not significant (P = 0.17), and no SNP was genome-wide significant (minimum
P = 3.8×10−7 at rs2498828, chr14:91 491 028). For recurrent MDD, there was greater
evidence of consistency of effects between the discovery and replication samples (sign test,
P = 0.006), and the minimum P-value was 1.0×10−6 at rs2668193 (chr3:185 419 374).

In the MDD-BIP cross-disorder analyses, we evaluated support for a broader mood disorders
phenotype. Due to the need to resolve overlapping subjects, the sample sizes and P-values
differ from the numbers given above. There were 32 050 independent subjects (9238 MDD
cases/8039 controls and 6998 BIP cases/7775 controls), 160 SNPs with P < 0.0001 in the
MDD discovery phase and 659 SNPs in the BIP discovery phase (no SNP had P < 0.0001
for both MDD and BIP). First, in aggregate, SNPs selected from the BIP discovery phase
showed evidence of replication in MDD (65 of 100 independent SNPs had logistic
regression β-coefficients in the same direction in both BIP and MDD, sign test, P = 0.0018).
However, the reverse comparison was near chance level (46 of 76 independent SNPs
selected from MDD analyses had consistent effects in BIP, sign test P = 0.042). Second, in
the combined analysis of these 819 SNPs, 15 exceeded genome-wide significance
(P<5×10−8) and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083–53 822
102, minimum P=5.9×10−9 at rs2535629; Supplementary Table S19, Supplementary Figure
S20). The 116 SNPs in this region were all selected from the BIP sample (P < 0.0001), and
none from the MDD sample. The region of strongest signal contained 84 SNPs from
rs2878628 to rs2535629 (chr3:52 559 755–52 808 259). This region contains multiple
genes: PBRM1 (chromatin remodeling and renal cell cancer), GNL3 (stem cell maintenance
and tumorgenesis), GLT8D1, SPCS1, NEK4, the ITIH1-ITIH3-ITIH4 gene cluster (possibly
involved in cancer), four micro-RNA and three small nucleolar RNA genes. This region had
genome-wide significant findings in three prior GWAS: rs1042779 (chr3:52 796 051) for
BIP,66 rs736408 (chr3:52 810 394) for a combined BIP-schizophrenia phenotype36 and
rs2251219 (chr3:52 559 827) for a combined MDD-BIP phenotype67 (although a reanalysis
suggested most of the signal arose from the BIP group).68 The PGC analyses include nearly
all subjects in the prior reports, and thus cannot be considered independent evidence. As
discussed below, we advise caution in interpreting this result.

We conducted a set of pre-planned secondary analyses using the discovery samples. These
analyses presume that observable clinical features allow the ability to index etiological
genetic heterogeneity. The clinical features we chose—sex, age of onset, recurrence and
typicality—had a rationale from genetic epidemiological studies, and were comparably
assessed in most of the discovery samples (Supplementary Methods). The results are
summarized in Table 2, and detail on regions with P<1×10−5 provided in Supplementary
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Table S21. Parallel analyses of chrX SNPs for these secondary phenotypes also failed to
identify convincing associations. Given the level of resolution afforded by our sample size
and genotyping, none of these clinical features successfully indexed the clinical
heterogeneity of MDD (all λ1000 values were small and no P-value approached genome-
wide significance). However, we note that the total samples available for these analyses
were small for a GWAS of a complex and modestly heritable trait. Moreover, as described
above, SNPs identified in analyses by sex and for recurrent MDD did not yield genome-
wide significance in replication in external samples.

Finally, under the assumptions that MDD is highly polygenic and that power is not
optimal,69,70 we conducted risk profile analyses using the MDD discovery phase samples.
We split these samples into two sets and used 80% to develop a risk profile to predict case–
control status in the remaining 20% of the samples (Supplementary Methods). These
analyses showed a modest (R2 = 0.6%) but highly significant (P<10−6) predictive capacity.

