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Abstract
An increasing number of studies have reported computations of the absolute binding free energy
of small ligands to proteins using molecular dynamics (MD) simulations with results that are in
good agreement with experiments. This encouraging progress suggests that physics-based
approaches hold the promise of making important contributions to the process of drug discovery
and optimization in the near future. Two types of approaches are principally used to compute
binding free energies with MD simulations. The most widely known are based on alchemical free
energy methods, in which the interaction of the ligand with its surrounding are progressively
switched off. An alternative method is to use a potential of mean force (PMF), in which the ligand
is physically separated from the protein receptor. For both of these computational approaches,
restraining potentials affecting the translational, rotational and conformational freedom of the
ligand and protein may be activated and released during the simulations to aid convergence and
improve the sampling. Such restraining potentials add bias to the simulations, but their effects can
be rigorously removed to yield a binding free energy that is properly unbiased with respect to the
standard state. A review of recent results is presented. Examples of computations with T4-
lysozyme mutants, FKBP12, SH2 domain, and cytochrome P450 are discussed and compared.
Differences in computational methods are discussed and remaining difficulties and challenges are
highlighted.

I. INTRODUCTION
In recent years, a number of studies have reported computations of the absolute binding free
energy of small ligands to proteins using molecular dynamics (MD) simulations with
explicit solvent molecules. In many ways, the results are in good agreement with
experiments. The progress is encouraging and suggests that physics-based approaches hold
the promise of becoming an important predictive tool for drug discovery and optimization in
the near future. The goal of this article is to review the recent progress in computations of
absolute binding free energies, contrast the different methodologies that are available, and
highlight the remaining challenges for the future.

Issues of molecular recognition, involving the non-covalent association of small ligands to
large macromolecules with high affinity and specificity, plays a crucial role in biology and
medicinal chemistry.1–3 Computational studies can help elucidate the fundamental principles
governing those issues at the molecular level. Moreover, improving our ability to screen
large databases of compounds in silico to identify potential lead drug molecules with
accurate prediction of binding affinities could have a great impact on structure-based drug
design. So far, however, computational screening methods have had only a mixed success
rate. In the language of molecular modeling, ligand screening can be separated into two
well-defined steps, “docking” and “scoring”.4 The docking step aims at predicting the
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preferred orientation of the ligand molecule bound to the protein receptor (the “pose”), and
the scoring step aims at predicting the binding affinity of the ligand for a given ligand pose.
While docking can proceed successfully via heuristic simplifications, the worse
shortcomings of ligand screening approaches stem from the approximate scoring functions.

The fundamental principles controlling ligand binding are relatively well understood5,6, but
scoring often relies on extremely simplified approximations in order to achieve the
computational efficiency needed to handle large databases.7 To have any predictive and
practical value, scoring must reflect the binding free energies with sufficient accuracy.
Arguably, physics-based approaches such as free energy perturbation molecular dynamics
(FEP/MD) simulations represent the most accurate approach to quantitatively characterize
the binding free energy of small ligand with macromolecules. FEP/MD simulations can
naturally handle the influence of solvent and dynamic flexibility,6 and previous studies
indicate that the method is more reliable than simpler scoring schemes.8,9

Calculation of free energies are among the most important applications of biomolecular
simulations.10–13 Initial applications of FEP/MD to biomolecular systems such as, for
example, the calculations of hydration free energies14,15 and of binding free energies.16–20

go back the 1980’s. The early work was obviously burdened by the limited sampling from
short simulations, though the potential of FEP methods was recognized. Considerable
progress has been made since then, in part due to the increased availability of powerful
computers. Moreover, the theoretical framework for carrying out various free energy
computations has been greatly clarified.13 In recent years, free energy simulations have been
used to characterize solvation properties of a wide range of molecules and have now become
integral tools to test, validate, and refine biomocular force fields.21–24 Absolute hydration
free energy were calculated for the amino acids sidechains25,26 and for a wide range of small
molecules,27–30 water-cyclohexane transfer free energies of amino acids have been
determined.31 Decomposition of free energies into contributions by the core repulsion, van
der Waals dispersion, and electrostatic interactions helps clarify the intermolecular forces
underlying solvation.26 Free energy simulations are arguably the most powerful and
promising approaches to estimate the binding free energy of ligands to macromolecules.
While FEP/MD remains too demanding computationally for screening extremely large
databases of compounds, the recent success is indicative that these methods are going to
play an increasingly important role in drug discovery and optimization in the near future.

In the following section, we review briefly the statistical thermodynamics formulation of
molecular association, and describe the main approaches to compute binding free energies
from MD simulations. There are the methods based on alchemical perturbation, in which the
interaction of the ligand with its surrounding are progressively witched off, and there are
methods based on the potential of mean force (PMF), in which the ligand is physically
separated from the receptor. For both of these computational strategies, restraining potentials
may be activated and released during the simulation to sample more efficiently the changes
in translational, rotational and conformational freedom of the ligand and protein upon
binding. A review of recent results is then presented, and differences in computational
methods are discussed. A particular attention is given to studies of ligand binding to T4-
lysozyme mutants,32–37 and FKBP12.38–42 Our focus is mainly on studies based on free
energy simulation methods with explicit solvent. The wide range of scoring methods that are
available for virtual screening are not covered here, as they have been the object of recent
reviews (e.g., see 43–45). The review is concluded with a discussion highlighting the
remaining challenges with an outlook to the future.
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II. THEORY AND METHODS
A. Statistical Mechanics and Equilibrium Binding Constant

To calculate a standard binding free energy with computer simulations, a relation has to be
established between macroscopic observables and microscopic variables. For the sake of
concreteness, let us consider a protein macromolecule (P) in thermodynamic equilibrium
with a dilute solution containing ligand molecules (L). The equilibrium constant Kb of the
binding reaction L + P ⇌ LP is defined as Kb = [LP]/([L][P]), where [L], [P], and [LP], are
the equilibrium concentrations of the unbound ligand, unbound protein, and bound complex,
respectively. The standard binding free energy is defined from the equilibrium constant by

, where C° is a standard concentration, kB is the Boltzmann
constant and T is the absolute temperature.

