

Emergence of *Staphylococcus aureus* Carrying Multiple Drug Resistance Genes on a Plasmid Encoding Exfoliative Toxin B

Junzo Hisatsune,^{a,b} Hideki Hirakawa,^c Takayuki Yamaguchi,^a Yasuyuki Fudaba,^a Kenshiro Oshima,^d Masahira Hattori,^d Fuminori Kato,^{a,b} Shizuo Kayama,^{a,b} Motoyuki Sugai^{a,b}

Department of Bacteriology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima City, Hiroshima, Japan^a; Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan^b; Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan^c; Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan^d

We report the complete nucleotide sequence and analysis of $pETB_{TY825}$, a *Staphylococcus aureus* TY825 plasmid encoding exfoliative toxin B (ETB). *S. aureus* TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of $pETB_{TY825}$, 60.6 kbp, was unexpectedly larger than that of the archetype $pETB_{TY4}$ (~30 kbp). Genomic comparison of the plasmids shows that $pETB_{TY825}$ has the archetype $pETB_{TY4}$ as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2'')], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing *S. aureus* strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2'') and msrA using purified plasmid preparations. The ETB-producing *S. aureus* strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2'') and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing *S. aureus* strains, and only five isolates were positive for both aac(6')/aph(2'') and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene *etb* and drug resistance genes. Prevalence of the pETB_{TY825} carrier may further increase the clinical threat, since ETB-producing *S. aureus* is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment.

Exfoliative toxin (ET) is an exotoxin produced by staphylococcal species, causing blisters on human and animal skin (1). ET-producing *Staphylococcus aureus* is involved in staphylococcal scalded-skin syndrome (SSSS) or Ritter disease and in bullous impetigo in neonates (1–3). Serologically, ETs causing diseases in human have been divided into three major serotypes: ETA, ETB, and ETD (4–6). All types cause intraepidermal cleavage in the granular layer, without epidermal necrolysis or inflammatory response in the skin (4, 5, 7). ETs are serine proteases that selectively cleave desmoglein 1, a desmosomal protein connecting epidermal cells present in the epidermis (8).

Virulence factors of staphylococci such as ET are accessory proteins, which are not essential for cell growth or division. Genetic determinants for these factors are often associated with mobile genetic elements, such as phages, plasmids, and pathogenicity islands (9–11). The *eta* gene is located on the genome of a temperate phage (ϕ ETA) (12), the *etb* gene is on a large plasmid (4, 13), and the *etd* gene is chromosomally located in a pathogenicity island (6).

We previously reported the complete nucleotide sequence of the ETB plasmid of strain *S. aureus* TY4, isolated from skin lesions of patients diagnosed with staphylococcal scalded-skin syndrome (SSSS) (13). The ETB plasmid (pETB) contains three copies of IS257, which divides the pETB genome into three regions: (i) a cadmium resistance operon-containing region, (ii) a lantibiotic gene-containing region, and (iii) the region where genes for plasmid replication and/or maintenance are dispersed. These genes include two virulence-related genes, the *etb* gene, and the ADPribosyltransferase *ednC* gene, which belongs to the C3 exoenzyme family. Further, we reported significant size variation of the ETB plasmid from various clinical strains. During our genome project, we determined the nucleotide sequence of a new ETB plasmid from *S. aureus* strain TY825 from an impetigo patient. Comparative analysis of pETB_{TY4} and pETB_{TY825} showed that pETB_{TY825} carries three antibiotic resistance genes. Here we report a novel ETB plasmid contributing to the multidrug resistance of *S. aureus*. Additionally, we investigated the relevance of the pETB_{TY825} type and antimicrobial susceptibilities of ETB-producing *S. aureus* strains isolated between 1977 and 2007 in Japan.

MATERIALS AND METHODS

Bacterial strains. *S. aureus* TY825 was isolated from the skin lesions of patients diagnosed with impetigo. Other *S. aureus* strains used in this study were from our laboratory collection of clinical isolates producing ETB.

Manipulation of DNA. Routine DNA manipulations were performed using standard procedures (14). pETB was extracted from *S. aureus* TY825 and purified using a Qiagen midikit. The plasmid DNA was further purified by CsCl equilibration centrifugation, followed by isopropanol precipitation. Southern blotting of the DNA and hybridization were performed as described previously (15).

Shotgun sequencing, assembly, and annotation of pETB_{TY825}**.** The genome sequence of pETB DNA was determined using the random shot-

Received 27 May 2013 Returned for modification 14 July 2013 Accepted 19 September 2013 Published ahead of print 30 September 2013

Address correspondence to Motoyuki Sugai, sugai@hiroshima-u.ac.jp. Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AAC.01062-13

TABLE 1	Oligonucleotides	used for	PCR am	plification
---------	------------------	----------	--------	-------------

				Primer design
Purpose and gene or region	Primer	Oligonucleotide sequence $(5'-3')$	Product size (bp)	reference or source
PCR				
etb	ET-3	ATACACACATTACGGATAAT	629	13
	ET-4	CAAAGTGTCTCCAAAAGT		
aac(6')/aph(2')	aac/aph-F	TACAGAGCCTTGGGAAGATG	406	32
	aac/aph-R	CATTTGTGGCATTATCATCATATC		
msrA	msr-F	TGCAAATGGCATACTATCGTC	160	32
	msr-R	CAAGAACGCTCAAGTGCTTC		
PCR scanning				
Region 1	region_1-F	CCTAAAATTGTTTGAATAGTATC	3,949	This study
	region_1-R	GGATTGAACTTCTGATAATCATT		
Region 2	region_2-F	CTTGTGTCTTTTTATGTGGATTG	4,054	This study
	region_2-R	GACAATCTATTCATGATATAACT		
Region 3	region_3-F	TTTATCAAGATAATCCCTTATCG	3,164	This study
	region_3-R	CACTTTTAAAATATGAACTAGGA		
Region 4	region_4-F	TGTAAAGTATCTCTATTTTTAGC	3,150	This study
	region_4-R	CATTTAGGGGTATCTTATATATT		
Region 5	region_5-F	CTTAGACCTTATTTAAAATATCC	2,019	This study
	region_5-R	CATAATTTTTGATAAAGTCCGTA		
Region 6	region_6-F	AAATTTCTTTTCTACCATTTTCG	4,922	This study
	region_6-R	GTTAAAGATTTATTCCAACTACA		
Region 7	region_7-F	ATTTAGATAGAAAAGAAAGAGCG	5,012	This study
	region_7-R	GATAAGCTTAAAGTAACTTCTTT		