Discussion
This is the largest and most comprehensive genetic study of MDD. There were 18 759
subjects in the MDD discovery phase, 57 478 subjects in the MDD replication phase and 32
050 subjects in cross-disorder analyses of MDD and BIP. Analyses included the primary
phenotype of MDD, three sets of autosomal imputation data (HapMap3, HapMap2 and 1000
Genomes), analysis of chrX, and multiple sub-phenotypes selected based on prior
epidemiological and genetic epidemiological studies (Table 2).

The primary finding of this paper is that no locus reached genome-wide significance in the
combined discovery and replication analysis of MDD. Our results are consistent with null
results from other MDD meta-analyses using subsets of the present sample.22,23,25,28 The
risk profile analyses are consistent with the presence of genetic effects, which our analysis
was underpowered to detect. Although not significant, several analyses (that is, MDD,
femalesonly and recurrent MDD) pointed at a region on chr3:185.3Mb near the gene
(DVL3) encoding the Wnt-signaling phosphoprotein disheveled 3. DVL3 transcripts are
decreased in the nucleus accumbens of individuals with MDD71 and are overexpressed in
the leukocytes of individuals reporting social isolation,72 and the DVL3 protein product is
upregulated in rats after treatment with antipsychotics.73,74 The chr3:185.3 Mb region also
contains several serotonin receptors (HTR3D, HTR3C and HTR3E). However, none of these
analyses were strongly compelling.

We advise caution in interpreting the evidence for association of SNPs on 3p21.1 with a
broad mood disorder phenotype based on the combined PGC MDD and BIP discovery
samples (minimum P = 5.9×10−9 at rs2535629, chr3:52808259). Evidence to date suggests
that this locus is associated with BIP66 and schizophrenia,36 and an even broader association
was suggested by a PGC meta-analysis of MDD, BIP, schizophrenia, ADHD and autism.
This separate PGC analysis included nearly all of the samples reported here, and the top
finding was again for rs2535629 (P = 2.5×10−12).75 The BIP sample made the strongest
contribution to the combined analysis (OR = 1.15) followed by schizophrenia (OR = 1.10),
MDD (OR = 1.10), ADHD (OR = 1.05) and autism (OR = 1.05). Although a five-disorder
model was statistically the most likely and significant heterogeneity of ORs across disorders
was not detected, the MDD replication data reported here raise some questions whether
MDD also has an association in this region. We obtained MDD replication data for two
SNPs on 3p21.1 (Supplementary Table S18), and observed no additional support for
association for rs2535629 (discovery P = 0.0001, replication P = 0.56, combined P = 0.002)
or rs3773729 (discovery P = 0.00022, replication P = 0.022 with different direction of
association, combined P = 0.0095). Similarly, replication samples for the PGC BIP study36
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provided little additional evidence for two SNPs in this region (rs736408 and rs3774609). In
contrast, stronger evidence for association was observed in the PGC SCZ study after adding
data from replication samples (rs2239547, chr3:52 830 269; discovery P = 2.2×10−6,
replication P = 0.003, combined P=6×10−8).37 The PGC analyses reported here include most
samples used in previous reports of genome-wide significant association in this region for
BIP,66 BIP-SCZ36 and MDD-BIP,67 underscoring the need for analysis of independent
samples.

Thus, this locus has produced genome-wide significant evidence for association to BIP,66

with evidence for broader set of associated phenotypes (especially SCZ).36,75 The
inconsistency of results in large MDD and BIP replication samples suggests that the current
finding should be viewed with caution. If specific genetic variants can be identified that
underlie the BIP association in this region, it will be possible to evaluate their degree of
association with other phenotypes including MDD. A continuing challenge in this field is
the differentiation between true pleiotropy (genetic risk factors associated with distinct
phenotypes) versus diagnostic misclassification (phenotypic overlap in cases with different
genetic risk factors, leading to diagnostic ‘error’). There is a robust and evolving literature in
psychiatric genetic epidemiology regarding the degree of independence versus co-
segregation of current diagnostic categories, as well as the occurrence and familial risks of
cases with mixed syndromes and changes in clinical syndromes over time. It is likely that
analyses of large-scale genomic data will provide new perspectives on these issues.