To obtain an expression for Kb it is useful to consider the occupancy operator H equal to 1
when the ligand is in the binding site of the protein, and 0 otherwise. The probability to find
one protein with one ligand bound is , the probability to find a protein with no
ligand bound is , and the ratio of these occupancy probabilities is directly
related to the equilibrium constant, . This ratio is independent of the
concentration of the protein, as long as the solution is relatively dilute. Following classical
statistical mechanics, it can be shown that the equilibrium constant can be expressed
as34,46–48

(1)

where U is the total potential energy of the system, β ≡ 1/kBT, L and X represent
respectively the coordinates of the ligand and all remaining atoms (solvent and protein), rL
is the position of the center of mass of the ligand, and r* is some arbitrary position far away
in the bulk region relative to the protein.34,46,49 This derivation in terms of ⟨H⟩, which be
traced back to Bjerrum,50 is more direct than the traditional treatments based on chemical
potentials.47,48,51 One may note that Kb has the dimension of volume, hence the need to
multiply by the standard concentration C° (1 mol/L = 1/1660 Å3), to define the
dimensionless quantity KbC° and a meaningful binding free energy .

Based on Eq. (1), one may picture the binding process as the ligand leaving the bulk region
(in the denominator) and moving into the binding site (in the numerator). In principle the
binding free energy could be determined directly from the average population of the bound
state ⟨H⟩, via an unbiased trajectory. However, while this has been done previously (e.g., see
ref 52), it is generally more advantageous to introduce a sequence of intermediate states
between the bound and unbound “end-points” states in order to enable practical
computations. The most popular approaches rely on alchemical free energy thermodynamic
perturbation techniques in which the intermediates are chosen to progressively switch “off”
the interactions of the ligand with its surrounding.20,34,40,46,47,53,54 Alternatively,
convenient intermediates may be chosen to control the physical separation between the
ligand and the protein without alchemical decoupling. In this approach, the binding constant
is computed via a protein-ligand potential of mean force (PMF).41,49,55,56 One may refer to
this PMF-based approach as the “pulling” method.41 At a practical level, any number of
restraining potentials may be activated and then released at different stages during the PMF
calculations to improve convergence. As long as the total reversible work between the end-
points is properly calculated, the final result is independent of the intermediate states.
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B. Standard Binding Free Energy from Alchemical Perturbation
The alchemical method compute the reversible thermodynamic work for decoupling the
ligand from its surrounding (protein and bulk solvent). As an illustration, let us first consider
the free energy associated with decoupling the ligand in the bulk solvent,

(2)

where U0 represents the total potential energy of the system with a non-interacting
(decoupled) ligand. The thermodynamic decoupling in Eq. (2), which corresponds to the
transfer of the ligand to the gas phase, is often referred to as an “annihilation” process. This
should not be misconstrued since the ligand is only decoupled from its environment. The
solvation free energy in Eq. (2) can be computed using alchemical free energy perturbation
(FEP) or thermodynamic integration (TI) (see 57, 11 and 58 for reviews on methodology).

Applying directly the decoupling scheme of Eq. (2) for the ligand in the binding site can be
attempted,53 though this is often impractical. The non-interacting (decoupled) ligand should
in principle drift away from the binding site and wander anywhere in the volume of the
simulation box. This increases the difficulty to obtain a statistically converged and reversible
free energy from standard methods (see the discussion in 54). A proper free energy
calculation must be reversible, i.e., the change in free energy for introducing the ligand
molecule into a system should be equal, but of opposite sign, to the free energy for removing
the ligand. Nevertheless, if one assumes that the ligand has explored the entire simulation
box and the free energy calculation is converged, then the equilibrium constant follows from
Eq. (1),

(3)

where Vpbc is the volume of the box for the periodic boundary conditions (PBC) used in the

MD simulation to calculate  is the solvation free energy calculated from a
simulation with the ligand in a pure solvent box defined in Eq. (2). The relation to the
standard state expressed in Eq. (3) presumes that the unrestrained alchemical decoupling
state is fully converged, which would need to be monitored with attention. Furthermore,
using the above expression assumes implicitly that the ligand binds tightly to the protein and
that the concentration of ligand in the MD box is large compared to 1/Kb (i.e., all

contributions to  are dominated by the bound state).

Such difficulties are easily avoided by introducing a restraining potential, ut, at an
intermediate step to control the translation of the ligand relative to the protein binding site.
This strategy, introduced by Hermans and Subramaniam,20 has been progressively enriched
over the years by a number of additional developments and variants.32–35,46,54 The
restraining potential is introduced at one end-point to “confine” the uncoupled ligand within
the binding site, and is then “released” at the other end-point, where this step can be carried
out analytically.20,46,54 Gilson et al.47 called free energy calculations in which there is no
translational restraint the “double annihilation method” (DAM), and calculations in which
there is a translational restraint the “double decoupling method” (DDM).

In subsequent developments, restraining potentials have been introduced to control the
ligand rotation32,34,35,54 conformation,34,40,49 and protein sidechain conformation.36 The
potential restraining the translation, rotation, and conformation, denoted ut, ur, and uc,
respectively, are sometimes called “virtual molecular tweezers”32 or “virtual bonds”.54 The
reversible work for the entire association/dissociation process is then carried out as a series
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of sequential steps, during which the interaction of the ligand with its surrounding (protein
and solvent) as well as the various restraining potentials are switched on and off.40

The standard binding free energy obtained from the step-by-step procedure can be expressed
as,34,40