gun sequencing method as described previously (12). Collected sequences were assembled using SEQUENCHER DNA sequencing software (v3.0; Gene Codes). Gaps were closed by direct sequencing of the PCR products amplified with oligonucleotide primers designed to anneal to each end of the neighboring contigs. Initially, potential protein-encoding regions (open reading frames [ORFs]) that were \geq 150 bp long were identified using MetaGeneAnnotator (16) and the InSilico molecular cloning software package, genomics edition (InSilico Biology Inc., Yokohama, Japan), and each ORF was reviewed manually for the presence of a ribosomal binding sequence. Functional annotation was assigned based on homology searches against the GenBank nonredundant protein sequence database using the program BLASTP (17). Protein and nucleotide sequences were compared with those in the sequence databases using the BLAST and FASTA programs implemented at the DDBJ (DNA Data Bank of Japan; http://www.ddbj.nig.ac.jp/).

Antimicrobial susceptibility testing. The MIC determination was performed using the microdilution broth method (14) with the MicroScan-WalkAway-96 system. The antibiotics tested were benzylpenicillin (PCG), ampicillin (ABPC), cefazolin (CEZ), cefotiam (CTM), cefozopran (CZOP), cefpirome (CPR), cefdinir (CFDN), cefditoren (CDTR), flomoxef (FMOX), imipenem (IPM), meropenem (MEPM), gentamicin (GM), arbekacin (ABK), erythromycin (EM), clindamycin (CLDM), minocycline (MINO), levofloxacin (LVFX), vancomycin (VCM), teicoplanin (TEIC), sulfamethoxazole-trimethoprim (ST), fosfomycin (FOM), and linezolid (LZD). Separately, the microdilution method was used to assess endpoints for the ABK, GM, and EM MICs according to the CLSI guidelines (18).

PCR scanning analysis. Plasmid DNAs were isolated from ETB-producing *S. aureus* clinical strains in our laboratory stock and were used as templates for PCR scanning analysis (36). All primers were designed according to the nucleotide sequence of pETB (Table 1).

Nucleotide sequence accession number. The nucleotide sequence described here has been deposited in GenBank under accession number AP012467.

RESULTS

General overview and comparative analysis of the ETB plasmid. *S. aureus* TY825 was clinically isolated in 2002 from a lesion of an

impetigo patient and is positive for the plasmid carrying etb (pETB). As a part of the genome project of clinically isolated S. aureus strains in Japan, the complete nucleotide sequence of pETB_{TY825} was determined using a shotgun approach. The fully assembled circular DNA sequence of pETB_{TY825} was 60,563 bp (Fig. 1A). The average GC content of $pETB_{TY825}$ was 28.2%. We identified 63 potential protein-coding regions (Fig. 1A; Table 2). pETB_{TY825}, which is 38,211 bp, is significantly larger than the archetype pETB (pETB_{TY4}), which is \sim 35 kb (13) (Fig. 1C). Comparison of $pETB_{TY825}$ and $pETB_{TY4}$ shows that $pETB_{TY825}$ is a composite of $pETB_{TY4}$ and a single large extra DNA region (22,352 bp) (Fig. 1; Table 2). Sequence alignment of both plasmids shows the extra DNA region was inserted between orf25 and orf37 in $pETB_{TY4}$ (Fig. 1B). Examining the boundary nucleotide sequences of the extra DNA region, direct repeats of 25-bp sequences (5'-C TCTACTAACCAGTGTTATAATTTA-3') were found (Fig. 1C). The genome organization of the backbone sequence of pETB_{TY825} corresponding to the $pETB_{TY4}$ sequence was conserved (Fig. 1B). The genes etb and ednC, genetic elements for lantibiotic production, are present in the backbone sequence. Annotation of the extra DNA region identified a cadmium resistance element and three antibiotic resistance elements that confer resistance to aminoglycosides, macrolides, and β -lactams (Table 2; Fig. 1C) The aminoglycoside resistance gene, aac(6')/aph(2''), encoding a bifunctional enzyme, is located between two IS256 elements, forming the 4.5-kb Tn4001, which is most frequently observed as the mobile element of aac(6')/aph(2'') in Gram-positive bacteria (19, 20). AAC(6')/APH(2") primarily confers resistance to gentamicin, kanamycin, and tobramycin (21). The macrolide resistance element is composed of *stpA*, *smpA*, and *msrA*, whose products act as an ATP-dependent efflux pump conferring the so-called MS phenotype, i.e., inducible resistance to 14- and 15-membered ring macrolides and resistance to streptogramin type B (22, 23). The

FIG 1 (A) Circular genetic map of $pETB_{TY825}$ from *S. aureus* TY825. From the outside in, the first circle shows the nucleotide sequence positions (in kb), the second and third circles show coding sequences transcribed clockwise and counterclockwise, respectively (red, pathogenic factor; green, antibiotic resistance gene; blue, DNA replication, recombination, and repair; light blue, transcription regulator; purple, transposase; yellow, conjugal transfer [*tra*]; orange, lantibiotic operon; and gray, conserved ORFs), and the fourth circle shows the backbone of $pETB_{TY4}$ (pink) (GenBank accession no. AP003088) and the acquired region (red). (B) Structural comparison of $pETB_{TY825}$ to $pETB_{TY4}$ and the *Staphylococcus* plasmid pSA018A. Color shading indicates homologous regions. The approximately 16-kb extra DNA region of $pETB_{TY825}$ was similarity matched with the *Staphylococcus* plasmid pSA018A (GenBank accession no. GQ900383). (C) IS elements are represented as purple boxes, and the directions of the transposase genes are indicated by arrowheads in the boxes. Sequences of the terminal inverted repeats of each IS elements are shown. Sequences of the terminal directed repeats of the acquired region (red) of $pETB_{TY825}$ are shown.