On the whole, these results for MDD are in sharp contrast to the now substantial experience
with GWAS for other complex human traits. GWAS has been a widely applied (> 860
studies) and remarkably successful technology in the identification of > 2200 strong
associations for a wide range of biomedical diseases and traits.14 The vast majority of
GWAS with sample sizes > 18 000 found at least one genome-wide significant finding
(178/189 studies, 94.2%),14 and yet we found no such associations for MDD. What
implications do these null results have for research into the genetics of MDD? Why might
the results have turned out this way? We frame our discussion around a series of
implications and hypotheses for future research.

Caveat: genome coverage
The genotyping chips used by the primary studies had good coverage of common variation
across the genome. It is possible that genetic variation important in the etiology of MDD
was missed if LD was insufficient with genotyped variants. In particular, we had suboptimal
or poor coverage of uncommon variation (MAF 0.005–0.05), and we have not yet analyzed
copy number variation (PGC analyses of copy number variants are underway). In addition,
the discovery studies used eight genotyping platforms, and it is possible that causal common
variation was missed because not all platforms had good coverage in the same regions.
However, these caveats should be interpreted in the context of the many successful GWAS
meta-analyses that faced similar limitations.

Implication: exclusions
For the phenotype of MDD, we can exclude combinations of MAF and effect size with 90%
power. The exclusionary regions are genotypic relative risks (GRRs) ≥1.16 for MAF 0.30–
0.50, ≥1.18 for MAF 0.20–0.25, ≥1.21 for MAF 0.15, ≥1.25 for MAF 0.10 and ≥1.36 for
MAF 0.05. The technologies we used for genotyping probably captured the more common
variation well, but were progressively less comprehensive at lower MAF. These exclusion
GRRs equate to a variance in liability of ~0.5%. Since this study was conceived, we have
gained considerable knowledge about the likely effect sizes of variants contributing to
common complex disease. Therefore, these exclusion architectures are not unexpected.

Page 8

Mol Psychiatry. Author manuscript; available in PMC 2013 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Implication: future sample sizes
Association studies in psychiatry have traditionally had small sample sizes (< 1000 total
subjects). For even a modest amount of genotyping in a candidate gene (10 SNPs), 90%
power to detect a genotypic relative risk of 1.16 at MAF 0.30 requires 3600 cases and 3600
controls. It is possible to speculate that larger genetic effects exist at smaller MAF (0.005–
0.05). Investigators, reviewers and editors need to be cognizant of these requirements, as
smaller samples may be difficult to interpret due to inadequate power.

Hypothesis: suboptimal phenotype
MDD is defined descriptively without reference to any underlying biology, biomarker or
pathophysiology.76,77 Genetic epidemiological studies have suggested that subtypes of
MDD might be more familial or have higher heritability (for example, recurrent MDD,10

recurrent early-onset MDD11 and clinically ascertained MDD12). It is possible that well-
powered genetic studies of these less common and arguably more heritable forms of MDD
would have greater success. However, a sizable fraction of our cases were from hospital
sources and our analyses of recurrent MDD and recurrent early-onset MDD were
unrevealing, although these observations are qualified by the smaller sample sizes. The
selection of a phenotype for genetic studies presents a dilemma for MDD researchers: larger
samples which are more representative of the population can be achieved for broadly
defined MDD, whereas restricted phenotypes may be more familial but are more difficult to
recruit in large numbers from the population. Some other forms of MDD can only be
defined using methods that are difficult to operationalize in large samples (for example,
extensive clinical interviews, biological assays like repeated hormone measures or brain
imaging).