(4)

where

and  and  are the free energy cost
associated with applying the conformational restraint on the ligand and protein in the
binding site and bulk solvent, Ft and Fr are the factors associated with applying restraints on

ligand rotation and translation when it is decoupled,  and  are the free energy

associated with applying restraints in the binding site,  is the free energy associated
with switching on ligand interaction in the binding site with all restraint potentials applied,

 is the free energy associated with switching on ligand interaction in bulk solvent
with conformational restraint potential. In practice, the potential uc for restraining the
conformation of the ligand has been written as a quadratic form kξ2, where ξ is the root
mean standard deviation (RMSD) of the ligand relative to its bound conformation.34,40,49

Simple dihedral torsion potentials have also been used to confine the conformation of the
protein by restraining the orientation of protein sidechains.36

Eq. (4) provides a decomposition of the dominant factors affecting the binding free
energy.32,34,40 Normally, the interaction component, ΔΔGint, is highly favorable but is
strongly opposed by unfavorable contributions from the ligand translation, , rotation/
orientation, ΔΔGr, and conformation, ΔΔGc. The decomposition can also be used to clarify
the significance of end-point approximations, such as the explicit/implicit solvent MM/PB-
SA13,59,60 and the linear interaction energy (LIE).61,62 The value of the various
contributions depends on the details of the restraint potential, but the total standard binding
free energy is independent of those factors. The complete DDM procedure is illustrated
schematically in Figure 1.

There is sometimes the misperception that computations based on DAM yield more
meaningful (unbiased) results because they do not involve restraining potentials. This is
incorrect. Judiciously chosen restraining potential actually enhance sampling
efficiency.40,49,63,64 The various restraining potentials serve as a “guide” to prevent large
excursions of the configurations of the molecular system, thus helping to reduce the size of
the configurational space that needs to be sampled between the end-points of a free energy
calculation. Spatial confinement via biasing potentials is a general noise-reduction technique
to aid the convergence of simulations (see ref 65). While the convergence and reversibly in
standard DAM poses a real problem, restraining potentials may be activated and then
released at different stages during a DDM calculation, as long as their free energy
contributions are properly accounted for.

Any restraining potential that is activated (confine step) must be deactivated before the end-
state (release step) in order to yield properly unbiased results. The effects of switching any
restraining potential on and off may be calculated via standard TI or FEP, or combined with
umbrella sampling66 to achieve a higher precision.34,40,63 Typically, the free energy
associated with ut and ur have been computed directly with FEP or TI.32–35,40,49 In this case,
unbiased simulations are assumed to be able to achieve conformational sampling. A more
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powerful approach is often needed to treat slow varying degree of freedom involving the

conformation of the ligand or the protein. For example, the free energy cost  and

 associated with restraining the conformation of the ligand in the bulk or in the
binding site by the potential uc have been calculated as

(5)

and

(6)

where  and  are PMFs of the ligand in the bulk and in the binding site,
respectively.34,40,49 They must be calculated with biased simulations according via umbrella
sampling. A similar umbrella sampling technique has been utilized by Dill and co-workers
to treat the effect of sidechain configurations on ligand binding in T4 Lysozyme.36 The
above procedure with Eqs. (5) and (6) constitute the basis of what one might call a
“deliberate” sampling strategy: a PMF along some clearly identified degree of freedom is
first calculated with biased simulations, and then unbiased averages are extracted via an
explicit numerical integration of the probability distributions involving the Boltzmann factor

of the unbiased PMF. The free energy difference , corresponds
to the reversible work for switching on a conformational restraint in one end-point state and
switching it off in the other. This reversible process has been referred to a “confine-and-
release cycle”.36

C. Nonpolar and Electrostatics Interactions
A deeper insight into the microscopic factors driving ligand binding can be achieved by

further dissecting the interaction components  and  according to the character
of intermolecular forces.26 Intermolecular forces are dominated by short-range harsh
repulsive interactions, arising from Pauli’s exclusion principle, and long-range van der
Waals attraction and electrostatic interactions, arising respectively from quantum
mechanical dispersion and the non-uniform molecular charge distribution. In standard
biomolecular potential functions, the nonpolar forces are modeled with Lennard-Jones (LJ)
6-12 potentials, while electrostatics forces are represented on the basis of coulomb
interactions between partial charges.21–24 For example, the Lennard-Jones 6-12 potential
can be separated into purely repulsive and attractive parts according to the Weeks-Chandler-
Anderson (WCA) scheme.26,67 Assuming that the repulsive, dispersive and electrostatic
components of the interactions are switched on sequentially, in a step-by-step process, the
decoupling free energy may be written as,26

(7)

where , and

. The separation of intermolecular forces in Eq. (7) provides a
useful framework for decomposing the interaction free energy of a molecular ligand with its
surrounding into distinct contributions with a clear and well-defined physical meaning.
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D. Binding Free Energy from a PMF
The equilibrium association constant and binding free energy may also be calculated using a
PMF,68,69 without resorting to the alchemical decoupling steps as in DDM. In simple cases,
a strategy based on the one-dimensional (1D) radial PMF may work,55

(8)

where r* is a reference position far away in the bulk. However, the considerable complexity
of biological systems often hinders the utilization of a straightforward approach. For
example, the conformational freedom of the ligand may vary considerably between the
bound and free state, which may be difficult to sample with unbiased simulations. To
improve convergence in calculating the PMF, it may be advantageous to introduce various
restraining potentials to limit the fluctuations of the conformation and orientation of the
ligand, and to confine its translation along a well-defined axis “a” relative to the binding
site. According to this restrained-PMF approach, the equilibrium binding constant is
expressed in terms of a 1D integral,49

(9)

where w(r) is the 1D-PMF calculated in the presence of the configurational and orientational
restraints. The quantity S* corresponds to the effective cross-sectional area swept by the

ligand restrained along the axis “a” when it is at a distance r* from the protein. 
represents the free energy for restraining the bound ligand along the 1D axis. The additional
factors ΔΔGc and ΔΔGr represent the loss of conformational and rotational freedom of the
bound ligand relative to the unbound ligand and have the same meaning as in Eq. (4). As
with the alchemical methods described above, restraining potentials of different shape may
be introduced to carry out a calculation, as long as their contributions are correctly
accounted for in the final equilibrium binding constant.70 The PMF-based method is
illustrated schematically in Figure 2.