 β -lactamase-dependent resistance element *blaZ*, two closely linked genes (*blaI* and *blaR*), and IS257 form Tn552. This transposon is frequently observed on a large plasmid as well as in the chromosome of staphylococci (24). However, the β -lactam resistance element of pETB_{TY825} and pSA018A lacks IS257 downstream of *blaZ* (Fig. 1A and B; Table 2). Identification of the *sin* recombinase gene immediately downstream of the element and the partial 12-bp *resH* sequence (5'-TGTATGATTAGG-3') (25) on both sides of the element, a direct repeat, strongly suggests that the element was acquired as a block through Sin-dependent re-

TABLE	2 Featur	es of pET	TB _{TY825} O	RFs							
	Position ((dq			I anath				Idantity	Ouerland	
ORF	Start	Stop	Strand	Gene	$(aa)^a$	T ranslation signal ^b	Source	Description	1.001111 (%)	Overlap (aa)	Accession no.
-	231	455	+	repA	74	GAGGTTTTTATTATG	S. aureus(pETB)	pETB_p18 (replication initiator	100	74/74	BAB78416
2	642	785	+	tep	47	<u>GAG</u> AATAATGATA TG	S. aureus TCH130	protein A) Hypothetical protein (truncated	60.6	33/47	$ZP_{-}04868980$
3	1002	1217	+		71	<u>AGGG</u> CTATGTAAAGAA TTG	S. aureus(pETB)	replication protein) pETB_p19 (transcriptional	100	71/71	NP_478362
4	1590	3164	+	repR	524	<u>AGGAGG</u> TGCAGACAATG	S. aureus(pETB)	regulator protein) pETB_p20 (plasmid replication	100	524/524	NP_478363
5 6	4397 4647	4564 5378	+ +		55 243	<u>GAGG</u> TATTCTTAATAAA ATG	S. aureus(pETB) S. aureus(pETB)	protein RepR) pETB_p22 (lipase) pETB_p23 (cell wall-associated	100 92.4	55/55 243/243	NP_478365 NP_478366
7 8 10	5738 7914 8280 8966	7510 8261 8897 9109		abiK cadX cadD	590 115 205 48	<u>AGGAG</u> AAAGGCT ATG <u>AGGGTGCGATTTTATATG GAGG</u> TGTAATTATG	S. aureus(pETB) S. lugdunensis(pLUG) S. aureus(pETB) S. epidernidis	biothim protein) Abortive infection protein K CadX Cadmium-binding protein Hypothetical protein	100 100 99.5 97.9	590/590 115/115 205/205 48/48	NP_478367 NP_054018 NP_478377 ZP_04824204
							BCM-HMP0060				
11	9670	9858	I		62	<u>AGG</u> ATTATATCGAAAACGTATG	S. epidernidis	Replication protein Rep	93.4	62/62	ZP_04824202
12	6866	10960	Ι		323	<u>AGAGGTTTTTGTATG</u>	BCM-HMP0060 S. saprophyticus ATCC	Replication initiator protein	99.4	323/323	$YP_{-}302585$
13	11475	12167	+		230	<u>GGAGG</u> CCATTAT ATG	S. epidernidis	Partitioning protein	80.9	230/230	$ZP_{-}04824200$
14	12788	13558	I	smpA	256	<u>AGGAGG</u> ATCAATCGTAAA ATG	BCM-HMP0060 S. epidernidis 968	ABC transporter membrane	100	256/256	CAA83062
15	13560	14255	I	stpA	231	<u>AGGAG</u> ATAATTGT ATG	S. epidernidis W23144	protein ABC transporter ATP-binding	100	231/231	ZP_04796098
16	14792	16258	+	msrA	488	<u>AGGAG</u> TGTATAAT ATG	S. epidernidis W23144	protein ABC transpoter permease protein (erythromycin	100	488/488	ZP_04796097
17 18 19 20	16482 17217 18059 18429	16910 17795 18439 20228	1 1 1 1	Sin binR blaI blaR1	142 192 599	<u>GGAG</u> ATCGTTG TG AGGAGTTTGTATT TTG	S. aureus USA300_TCH959 S. aureus CF-Marseille S. epidernidis ATCC 1228 S. aureus JKD6008	resistance protein, MsrA) Recombinase Sin Th552 DNA invertase BinR Beta-lactamase repressor Blal Beta-lactamase regulatory protein BlaRl	97.9 98.9 100 100	142/142 192/192 126/126 585/599	YP_001569089 ZP_04839235 NP_863211 ZP_03563212
21 23 23	20293 21500 21757 21757	21138 21685 21960 23482	+	blaZ	281 61 67	GGAGGGTTTATTTTG <u>AGGTTAT</u> GAAAGTAAATGTATG <u>AGGGGGGAGTATCTTTG</u> <u>CCAGCTAAACTTTTG</u>	S. aureus MRSA252 S. epidernidis RP62A S. epidernidis RP62A S. anidamidis RP62A	Beta-lactamase Conserved hypothetical protein Conserved hypothetical protein Concerved humothetical protein	99.6 95.1 97.1	281/281 61/61 47/67	NP_878023 YP_189789 YP_189789 VD_189789
25 26 27	23788 23788 24729 26041	24666 25901 27480	+	IS256 aac(6')-aph(2')	292 390 479	AGGACIGTTATATG AGGAGGACTTTTACATG AGGAGGACTTTTACATG	S. epidemidis ATCC 12228 E. faecalis V583 S. aureus Mu50	Hypothetical protein IS256 transposase Bifunctional AAC(6')/APH(2"): 6'-aminoduceside N-	93.2 100 100	231/292 281/292 390/390 479/479	NP_863227 NP_863227 NP_813928 NP_115315
28	27481	27885	I		134	<u>AGGAG</u> TCTGGACTTG	S. aureus(pLW043)	acetyltransferase and 2"- aminoglycoside phosphotransferase Acetyltransferase GNAT family	100	134/134	NP_878007
29 30	27930 29203	29102 30294	1 1	IS256 traA	390 363	<u>AGGAGG</u> ACTTTTAC ATG <u>AGAGGAGG</u> TAAAATC ATG	E. faecalis V583 S. epidernidis W23144	protem IS256 transposase Nickase TraA	100 100	390/390 363/363	NP_813928 ZP_03986061
31 32 33 35	30498 30784 31131 32145 33683	30767 31023 31805 32966 33823	+ + +	18257	89 79 224 46	<u>GGAG</u> TTTTTA ATG <u>AGGAG</u> TCTTCTGT ATG <u>AGGAG</u> ACCTAGTTA ATG	S. epidernidis W23144 S. epidernidis W23144 S. aureus(pV030-8) S. aureus MRSA252 S. aureus(PEDINA)	Conserved hypothetical protein Conserved hypothetical protein 15257 transposase LysR Ramly regulatory protein PEDINA_p50 (transcriptional regulator)	100 100 98.7 97.8	89/89 79/79 224/224 273/273 45/46	ZP_03986060 ZP_03986059 YP_001653101 YP_040145 YP_041452