Hypothesis: MDD is particularly heterogeneous
An early criticism of GWAS meta-analysis was that combining samples from multiple sites
to increase sample size would introduce crippling heterogeneity. This concern was not borne
out by experience. Indeed, the number of significant associations has increased as more
individual studies have been combined using meta-analysis for other heterogeneous diseases
such as Type 2 diabetes mellitus,32 inflammatory bowel disease78 and multiple cancers79,80

along with anthropometric traits like height29 and body mass.30 It is possible that MDD
might be exceptional, and have greater clinical and etiological heterogeneity, as well as non-
genetic phenocopies. The different endorsement rates of the MDD criteria between cohorts
may support this conjecture (Supplementary Table S12). Higher heterogeneity implies
reduced statistical power as the genetic effect size distribution will be diluted. Higher
heterogeneity— that is, many different ‘types’ of MDD—would suggest that identifying
more optimal MDD-related phenotypes may be a practical step forward if adequate sample
sizes could be achieved.

Hypothesis: MDD has a divergent genetic architecture
The unquestionable success of GWAS in identifying strong and replicable associations for
so many human diseases is intriguing given that the additive logistic regression model
generally used is rudimentary. The dependent variable is disease status (1 = yes, 0 = no), the
continuous independent variable is a SNP genotype (coded as the number of copies of the
minor allele or as the imputed allelic dosage, 0–2), plus covariates like principal components
to adjust for ancestry. It is possible that MDD is distinctive, and that the additive logistic
model is not an adequate approximation of the genetic architecture of MDD (see Kohli et
al.26). There are numerous alternative genetic architectures, although many are at least partly
detectable using an additive model.
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There has been considerable speculation that gene–environment interactions are particularly
salient for MDD. It is possible that MDD can only be understood if genetic and
environmental risk factors are modeled simultaneously. The most prominent example for
MDD is the moderation of environmental stress by genetic variation in a functional
polymorphism near the serotonin transporter (5-HTTLPR).81 As in the initial report in 2003,
some evidence has supported this GxE interaction82,83 other analyses have not84,85 and the
original finding (from a longitudinal study in Dunedin, New Zealand) did not replicate in an
independent longitudinal study in Christchurch, New Zealand.86 A practical issue is again
the tradeoff between relatively inexpensive, cross-sectional assessments of MDD case and
control status and the detailed longitudinal data required to accurately characterize
environmental stressors.

Hypothesis: insufficient power
Although this is one of the largest GWAS analyses ever conducted in psychiatry (second
only to the PGC schizophrenia study),37 the sample size may still have been too small. The
very small but highly significant variance explained in the polygenic risk score analyses
(P<10−6 testing one hypothesis) is consistent with a hypothesis of insufficient power in this
study.

The overlapping hypotheses listed above imply that an association study for MDD has less
power than for studies of many other complex genetic disorders. However, even if the
hypotheses listed above were not the contributing factors, we may still conclude that
insufficient power underpins the dearth of results from this mega-analysis by considering the
epidemiology of MDD. MDD is highly prevalent in the population, implying that cases are
less extreme in the population compared with the controls and therefore larger sample sizes
are required. For example, we have calculated that sample sizes 2.4 times larger are needed
for GWAS of MDD (prevalence 0.15) compared with schizophrenia (prevalence 0.007).25,87

Furthermore, if we assume as a first approximation that the number and frequency
distribution of risk alleles is the same for MDD and schizophrenia, then samples sizes five
times larger are needed to account for the lower heritability of MDD (0.37)10 compared with
schizophrenia (0.81),88 implying lower effect sizes at each locus (see Wray et al.25 and
Yang et al.87 for details). Obtaining a total sample size on the order of 100 000 MDD cases
plus controls would require a significant investment for ascertainment, phenotyping, DNA
collection and genotyping, but could be accomplished using national registers or via
electronic medical records of large health care organizations. Such sample sizes have been
achieved in studies of quantitative traits and yielded large numbers of genome-wide
significant results.29,30