E. Molecular System and Solvation
It is possible to carry detailed FEP molecular dynamics (MD) simulations to calculate the
standard (absolute) binding free energy of a ligand to a receptor with the theoretical
framework presented above. For meaningful results, one must simulate accurately the
thermal fluctuations and the environment-mediated interactions arising in diverse and
complex systems (i.e., the bulk solution and the protein binding site). Computational
approaches at different level of complexity and sophistication have been used to describe the
influence of solvent on biomolecular systems.71 Those range from MD simulations based on
all-atom models with PBC, in which the solvent is treated explicitly, to continuum
electrostatic models in which the influence of the solvent is incorporated implicitly.
Conducting all-atom FEP/MD simulations is, however, often prohibitive and it is important
to seek ways to reduce the computational cost of the calculations. An intermediate approach
combines some aspects of both explicit and implicit solvent treatments.72–74 It consists in
simulating a nonperiodic system with a small number of explicit solvent molecules in the
vicinity of a region of interest, while representing the influence of the surrounding solvent
with an effective “solvent boundary potential”. Many of our own free energy studies26,34,40

have used reduced atomic systems were simulated using the spherical solvent boundary
potential (SSBP)73 for the bulk solvent, and the generalized solvent boundary potential
(GSBP) for the binding site.74 The SSBP and GSBP are mixed discrete/continuum models.
A detailed atomic model of the ligand and its nearest neighbors is simulated while the
influence of the rest of the system is incorporated implicitly via a mean-field continuum
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electrostatic approximation. SSBP includes the reaction field from the dielectric response of
the solvent acting on the atoms of the simulation region, while GSBP includes the reaction
field for a solvent region of arbitrary geometry, as well as the solvent-shielded static field
from the distant atoms of the protein receptor. Simulations of a reduced system embedded
into a continuum mean-field environment offer an attractive strategy to decrease the
computational cost of MD/FEP computations. Computationally this can be advantageous
because binding specificity is often dominated by local interactions in the vicinity of the
ligand while the remote regions of the receptor contribute only in an average manner.
Nevertheless, one must be cautious with these approaches when the protein macromolecule
undergoes a large conformational change upon ligand binding.

III. OVERVIEW OF RECENT RESULTS
A number of well-characterized ligand-binding protein systems have been the object of
intense scrutiny, including mutants of T4-Lysozyme (T4L),75,76 the FK506 binding protein
(FKBP12),38–42 cytochrome P450,77,78 and SH2 domains.79–81 While current studies
ultimately are aimed at clarifying the fundamental principles driving molecular association,
they also serve in large part as “testing grounds” to highlight and address critical issues with
the various computational methodologies.

Some the most interesting and useful model systems to investigate noncovalent binding have
been provided by Mutants of T4-Lysozyme (T4L) in which artificial cavities were
engineered.75,76 A hydrophobic cavity, created by the mutation L99A in T4L, has been
found to bind nonpolar aromatic molecules such as benzene and indole.75,82 Polar
derivatives of benzene like phenol do not bind to this nonpolar pocket.75 The double
mutation M102Q-L99A provides a hydrogen bond partner for the ligand, thus making the
cavity able to bind more polar ligands.76 T4L/L99A with bound benzene is illustrated in
Figure 3. The T4L systems have been the object of several computational studies.32–37 By
virtue of their simplicity, these systems are particularly attractive for computational studies.
The binding sites are buried inside the protein and not directly accessible to the bulk solvent.
In addition, the cavities are believed to be essentially “dry” in the holo state, i.e., no solvent
molecules are displaced upon ligand binding.

Another system that has been extensively studied is the FK506 binding protein
(FKBP12).38–42 There is a vast collection of ligands, which are real drug molecules
displaying considerable flexibility. Furthermore, the binding site is exposed to the bulk and
solvent molecules must be displaced upon ligand binding. The FKBP12 system is also of
extreme importance for immunosuppression because the binding of the drug FK506 to
FKBP12 forms a complex that inhibits calcineurin and blocks the signal transduction
pathway for T-cell activation.83,84 One the ligand included in a previous study40 is shown in
Figure 4. Although FKBP12 is a small rigid protein, which does not undergo very large
fluctuations, this system is considerably more complex than the simple pockets engineered
in T4L.

A. Computational Methodologies
Relatively few studies have been based on PMF-based approaches. Those include the
original study of amide association by Jorgensen,55 the binding of K+ into the gramicidin A
channel56 the binding of the peptides to signaling modules,79,81 and ligands of FKBP12.41

The greatest advantage of a PMF approach is to avoid the alchemical decoupling of the
ligand with its surrounding. In that sense, the PMF method imitates roughly the binding
process whereby the ligand moves along a reaction path from the binding site to the bulk
solution, though for meaningful results it is essential to unbias properly the effect of any
restraining potential (see ref56). A PMF-based approach is particularly useful if a ligand is
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charged and its solvation free energy is very large.49,56,81 The issue is well illustrated by the
calculation of the binding free energy of a phosphotyrosyl peptide, Ace-pYEEI, to the Src
homology 2 (SH2) domain of Lck kinase.49 Figure 5 shows the SH2 domain with bound
phosphotyrosyl peptide. An alchemical FEP strategy is essentially impractical in this case
because the solvation free energy of the ligand is on the order of −800 kcal/mol.49 Even if
the statistical uncertainty of a DDM calculation was only about 1 percent of the total
solvation free energy, that would still translate into an error that is of the same order of
magnitude as the quantity of interest itself. Using a restrained PMF approach, the computed
standard binding free energy is −8.8 kcal/mol, in good accord with the experimental value of
−7.1 kcal/mol.49