36 37	34209 34771	34736 35913	+ 1	IS257	175 380	AGGAGAAACTATG	S. aureus(pETB) S. aureus(pETB)	pETB_p37 (IS257 transposase) pETB_p38 (putative ATP/GTP- hindino protein)	100 99.7	175/175 380/380	NP_478380 NP_478381
38	36042	36272	+		76	TAAGCTGCTGCTGTATATTATG	S. aureus(pETB)	pETB_p39 (conserved	100	76/76	NP_478382
39	36635	36823	+	sacaA	62	TAAAGCGTGGTGATTCTTATG	S. aureus(pETB)	nypotneucal protein) pETB_p40 (lantibiotic structural protein	100	62/62	NP_478383
40	36847	37050	+	sacbA	67	TAAGGTGGTATTTTTA TG	S. aureus(pETB)	>ac-alpha-A) pETB_p41 (lantibiotic structural protein Sac-beta-A)	100	67/67	NP_478384
41	37069	39966	+	sacM1	965	<u>GGAG</u> ATAGTTCATA ATG	S. aureus(pETB)	pETB_p42 (lantibiotic mersacidin modifying	100	965/965	NP_478385
42	39968	42130	+	sacT	720	<u>GA GG</u> TGTAAT ATG	S. aureus(pETB)	pETB_p43 (lantibiotic mersacidin ABC transporter	100	720/720	NP_478386
43	42127	44880	+	sacM2	917	<u>AAGGAG</u> TGTGGAGT TTG	S. aureus(pETB)	system bac1) pETB_p44 (lantibiotic mersacidin modifying	6.66	917/917	NP_478387
44	44896	45996	+		366	<u>AGGAG</u> CGTAAATAT TTG	S. aureus(pETB)	enzyme sacM2) pETB_p45 (conserved L	100	365/366	NP_478388
45	46011	46880	+		289	AGGAGAATTCTGATG	S. aureus(pETB)	nypomeucal protein) pETB_p46 (multidrug efflux ABC transporter ATP-	100	289/289	NP_478389
46	46864	47589	+		241	<u>GGAGG</u> TTCTAAAA TTG	S. aureus(pETB)	binding protein) pETB_p47 (putative membrane	100	241/241	$NP_{-478390}$
47	47618	47791	+		57	<u>GGAGG</u> AATTTTA ATG	S. aureus(pETB)	protein) pETB_p48 (conserved humoth atical mototical	100	57/57	NP_478391
48 49 50	48118 49007 50164	48792 49573 50955	+	IS257 res	224 188 263	<u>GAGG</u> TGCAGAGGA TG <u>GAGG</u> TTATTTGA ATG <u>AGGT</u> ACCAATTT ATG	S. aureus(pETB) S. aureus(pETB) S. aureus(pETB)	nypouteuka protectur) pETB_p49 (1S.257 transposse) pETB_p50 (recombinase Res) pETB_p01 (replication- associated protein)	100 100 100	224/224 188/188 263/263	NP_478392 NP_478393 NP_478344
51	51488	52231	Ι	ednC	247	AAGGAGTCTTTTATG	S. aureus(pETB)	epidermal cell differentiation	100	247/247	NP_478345
52	52801	53631	Ι		276	<u>AAGGAG</u> AATGAGGCA TTG	S. aureus(pETB)	pETB_p03 (conserved	9.66	276/276	NP_478346
53	53708	54022	Ι		104	AAGGAGAAAATAATG	S. aureus(pETB)	pETB_p04 (conserved	100	104/104	NP_478347
54	54175	54591	+		138	<u>GAGG</u> TGTATTAAAATG	S. aureus(pETB)	pypothetical protein) pETB_p05 (conserved	100	138/138	NP_478348
55 56 57	54833 55760 56732	55666 55921 56881	+	etb	277 53 49	<u>AAGGAGG</u> TTTTATATA TG <u>AGGAGG</u> CATTTATT ATG	S. aureus(pETB) S. aureus MN8 S. aureus(pETB)	nypotnetical protein) exfoliative toxin B conserved hypothetical protein pETB_p11 (conserved h-model of colserved	100 56.9 100	277/277 51/53 49/49	NP_478350 ZP_03987549 NP_478354
58	57008	57958	I		316	<u>AAGGAG</u> TAGTTAAG ATG	S. aureus(pETB)	pETB_p12 (extracellular	100	316/316	NP_478355
59	58022	58234	I		70	<u>GGAGG</u> TAACCTAAAT ATG	S. aureus(pETB)	protein) pETB_p13 (conserved	100	70/70	NP_478356
60	58309	58653	I	mutS	114	<u>GGA</u> ACAATTG	S. aureus(pWBG749)	nypotneucal protein) putative DNA mismatch repair	83.1	98/118	NP_478357
61	58713	58925	I		70	<u>GAGG</u> GTTTTACAAA TG	S. aureus(pETB)	protent mute pETB_p15 (conserved	100	70/70	NP_478358
62	59090	59332	I		80	<u>AGGAG</u> AGATACT ATG	S. aureus(pETB)	nypoureucat protein) pETB_p16 (conserved humothatical motain)	100	80/80	NP_478359
63	59501	60307	I	parA	268	<u>GGAGG</u> TGGAAGCA ATG	S. aureus(pETB)	pETB_p17 (plasmid partition protein ParA)	100	268/268	$\mathrm{NP}_{-}478360$
^a aa, ami ^b Underl ^c Overlag	no acids. ining indic indicates	ates a putat the number	tive ribosc r of overla	ome binding site compl apping amino acids/tot	lementary to al number of	the 3' end of the 16S rRNA; boldface indic amino acids.	ates the start codon.				