Conclusion
This report contributes important new data about the nature of MDD.33 Unlike a large
number of other GWAS that provide precious etiological clues, our analyses are more
informative about what MDD is not. The path to progress is likely to be more difficult for
MDD, but there are a number of rational next steps. We have offered some ideas about how
progress might be achieved. The PGC is conducting GWAS metaanalyses across ADHD,
autism, BIP, MDD and schizophrenia, and these very large analyses could identify genetic
variants that predispose or protect to psychiatric disorders in general, and thus provide key
initial findings that could be used to disentangle the etiology of MDD. Analysis of copy
number variation has provided important leads for autism and schizophrenia, and might
prove informative for MDD.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of results from the discovery genome-wide association study mega-analysis for
major depressive disorder. The inset shows the quantile–quantile plot (observed by expected
P-values on the −log10scale) showing conformity of the observed results to expectations
under the null. The main part of the figure shows the Manhattan plot (−log10 of the P-value
by genomic location) of the association results in genomic context. No region exceeded
genome-wide significance in the discovery sample.
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Table 1

Cases and controls used in discovery and replication phases

Phase Sample Subjects MDD case Control

Discovery GAIN 3461 1696 1765

GenRED 2283 1030 1253

GSK 1751 887 864

MDD2000-QIMR_610 1184 433 751

MDD2000-QIMR_317 1977 1017 960

MPIP 913 376 537

RADIANT + Bonn/Mannheim 2225 935 1290

RADIANT 3213 1625 1588

STAR*D 1752 1241 511

MDD replication deCODE 34 229 1067 33 162

GenPod/NEWMEDS 5939 477 5462

Harvard i2b2 902 460 442

PsyCoLaus 2794 1303 1491

SHIP-LEGEND 1806 313 1493

TwinGene 9562 1861 7701

GenRED2/DepGenesNetworks 2246 1302 944

MDD-BIP cross-disorder PGC MDD 17 277 9238 8039

PGC BIP 14 773 6998 7775

Totals Discovery 18 759 9240 9519

MDD replication 57 478 6783 50 695

MDD-BIP cross-disorder 32 050 16 236 15 814

Abbreviations: BIP, bipolar disorder; MDD, major depressive disorder; PGC, Psychiatric GWAS Consortium.

Sample acronyms are defined in the Supplementary Methods. Sample sizes differ from the primary publications due to varying quality control
procedures and re-allocation of controls that were used in multiple studies.
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Table 2

Summary of secondary analyses

Secondary analysis Cases Controls λ1000 Best finding

Primary analyses as reference

 Discovery phase 9240 9519 1.008 rs11579964, chr1:222,605,563, P = 1.0 × 10−7

 Combined discovery plus replication 16 023 60 214 NA rs1969253, chr3:185,359,206, P = 3.4 × 10−6

(a) By sex

 Females 6118 5366 1.005 rs1969253, chr3:185,359,206, P = 1.0 × 10−7

 Males 3122 4153 0.999 rs7296288, chr12:47,766,235, P = 2.3 × 10−7

(b) Onset and recurrence

 Recurrent 6743 9519 1.006 rs4478239, chr4:188,428,300, P = 4.7 × 10−7

 Recurrent early onset (≤ 30 years) 4710 9519 1.007 rs1276324, chr18:19,172,417, P = 6.7 × 10−7

 Childhood onset (≤ 12 years) 774 6077 1.015 rs4358615, chr6:27,106,546, P = 2.3 × 10−6

 Age of onset as a continuous trait 8920 — 0.998 rs16948388, chr17:45,242,175, P = 1.0 × 10−6

(c) Sub-type analysis

 Latent class 1 (weight loss and insomnia) 3814 9519 1.007 rs9830950, chr3:61,097,358, P = 1.0 × 10−7

λ1000 is the genomic inflation factor scaled to a constant sample size of 1000 cases and 1000 controls. Age of onset analyzed using a square root

transformation.
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