PMF-based approaches become less practical if the binding site is deeply buried and a
simple path for ligand association cannot be found. In this case, alchemical decoupling free
energy techniques are more effective. For this reason, the majority of binding free energy
calculations has been carried out using alchemical decoupling approaches. A large number
of computations on a wide range of systems based on DAM have been reported. However,
with a few exceptions, the significance of those results is unclear due to unresolved issues of
convergence and reversibility. The study of FKPB12 ligands by Fujitani and coworkers
based on DAM is of particular interest because extensive efforts were made to achieve
convergence and reversibility in the calculations.39 The connection to the standard state
expressed in Eq. (3) was not specified and the calculated binding free energies were
empirically shifted by an offset constant for comparison with experiments. In a study of the
same system, Pande and co-workers used an approach with some similarities to both DAM
and DDM.42 The simulation sampled a full decoupled state with the ligand wandering
anywhere in the box, but only the configurations with the ligand within a small sub-volume
near the binding site was included in the free energy. This analysis made it possible to
specify the connection with the standard state. Generally, however, DDM with translational
restraints appears to be more advantageous than DAM in terms of its ability to yield well-
converged and reversible results that can be related unambiguously to the standard state.
Computations based on DDM have been used to characterize water occupancy in protein
cavities,46,85,86 and examine the binding of ligands to the T4L mutants,32–37 FKBP12,38–42

and cytochrome P450.77,78 The latter system has been used to test a method combining
DDM with a grand canonical Monte Carlo (GCMC) algorithm to account for the change in
water occupancy in the buried cavity.78

B. Salient Contributions to the Binding Free Energy
While there is definitely room for improvement, it is fair to say that the results from the
many of the computational studies are in good agreement with experiments. It is clear that
current computational approaches are sufficiently accurate to yield meaningful observations
about the microscopic factors governing ligand binding. In the following, we review the
most important conclusions drawn from the different computational studies.

1. Ligand-receptor interactions—One advantage of the alchemical approach based on
DDM is the possibility to dissect the non-bonded interaction of the ligand with its
surrounding (protein or solvent). Computing the reversible work in a step-by-step procedure
makes it possible to separate the interaction free energy into repulsive, dispersive and
electrostatic components based on Eq.(7). The decomposition provides important insight
into the microscopic forces driving ligand binding.

As an illustration, Table IV and Table IV show the results for the T4L cavities and FKBP12,
respectively, taken from our previous studies.34,40 The free energy decomposition indicates
that both the LJ-core repulsion and dispersion contribute favorably to the binding free
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energy. In the case of nonpolar ligand binding to T4L/L99A, the favorable contribution from
the core repulsion is consistent with the idea that the protein provides an empty cavity that is
preformed for ligand binding. Essentially, no reversible work is needed to insert the
repulsive core of the ligand into the protein binding site. In the case of FKBP12, the
repulsive component is still favorable but much smaller (Table IV). The main difference
with T4L can be understood by the location of the binding site. The binding pocket of
FKBP12 is at the protein surface, whereas the binding site in T4L mutants is located deep
inside the protein core. For FKBP12, there is no preformed empty cavity to bind the ligand
and the repulsive interaction does not make a strong contribution to the free energy.

Interestingly, van der Waals dispersive interaction makes a systematically favorable
contribution to the binding free energy, both in the case of T4L and FKBP12, i.e., dispersion
is more favorable when the ligand is in the binding site than when it is in the bulk solvent.
The origin of the difference can be directly traced back to the number density of van der
Waals interaction centers per unit volume surrounding the ligand. The density is invariably
larger in a protein environment than in bulk water. A similar observation was made by Levy
and co-workers in developing implicit solvent models.87 The large dispersive contribution is
correlated with the number of nonhydrogen atoms in the ligand. This observation agrees
with the empirical observation that, barring large shape change, binding increased by adding
heavy atoms to a ligand.88 Furthermore, one may note that the contribution from the van der
Waals dispersion to the binding free energy is almost equal to the average van der Waals
dispersion of the ligand with its surrounding in the bound state minus the average van der
Waals dispersion of the unbound ligand with the bulk solvent. This clarifies the
circumstances for which the difference in simple end-point averages may be a useful
indicator for assessing the relative affinity of series of ligands with a similar shape.

Ligand specificity is strongly affected by the polarity of the cavity.37,76 This is well
illustrated by contrasting the affinity of benzene and phenol for the T4L cavities engineered
in the L99A and the M102QL99A mutants. As shown in Table IV, the free energy
calculation is able to identify phenol as a binder of T4L/M102Q-L99A and as a nonbinder of
T4L/L99A. In contrast, benzene binds to both the T4L/L99A and T4L/M102Q-L99A
cavities. As the free energy decomposition shows, the nonpolar contribution for phenol is
comparable to that of similar sized binding ligands, and it is only the high desolvation
penalty from electrostatics that lowers its affinity for the L99A cavity. The M102Q-L99A
double mutant provides a polar group that helps stabilize phenol electrostatically. This
shows why phenol binds to the M102Q-L99A double mutant of T4L but not to the single
mutant L99A.

2. Restriction of ligand motion—The loss of motional freedom of the ligand is
intuitively associated with the concept of entropy. However, estimating changes in entropy
accurately from simulations is very difficult,27,89 and schemes to partition the entropy into
particular motions involves further approximations.90 Alternatively, the reversible work
associated with the activation and release of restraining potentials can be utilized to estimate
directly the loss of free energy associated with the loss of motional freedom upon binding.
While such estimates depend on the specific pathway for decoupling the ligand, they can
provide useful insight on the various contributions to the binding free energy.32,34 Based on
an analysis with the restraining potential, the loss of translational freedom yields a free
energy , where ΔV is an effective accessible volume for the
center-of-mass of the ligand in the binding site. The microscopic volume ΔV is normally on
the order of ~ 1 Å3, which yields the well-known standard state offset factor −kBT ln(C
°ΔV ) of 4.4 kcal/mol. Thus, the reduction in translational freedom of the ligand almost
invariably makes an unfavorable contribution to the binding free energy. Based on a similar
analysis with the restraining potential, the loss of rotational freedom translates into a free
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energy ΔΔGr = −kBT ln(ΔΩ/8π2), where ΔΩ is the magnitude of the orientational
fluctuations of the ligand. Because the factor ΔΩ/8π2 is typically much smaller than 1, the
reduction in rotational freedom of the ligand always makes a considerable unfavorable
contribution to binding free energy. Therefore, reduction in both translational and
orientational freedom yields unfavorable contributions to the binding free energy.
Interestingly, ΔV and ΔΩ can be related to the dynamical fluctuations of the bound ligand.
This can be exploited to clarify the significance of end-point approximations, in which the
translational and orientational contributions are often estimated using a quasi-harmonic
approximation.47,59,60 For the T4L systems, roughly 5 to 9 kcal/mol arises from the loss of
translational and rotational freedom of the ligand.34 For the FKBP12 ligands, the loss of
translation corresponds roughly to 3.5 kcal/mol and the loss of rotation corresponds roughly
to 4.5 to 5.5 kcal/mol.40