TABLE 3 Antimicrobial susceptibilitie	es of <i>S. aureus</i> TY825 in the
presence and absence of pETB ^a	

	pETB ⁺		pETB ⁻		
Antibiotic ^b	MIC (µg/ml) ^c	Susceptibility	MIC (µg/ml) ^c	Susceptibility	
PCG	>8	R	2	R	
ABPC	>8	R	2	R	
CEZ	≤ 2	S	≤ 2	S	
CTM	≤ 2	S	≤ 2	S	
CZOP	≤2	S	≤2	S	
CPR	≤ 2	S	≤ 2	S	
CFDN	≤0.5	S	≤0.5	S	
CDTR	≤0.5	S	≤0.5	S	
FMOX	≤ 4	S	≤ 4	S	
IPM	≤1	S	≤1	S	
MEPM	≤1	S	≤1	S	
A/S	≤ 8	S	≤ 8	S	
A/C	≤ 2	S	≤ 2	S	
GM	>8	R	≤1	S	
ABK	4	S	≤1	S	
EM	>4	R	≤0.25	S	
CLDM	≤0.5	S	≤0.5	S	
MINO	≤ 1	S	≤ 1	S	
LVFX	≤0.5	S	≤0.5	S	
VCM	1	S	1	S	
TEIC	≤ 2	S	≤ 2	S	
ST	≤0.5	S	≤0.5	S	
FOM	>16	R	>16	R	
LZD	2	S	2	S	

^{*a*} Shading indicates antimicrobial agents whose susceptibility was altered by the loss of pETB.

^b A/S, ampicillin-sulbactam; A/C, amoxicillin-clavulanic acid.

^c MICs were determined by using the Microscan system panel of antibiotics (Siemens Healthcare Diagnostics, Tokyo, Japan). S, susceptible; R, resistant.

combination. A cadmium resistance element is also present in pETB_{TY4} and was found at the extreme 5' end of the extra DNA region with an inversion (Fig. 1B and C).

A homology search of the extra DNA region shows a ca. 16-kb extra DNA region in pETB_{TY825} containing the aminoglycoside resistance element (Tn4001) and β -lactam resistant element showed nearly a perfect match with the sequence of pSA018A from a clinical coagulase-negative *Staphylococcus* sp. strain CDC 25 isolated from a human (Fig. 1B).

Antimicrobial susceptibilities of S. aureus TY825 in the presence or absence of pETB. To examine the functional activities of these resistance elements in pETB_{TY825}, we constructed a pETBdefective strain of TY825 (26), and compared its antimicrobial susceptibility profile to that of the wild type. We determined the MICs of several clinically relevant antibiotics using the broth microdilution method (Table 3). As expected, the wild type was resistant to benzylpenicillin (MIC \ge 8 µg/ml), ampicillin (MIC \ge 8 μ g/ml), gentamicin (MIC \geq 8 μ g/ml), and erythromycin (MIC \geq 4 µg/ml). Conversely, the pETB-defective strain TY825 showed significantly decreased MICs of gentamicin (MIC $\leq 1 \mu g/ml$), arbekacin (MIC $\leq 1 \,\mu$ g/ml), erythromycin (MIC $\leq 0.25 \,\mu$ g/ml), benzylpenicillin (MIC $\leq 2 \mu g/ml$), and ampicillin (MIC $\leq 2 \mu g/ml$) ml). TY825 was also resistant to fosfomycin (MIC $\geq 16 \,\mu g/ml$); however, the deletion of pETB_{TY825} did not alter the MIC of fosfomycin. These results clearly demonstrated that the resistance elements of pETB_{TY825} were functionally active and conferred resistance to these antibiotics.

Antimicrobial susceptibility to EM and GM in clinically isolated ETB-producing S. aureus strains. For the treatment of impetigo/SSSS, GM is often used as an ointment, and a macrolide is one of the choices for empirical therapy. Additionally, ABK has frequently been used for the treatment of methicillin-resistant S. *aureus* (MRSA) in Japan since 1990, and aac(6')/aph(2'') has been identified as one of the risk factors for ABK resistance in recent years (27, 28). Since the proportion of ETB-producing S. aureus causing impetigo/SSSS is significantly higher in Japan than in Western countries (29), we retrospectively examined the MICs of GM, ABK, and EM and genes for resistance to aminoglycosides [aac(6')/aph(2')] and macrolides (*msrA*) detected in pETB_{TY825} by PCR (Table 1), using the purified plasmid fractions of 86 randomly selected ETB-producing clinical isolates (1977 to 2007) stored in our laboratory (Table 4). Of note, an increase in MRSA strains causing impetigo/SSSS has been reported in recent years (30). Therefore, *mecA* was also examined in the MRSA strains by using PCR.

ETB-producing *S. aureus* strains isolated in the 1970s and 1980s were largely susceptible to ABK, GM, and EM (Table 4). However, MICs of GM sharply changed after 1992, and ETB-producing *S. aureus* strains began to display high resistance to GM. This high resistance almost perfectly matched the detection of aac(6')/aph(2''). Further, the detection of aac(6')/aph(2'') paralleled the detection of *mecA*. Conversely, there was no significant change in the ABK MICs during the test period, with only a slight increase from 1 to 2 to 8 µg/ml after 1989. There was no correlation between ABK MIC and the presence or absence of aac(6')/aph(2''). Resistance to EM was sporadically found in strains from the 1970s and 1980s. After 2001, strains resistant to EM significantly increased. Notably, however, *msrA* was rarely detected in ETB-producing *S. aureus* strains, and only five strains were positive for both aac(6')/aph(2'') and *msrA* by PCR.

PCR scanning of ETB-producing *S. aureus* strains positive for aac(6')/aph(2'') and *msrA*. Detection of both aac(6')/aph(2'')and *msrA* suggests that these five strains (TY632, TY825, TY1020, TY1603, and TF3056) possess a TY825-type pETB. We therefore examined the genome organization of the 22-kb extra DNA region of the plasmids isolated from the four strains using the PCR scanning method. We generated seven pairs of primers whose PCR products cover all of the 22-kb extra DNA region. All pairs of primers yielded PCR products with the expected sizes in only one strain, TF3056, besides TY825 (Fig. 2). The other three strains were found to possess a DNA region containing macrolide and β -lactam resistance elements but lack the DNA region corresponding to the aminoglycoside resistance element.

DISCUSSION

In this study, we sequenced the pETB plasmid of the clinical isolate TY825, obtained in 2002 from a lesion of an impetigo patient. pETB_{TY825} is significantly larger than the archetype pETB_{TY4} and has a single extra DNA region (22,352 bp). Comparative analysis suggested that pETB_{TY825} was generated from pETB_{TY4} by acquiring a single 22-kb block of extra DNA. In a previous study, we reported that region D of pETB_{TY4} is highly heterogeneous in size, based on PCR scanning analysis of plasmids from clinical isolates (13). However, the extra DNA region of pETB_{TY825} was found to be inserted into the region corresponding to region E of pETB_{TY4}. A nearly perfect match of ca. 16 kb in the extra DNA region of pETB_{TY825} with the partial sequence of a plasmid from a coagu-

TABLE 4 Antimicrobial suscept	tibility testing and PC	R analysis of clinically	v isolated ETB-p	roducing S. aureus strains
1	/ 0		1	0

			MIC (µg/r	nl)		PCR result	:	
Strain	Yr	Diagnosis	ABK	GM	EM	mecA	<i>aac</i> (6')/ <i>aph</i> (2")	msrA
TY468	1977	SSSS	1	1	0.125	_	_	_
TY469	1977	SSSS	1	1	0.125	_	_	_
TY470	1977	SSSS	2	1	0.125	_	_	_
TY471	1981	SSSS	1	1	0.125	_	_	_
TY472	1981	Impetigo	1	1	0.125	_	_	_
TY473	1982	SSSS	1	1	64	_	_	_
TY474	1982	SSSS	1	1	0.125	_	_	_
TY477	1978	Impetigo	0.5	1	2	_	_	_
TY478	1979	SSSS	1	1	32	_	_	_
TY479	1980	SSSS	1	1	1	_	_	_
TY480	1980	SSSS	1	0.5	>128	_	_	_
TY481	1980	SSSS	2	1	>128	_	_	-
TY482	1980	SSSS	2	1	1	_	_	-
TY484	1980	SSSS	1	2	0.125	_	_	_
TY485	1981	SSSS	1	2	0.125	_	_	-
TY487	1982	Impetigo	0.5	0.5	0.125	_	_	-
TY488	1982	Impetigo	>0.5	1	0.125	_	_	_
TY489	1982	SSSS	1	1	128	_	_	-
TY490	1982	SSSS	1	1	0.128	_	_	_
TY491	1983	SSSS	1	2	128	_	_	_
TY502	1983	Impetigo	1	2	2	_	_	_
TY507	1983	SSSS	2	4	0.25	_	_	_
TY519	1984	Impetigo	2	1	1	_	_	_
TY520	1984	Impetigo	2	4	0.125	_	_	_
TY522	1984	Impetigo	2	4	0.125	_	_	_
TY561	1987	SSSS	4	>128	0.125	_	+	_
TY564	1988	Impetigo	2	1	>128	_	_	_
TY565	1988	SSSS	1	1	>128	_	_	_
TY573	1989	Impetigo	4	4	0.125	_	_	_
TY576	1989	SSSS	4	16	0.125	_	_	_
TY4	1990	SSSS	2	32	>128	+	+	
TY580	1992	SSSS	4	>128	0.125	+	+	_
TY36	1999	Impetigo	8	>128	>128	+	+	_
TY49	1999	Impetigo	2	>128	2	+	+	_
TY54	1999	Impetigo	2	>128	0.125	+	+	_
TY56	1999	Impetigo	4	>128	0.125	+	+	_
TY64	1999	Impetigo	1	1	0.125	_	_	_
TY69	1999	Impetigo	4	>128	>128	+	+	_
TY93	1999	Impetigo	4	>128	>128	_	+	_
TY97	1999	Impetigo	8	>128	0.125	_	+	_
TY110	1999	Impetigo	4	>128	>128	+	+	_
TY119	2000	ND	32	>128	0.5	+	_	_
TY145	2000	ND	1	8	0.5	_	+	_
TY146	2000	ND	1	8	0.5	_	+	_
TY162	2000	Atopy	32	>128	0.25	_	+	_
TY174	2000	Atopy	8	>128	0.5	_	+	_
TY189	2001	SSSS	>128	>128	>128	+	+	_
TY213	2001	SSSS	>128	>128	>128	+	+	_
TY219	2001	SSSS	16	>128	0.25	+	+	_
TY226	2001	ND	8	16	>128	_	+	_
TY228	2001	Abscess	1	8	0.25	_	_	_
TY229	2001	SSSS	1	4	>128	_	_	_
TY632	2002	Impetion	32	>128	2	_	+	+
TY825	2002	Impetigo	4	>128	- 16	_	+	+
TY1020	2002	Impetigo	4	>128	16	_	+	+
TY1603	2002	Impetigo	4	>128	32	_	+	+
TF2753	2005	Impetion	16	>128	0.125	+	+	_
TF2754	2005	Impetion	8	>120	>128	+	+	_
TF2778	2005	Impetigo	16	>120	1 120	_	+	_
TF2780	2005	Impetigo	4	>128	>128	_	+	_
			-	120	120			

(Continued on following page)

TABLE 4 (Continued)