Except for small and rigid ligands, one expects a reduction of internal ligand flexibility upon
binding. The free energy associated with the loss of conformational freedom of the ligand,
ΔΔGc is the reversible work first to confine the ligand near its bound (reference)

conformation with the restraining potential when it is in the bulk solvent , and then

release it freely when it is in the binding site .34,40,49 The conformational
restraining potential was written in terms of the RMSD of the ligand relative to its bound
conformation and the calculation proceeded via the PMF of the ligand in the bulk and in the
binding site, see Eqs. (5) and (6). Upon binding to the SH2 domain, there is a loss of
conformational freedom of the phosphotyrosyl-peptide ligand which gives rise to an
unfavorable free energy of about 2 kcal/mol.49 In the case of the flexible FK506-related
ligands, the conformational free energy of the ligand varies from 1 to 7 kcal/mol;40 it is 6.9
kcal/mol for ligand 8, see Table IV). The utilization of a PMF to control the conformation of
the ligand is useful to obtain more accurate estimates of the solvation free energy of the
ligand, in cases when a direct decoupling scheme without conformational restraints may fail
due to incomplete sampling.

In summary, the loss of motional freedom plays a key role in the resulting binding free
energy. As a result, a large fraction of the total (favorable) contribution from the ligand-
protein interaction is opposed by the (unfavorable) contribution arising from the loss of
translational, orientational and conformational freedom of the ligand. In the case of benzene
shown in Table IV, about half of the total interaction free energy (−11.52 kcal/mol) is
canceled by the loss of motional freedom upon binding (5.42 kcal/mol). In the case of the
FK506-related ligand shown in Table IV the interaction free energy of almost −26 kcal/mol
is opposed by +15.7+ kcal/mol of unfavorable contributions from the translational,
orientational and conformational loss, yielding a net binding free energy of only −10.3 kcal/
mol. Even though FKBP12 itself is relatively rigid, about 60 percent of all the favorable
interaction free energy of −26 kcal/mol is actually opposed by unfavorable contributions that
are often ignored or discarded in simple scoring schemes. This has important implications
for end-point methods47,59,60 and for the parameterization of empirical scoring functions
that are adjusted to estimate the binding free energy from one fixed configuration.4

3. Conformation of the protein—Large conformational changes in the protein are
expected to be an important component of the binding free energy. However, even
seemingly minor conformational changes can have a considerable impact on the calculated
binding free energy. A case in point is the orientation of the Val111 side-chain in the T4L/
L99A system. In the bound complexes with small ligands (e.g., benzene, toluene,
benzofurane, indole), the protein structure is almost unaffected and the side-chain of Val111
adopts the same conformation as in the apo structure. The calculated binding free energies
for the small nonpolar ligands are generally in excellent agreement with experiments.34,37
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Difficulties arise in the case of larger ligands (e.g., indene, n-butylbenzene, isobutylbenzene,
o-xylene, p-xylene). The side-chain of Val111, which is in direct contact with the bound
ligand, changes its rotameric states from a t conformation (χ1 = 180°) for the ligand-free or
bound state with small ligands, to a g− conformation (χ1 = −60°) for the bound state with
large ligands. The energy barrier around the χ1 torsion is sufficient to prevent the Val111
side-chain from rotating on the timescale of typical simulations, and the free energy for
decoupling the ligand starting from the holo conformation is not correctly account for. As a
result, calculated absolute binding free energies are too favorable by 2-3 kcal/mol when the
DDM calculations are initiated directly from the ligand-bound structure of the protein.34

Additional problems were also noted in the case of indene, for which there is an erroneous
sidechain rotamer of Val111 in the crystallographic X-ray structure of the bound complex
(PDB 183L).34 While the problems with Val111 were resolved by adopting a deliberate
sampling strategy involving the calculation of the PMF for the χ1 dihedral angle of the side-
chain via umbrella sampling,37 the quantitative impact of a single protein sidechain on the
calculated binding free energies is truly sobering. Whether a sidechain rotameric state is
incorrect in the X-ray structure34 or insufficiently sampled in free energy simulations,37 the
consequences can amount to an error of several kcal/mol. This highlights the importance of
having accurate structural models for the calculations, and the importance of sampling all
the relevant degrees of freedom.