			MIC (µg/ml)			PCR result		
Strain	Yr	Diagnosis	ABK	GM	EM	mecA	<i>aac</i> (6')/ <i>aph</i> (2")	msrA
TF2791	2005	Impetigo	8	>128	>128	+	+	_
TF2799	2005	Impetigo	2	>128	0.125	+	+	_
TF2800	2005	Impetigo	8	>128	>128	+	+	_
TF2802	2005	Impetigo	16	>128	>128	+	+	_
TF2809	2005	Impetigo	8	>128	0.125	+	+	_
TF2815	2005	Impetigo	4	>128	>128	_	+	_
TF2816	2005	Impetigo	4	>128	2	_	+	_
TF2817	2005	Impetigo	4	>128	2	_	+	_
TF2818	2005	Impetigo	2	>128	>128	_	+	_
TF2825	2005	ND	2	>128	>128	+	+	_
TF2829	2005	Impetigo	4	>128	0.125	+	+	_
TF2846	2005	Impetigo	2	>128	>128	+	+	_
TF2848	2005	Impetigo	8	>128	0.125	_	+	_
TF2920	2005	Impetigo	64	>128	>128	_	+	_
TF2932	2005	Impetigo	>16	>128	0.125	_	+	_
TF2939	2005	Impetigo	>16	>128	>128	+	+	_
TF3056	2005	Impetigo	2	>128	8	_	+	+
TF3371	2006	SSSS	4	>128	128	+	+	_
TF3516	2007	ND	2	64	1	_	+	_
TF3520	2007	ND	2	32	128	_	+	_
TF3526	2007	ND	4	>128	128	+	+	_
TF3543	2007	ND	4	>128	128	+	+	_
TF3546	2007	ND	2	128	128	+	+	_
TF3563	2007	ND	2	>128	>128	+	+	_
TF3564	2007	ND	4	>128	>128	+	+	_
TF3571	2007	ND	1	>128	>128	+	+	_
TF3578	2007	ND	2	>128	>128	+	+	-
TF3583	2007	ND	1	>128	>128	+	+	-
TF3585	2007	ND	2	>128	>128	+	+	_
TF3586	2007	ND	1	2	0.125	-	-	_
TF3591	2007	ND	2	2	0.25	-	-	_
TF3598	2007	ND	8	>128	>128	+	+	_
TF3600	2007	ND	2	128	0.25	_	+	_
TF3602	2007	ND	8	>128	2	+	+	-
TF3612	2007	ND	8	>128	>128	+	+	-

^a Boldface indicates strains that were selected for PCR scanning analysis. ND, no diagnosis data.

FIG 2 PCR scanning analysis of pETB plasmids. The gene organization of the acquired region in the $pETB_{TY825}$ plasmid was examined using PCR scanning analysis. Various combinations of the 14 primers that target the selected seven genes were used. A schematic view is shown in Fig. 1B. The results of the PCR analysis of regions 1 to 7 are shown. By comparing the length of each amplified fragment with that from pETB, the regional heterogeneity was determined. Results with pETB from the following strains are shown in the indicated lanes: 1, TY4; 2, TY825; 3, TY632; 4, TY1020; 5, TY1603; and 6, TF3056.

lase-negative staphylococcus (CNS) may imply that *S. aureus* acquired this region by horizontal transfer from resident CNS on the skin.

According to the PCR analysis for aac(6')/aph(2'') and msrAand subsequent PCR scanning analysis of the pETB plasmid from the clinical isolates, the $pETB_{TY825}$ type was rare and found in only two strains, TY825 and TF3056. It should be noted that the frequency of strains positive for both mecA and aac(6')/aph(2'')markedly increased after 1990. In recent studies, community-associated MRSA with type IVc SCCmec was shown to possess Tn4001 in the J3 region (30-32). Tn4001 is composed of two IS256 elements flanking aac(6')/aph(2'') and orf28. We therefore screened for SCCmec type IVc in the ETB-producing MRSA strains isolated after 1990. Only two strains (TF3371 and TF3571) among the all *mecA*-positive strains were typed as SCC*mec* type IVc, suggesting that SCCmec type IVc was rare among ETB-producing MRSA strains. Therefore, aac(6')/aph(2") in ETB-producing strains isolated after 1990 may be attributable to a plasmid other than pETB or a chromosome site other than SCCmec.

Antimicrobial susceptibility testing of TY825 and the pETBdefective strain indicated that aac(6')/aph(2'') contributes to an The *msrA* and *mef* genes display inducible resistance to erythromycin by encoding an ATP-dependent efflux pump (23, 34). Our data, however, clearly indicated that *msrA* was not principally responsible for the macrolide resistance in ETB-producing *S. aureus* strains. Nakaminami et al. reported that the gene products of *ermA*, *ermB*, and *ermC* were major macrolide resistance traits in *S. aureus* strains causing impetigo/SSSS (32). These three genes (*ermA*, *ermB*, and *ermC*) display resistance to macrolides by methylation of the ribosomal target site (30, 35). Those authors also demonstrated the presence of *msrA* at a low frequency in *S. aureus* strains causing impetigo/SSSS (32). Our data support their observations.

A previous study suggested that there is an association between the ET serotype and the clinical severity of staphylococcal blistering diseases (29). ETB-producing S. aureus is more frequently isolated from SSSS or the severe form of impetigo than ETA-producing S. aureus. For the treatment of SSSS, β -lactams were a primary choice together with an ointment of GM. However, in recent years, it has become evident that ETB-producing S. aureus in Japan is almost 100% resistant to GM and the proportion of resistance to β-lactam and EM is significantly higher than those isolated before 1989 (Table 4). Our study suggests that the emergence of an ETB plasmid carrying multiple resistance genes partly contributes to an increase in multiple resistance of ETB-producing S. aureus. Most impetigo/SSSS patients are young children and neonates, and SSSS patients, especially newborns, require admission and general treatment. But quinolone and tetracycline are not first choices for treatment, and available antimicrobials are limited in the current situation. Thus, special caution may be necessary for the treatment of SSSS/severe impetigo caused by ETBproducing S. aureus strains in Japan.

ACKNOWLEDGMENTS

We thank M. Takeda for skillful assistance and R. Kuwahara for MIC measurement. We thank Jim Nelson and Larry Strand for editorial assistance.

The project was supported in part by Grant-in-Aid for Priority Areas "Applied Genomics" from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Young Scientists (B) 22790408, from the Japan Society for the Promotion of Science, and by Health Labor Sciences Research Grants for Research on Allergic Diseases and Immunology from the Ministry of Health, Labor and Welfare.