4. Binding site hydration—While the solvent configurations are generated
spontaneously by MD when the binding site is exposed to the bulk phase, sampling
difficulties become particularly acute when a binding site is deeply buried and inaccessible.
In this case, the exchange of water molecules with the bulk region may be very slow, and the
accuracy of free energy perturbation (FEP) calculations based on unbiased MD trajectories
is severely compromised. Several theoretical studies have specifically examined the
thermodynamics stability of water molecules in buried protein cavities46,85,86,91–93 and their
impact on the thermodynamics of ligand binding.94–96 Ligand binding often disrupts the
hydration of the binding site.97–99 A particularly challenging example is provided by
cytochrome P450, a monooxygenase that oxidizes endogenous and xenobiotic
substrates.77,78 Simulation studies have shown that some conformational change is required
to open up a channel allowing exchange between the cavity and the bulk phase,100–102 and
about five water molecules must be expelled from the deeply buried cavity upon the binding
of camphor. Such a change in hydration state must be captured in free energy calculations to
yield accurate and meaningful results. In a previous study, Wade and co-workers designed
an alchemical transformation combining the annihilation of five water molecules together
with insertion of the ligand in the cavity.77 While the strategy can produce accurate results,
it requires an estimate of the number of water molecules to annihilate in the cavity. Figure 6
shows the buried binding site in p450, and the impact on water occupancy upon camphor
binding. The binding of camphor to cytochrome P450 was studied using a free energy
method combining MD with a grand canonical Monte Carlo (GCMC) algorithm79,103,104 to
account for the change in water occupancy in the buried cavity during the alchemical free
energy calculation.78 In this context, the reversible free energy work to alchemically
decouple the bound ligand can be expressed in terms of standard TI,78

(10)

where  denotes the probability of n solvent molecules occupying the binding pocket,
the bracket ⟨⋯⟩λn means a constrained average with fixed number of solvent molecules in
the binding pocket. The calculated binding free energy for camphor to P450 is −8.25 kcal/
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mol, in good agreement with the experimental value of −7.75 kcal/mol.77 In contrast, fixed
water calculation with both the holo and apo water configuration give results with huge
errors. When the calculation is carried out with the water molecules of the apo state, then the
ligand has to push its way into the cavity and the resulting free energy is +12.60 kcal/mol,
which is incorrect by almost 20 kcal/mol. On the other hand, when the calculation is carried
out with the water molecules of the holo state, then there is a preformed empty cavity to
receive the ligand and the resulting free energy is −14.25 kcal/mol, which is now too
favorable by about 6 kcal/mol.

C. Putting Binding Free Energy Calculations To The Test
While many of the recent studies demonstrate that free energy simulations provide a
satisfying physics-base perspective of ligand binding,32,34–42,54,78,79 it is important to
ascertain the accuracy and predictive power that can be achieved with current methods. One
particularly nice study recently combined both computations and experiments to examine
the binding of a large number of ligands to the nonpolar L99A cavity of T4L.37 In
retrospective tests, computed absolute binding free energies for 13 ligands had an RMS error
of about 1.9 kcal/mol relative to previously determined experimental values. In blind
prospective tests, binding orientations and affinities were predicted for a set of 5
uncharacterized compounds identified by docking as putative binders. The calculations
discriminated between several true binders and decoys, recognized the one nonbinder,
accurately predicted ligand-bound orientations, correctly ranked the ligand binding
affinities, and quantitatively predicted binding free energies. The main conclusions from this
extensive effort are that alchemical free energy methods are more accurate than docking, are
able to distinguish binders from nonbinders, and can make successful predictions of bound
orientations and binding affinities.37 The authors also noted that accounting for protein
conformational change via deliberate sampling of the rotameric state of the sidechain of
Val111 was important for accuracy.

There have been also some extensive studies of the ligand binding FKPB12.38–40 This
system is more difficult to manipulate than T4L, but it has the virtue of being representative
of a real pharmaceutical target that binds drug-like compounds. Computed binding free
energies for a series of 8 FK506-related ligands display an average RMS error of about 2 to
2.5 kcal/mol relative to previously determined experimental values.38–40 Recent results on
the same series with extensive sampling show some improvement, with an RMS error of
about 1.4 kcal/mol.42 Therefore, the results of retrospective tests on FKBP12 are now
approaching an accuracy similar to that of T4L. It is worth noting that some of the results
have been obtained from simulations of a fully solvated protein with PBC,38,39,42 and some
were based on a reduced system embedded in a GSBP mean-field surrounding.40

Recently, we have used free energy methods to participate to the OpenEye statistical
assessment of the modeling of proteins and ligands (SAMPL) challenge.105 In a blind test,
the binding free energies of 50 neutral compounds to the JNK kinase were computed from
provided coordinates. Figure 7 shows the jnk kinase bound in complex with ligand 19. Most
of the calculations were setup and submitted via automated scripts, trying to minimize
human intervention as much as possible. Details about the computations are given in the
caption. Among the 50 compounds, the free energy computations correctly predicted two of
the top five binders, as well as six of the ten worst binders. Five out of nine non-active
compounds were correctly identified. Figure 8 shows the enrichment plot. Though there are
clearly some false positives and false negatives, it shows a good separation of the binding
and non-binding compounds. Nonetheless, the error in many case is considerable, e.g., the
computed binding free energy for ligand 10 is −15.7 kcal/mol whereas the experimental
value is −8.7 kcal/mol (ranked at the top experimentally and third computationally). The
computed binding free energies range from −16 to −3 kcal/mol while the experimental
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values range from −8.6 to −5.5 kcal/mol. Thus, the binding affinity is strongly overestimated
for a number of ligands. Based on the lessons from T4L, it is likely that this is caused by an
inadequate sampling of the conformational changes in the protein.34,37

IV. OUTLOOK
The theoretical foundations are clearly established and one can broadly choose between
alchemical free energy perturbation methods, in which the ligand is decoupled progressively
from its surrounding, and PMF-based methods, in which the ligand pulled away from the
binding site. The former befit computations for ligands bound to buried sites and cavities,
while the latter are advantageous for charged ligands that bind to the surface of a protein.
For both of these computational approaches, various restraining potentials may be activated
and released during the simulation to enhance and aid configurational sampling. While there
is ample room for improvement, recent studies demonstrate that absolute binding free
energy computations are applicable to increasingly challenging problems.

The treatment of very large conformational changes in the receptor induced by ligand
binding remain one of the biggest challenge in calculations of absolute binding free
energies. Striking examples are provided by the HIV protease,106–108 or ligand-activated
membrane receptors such as the ionotropic glutamate receptor (iGluR).109,110 In principle,
an adequate sampling of conformational changes could be achieved via exceedingly long
unbiased MD simulations, though this approach rapidly becomes computationally
prohibitive in practice. At the present time, one must rely on a deliberate sampling strategy
of the relevant degrees of freedom,34,36,37,40,79,81 and thus, some prior identification of
those degrees of freedom. In practice, this requires calculating a PMF along some chosen
order parameter with biased simulations. In some cases, the order parameter may be
relatively simple, such as the dihedral torsion used to control the rotameric state of Val111
in the T4L/L99A system,36 or could be relatively complicated, such as the combination of
inter-domain distances used to control the large conformational change induced by the
binding of glutamate to iGluR.110 The RMSD relative to a reference conformation is a
useful order parameter to control a flexible ligand.34,40,49 Extending the RMSD to a protein
macromolecule is possible111,112 but limited. A general approach for mapping arbitrarily
complex conformational changes onto a simple order parameter is lacking at present. This is
currently an outstanding problem in computational biophysics.113 It may be possible to
make progress with the advance of methods aimed at finding the reaction path between the
conformations of a macromolecular system.113–116 The treatment of large protein
conformation remains an outstanding issue in binding free energy calculations.

Apart from issues of conformational sampling, it is important to recall that the accuracy of
computations is determined ultimately by the underlying atomic force field. Because they
depend on a free energy difference between the bound and unbound states, computations can
benefit from a cancellation of errors. For example, the absolute binding free energy will
remain roughly correct even if the van der Waals interaction of a ligand with the solvent and
with the protein deviate systematically from the correct values. But this can only be valid up
to a point. Dependable results in the future will require that that the force field represents the
ligand, the protein, and the solvent, as accurately as possible. Current biomolecular force
fields with effective fixed partial charges, such as CHARMM,21 AMBER,22 OPLS,23 and
GAFF24 with AM1-BCC charge model,117,118 provide atomic models able to yield solvation
free energies that are in reasonably good agreement with experiments for amino acids and a
wide range of small molecules.25,26,28–30 Nonetheless, it is clear that the effect of induced
electronic polarizability need to be taking into account in order to achieve reliable results of
high accuracy.119 Additional complexities somewhat related to the force field, including
among other factors, changes in protonation states120 and the existence of tautomers,121 will
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require a special attention. In considering the accuracy of various force field in the future, it
will be helpful to draw more clearly the distinction between extremely rapid automatic
assignment of force field parameters for an arbitrary ligand aimed at large database
screening,24,117 and more computationally intensive physics-based approaches aimed at
generating models of high accuracy.122

Computations of absolute binding free energies methodologies are now approaching the
point where making accurate prediction and addressing issues of molecular recognition will
be achievable. While there is still much to be done, the methods are already bearing fruits
and the path toward progress is very clear.
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Figure 1.
Shown in the figure is path for the free energy computation accordinng to the alchemical

DDM with restraining potentials.  denotes the configuration restricted ligand in bulk
solvent.  denotes the non-interacting ligand with configurational restraint.  denotes
the non-interacting ligand with both configurational and rotational restraints. The spring
represents the translational restraint potential. See reference 34 for a complete theoretical
formulation.
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Figure 2.
Shown in the figure is path for the free energy computation using a PMF-based method with

restraining potentials.  denotes the configuration restricted ligand in bulk solvent. 

denotes the ligand with both configuration and orientation restraints.  denotes the
ligand in the bulk with all configurational, orientational and axial restraint potentials.

 is related to S* in Eq (9). ΔGbulk→site is related to I* in Eq (9). See reference 49 for
a complete theoretical formulation.
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Figure 3.
T4 lysozyme L99A mutant with benzene bound in the cavity. The grey parts are treated as a
mean field approximation with generalized solvent boundary potential.74 See reference 34
for computational details.
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Figure 4.
FKBP12 bound with ligand #8 studied previously.38,40 The grey parts are treated as a mean
field approximation with generalized solvent boundary potential.74 See reference 40 for
computational details.
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Figure 5.
SH2 domain with bound peptide pYEEI. The system was simulated with PBC and water is
not shown for clarity. See reference 49 for computational details.
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Figure 6.
The binding site of cytochrome p450 binding site. In A is an overview of the simulation
system with the burried binding site. In B, the binding site is not visible with a space-filling
representation. In C, the site with no camphor isoccupied by water, in D camphor is bound.
See reference 78 for theoretical formulation and computational details.
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Figure 7.
The jnk kinase bound with ligand 19 from the OpenEye statistical assessment of the
modeling of proteins and ligands (SAMPL) challenge.105 The grey parts are treated as a
mean field approximation with generalized solvent boundary potential. The computations
were carried out according to the same protocol presented in previous studies.34,40,78
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Figure 8.
The cumulative experimental rank (vertical axis) is plotted as a function of the calculated
(horizontal axis). The top five ligands from the computations are: 40, 27, 10, 47, 8 ; the
experimental top five are: 10, 1, 27, 11, 38. The worse ten ligands from the computations
are: 9, 43, 51, 6, 5, 21, 23, 56, 31, 17; the experimental worst ten are: 51, 4, 5, 6, 17, 23, 29,
30, 36, 43.
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Table I

Binding Free Energy for the T4L cavities

Ligand Δ Δ G rep Δ Δ G dis Δ Δ G elec ΔΔGt
∘ + ΔΔGr ΔGbind

∘
Exp

L99A nonpolar site

benzene −4.73 −7.43 0.69 5.42 −5.96 −5.19

phenol −4.58 −8.19 4.35 7.55 −0.88 –

L99A/M102Q polar site

benzene −4.37 −8.53 0.51 6.78 −5.61 –

phenol −4.06 −9.74 −0.32 8.52 −5.64 −5.55
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Table II

Binding Free Energy for ligand 8 of FKBP12

Δ Δ G rep Δ Δ G dis Δ Δ G elec ΔΔGc
∘
Δ Δ G t Δ Δ G r ΔGbind

∘
Exp

−1.1 −21.1 −3.7 6.9 3.4 5.4 −10.2 −10.9

−25.9 15.7
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