REFERENCES

- 1. Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM. 1999. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin. Microbiol. Rev. 12:224– 242.
- 2. Farrell AM. 1999. Staphylococcal scalded-skin syndrome. Lancet 354: 880-881.
- Melish ME, Glasgow LA. 1971. Staphylococcal scalded skin syndrome: the expanded clinical syndrome. J. Pediatr. 78:958–967.
- Arbuthnott JP, Billcliffe B. 1976. Qualitative and quantitative methods for detecting staphylococcal epidermolytic toxin. J. Med. Microbiol. 9:191–201.

- Kondo I, Sakurai S, Sarai Y. 1973. Purification of exfoliatin produced by Staphylococcus aureus of bacteriophage group 2 and its physicochemical properties. Infect. Immun. 8:156–164.
- Yamaguchi T, Nishifuji K, Sasaki M, Fudaba Y, Aepfelbacher M, Takata T, Ohara M, Komatsuzawa H, Sugai M. 2002. Identification of the Staphylococcus *etd* pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect. Immun. 70:5835–5845.
- 7. Elias PM, Fritsch P, Epstein JEH. 1977. Staphylococcal scalded skin syndrome. Clinical features, pathogenesis, and recent microbiological and biochemical developments. Arch. Dermatol. 113:207–219.
- Amagai M, Matsuyoshi N, Wang ZH, Andi C, Stanley JR. 2000. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med. 6:1275–1277.
- Betley MJ, Borst DW, Regassa LB. 1992. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem. Immunol. 55:1–35.
- Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in *Staphylococcus aureus*. Mol. Microbiol. 29:527–543.
- 11. Novick RP, Schlievert P, Ruzin A. 2001. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3:583–594.
- Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, Yamada S, Komatsuzawa H, Sugai M. 2000. Phage conversion of exfoliative toxin A production in *Staphylococcus aureus*. Mol. Microbiol. 38:694–705.
- Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, Asakawa K, Ohara M, Komatsuzawa H, Sugai M. 2001. Complete nucleotide sequence of a *Staphylococcus aureus* exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect. Immun. 69:7760–7771.
- Clinical and Laboratory Standards Institute. 2008. Third approved standard M31–A3. Clinical and Laboratory Standards Institute, Wayne, PA.
- Sugai M, Fujiwara T, Akiyama T, Ohara M, Komatsuzawa H, Inoue S, Suginaka H. 1997. Purification and molecular characterization of glycylglycine endopeptidase produced by *Staphylococcus capitis* EPK1. J. Bacteriol. 179:1193–1202.
- Noguchi H, Taniguchi T, Itoh T. 2008. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 15:387– 396.
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res. 25:3389–3402.
- Clinical and Laboratory Standards Institute. 2005. Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement M100–S15. Clinical and Laboratory Standards Institute, Wayne, PA.
- Lyon BR, Gillespie MT, Byrne ME, May JW, Skurray RA. 1987. Plasmid-mediated resistance to gentamicin in *Staphylococcus aureus*: the involvement of a transposon. J. Med. Microbiol. 23:101–110.
- Rouch DA, Byrne ME, Kong YC, Skurray RA. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133:3039–3052.
- Ramirez MS, Tomasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist. Updat. 13:151–171.
- 22. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of ATP-binding transport super-gene family. Mol. Microbiol. 4:1207–1214.
- 23. Ross JI, Eady EA, Cove JH, Baumberg S. 1995. Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 153:93–98.
- 24. Rowland SJ, Dyke KG. 1990. Tn552, a novel transposable element from *Staphylococcus aureus*. Mol. Microbiol. 4:961–975.
- Rowland SJ, Stark WM, Boocock MR. 2002. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol. Microbiol. 44:607–619.
- Kato F, Kadomoto N, Iwamoto Y, Bunai K, Komatsuzawa H, Sugai M. 2011. Regulatory mechanism for exfoliative toxin production in *Staphylococcus aureus*. Infect. Immun. **79**:1660–1670.
- 27. Barada K, Hanaki H, Ikeda S, Yamaguchi Y, Akama H, Nakae T, Inamatsu T, Sunakawa K. 2007. Trends in the gentamicin and arbekacin

susceptibility of methicillin-resistant *Staphylococcus aureus* and the genes encoding aminoglycoside-modifying enzymes. J. Infect. Chemother. **13**: 74–78.

- Iwaki M, Noguchi N, Nakaminami H, Sasatsu M, Ito M. 2011. Antimicrobial activity and frequency of spontaneous gentamicinresistant mutants in bacteria related skin infections. Yakugaku Zasshi 131:1653–1659.
- Yamasaki O, Yamaguchi T, Sugai M, Chapuis-Cellier C, Arnaud F, Vandenesch F, Etienne J, Lina G. 2005. Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. J. Clin. Microbiol. 43:1890–1893.
- Noguchi N, Nakaminami H, Nishijima S, Kurokawa I, So H, Sasatsu M. 2006. Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant *Staphylococcus aureus* isolates from patients with impetigo and staphylococcal scalded skin syndrome. J. Clin. Microbiol. 44:2119–2125.
- Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. 2003. Insights on antibiotic resistance of *Staphylococcus aureus* from its whole genome: genomic island SCC. Drug Resist. Updat. 6:41–52.
- 32. Nakaminami H, Noguchi N, Ikeda M, Hasui M, Yamamoto S, Asano T,

Senoue M, Sasatsu M. 2008. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive *Staphylococcus aureus* isolates from patients with impetigo in Japan. J. Med. Microbiol. 57:1251–1258.

- 33. Ishino K, Ishikawa J, Ikeda Y, Hotta K. 2004. Characterization of a bifunctional aminoglycoside-modifying enzyme with novel substrate specificity and its gene from a clinical isolate of methicillin-resistant *Staphylococcus aureus* with high arbekacin resistance. J. Antibiot. Tokyo 57:679–686.
- Leclercq R. 2002. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 34:482–492.
- 35. Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. 2011. Detection of macrolide and disinfectant resistance genes in clinical *Staphylococcus aureus* and coagulase-negative staphylococci. BMC Res. Notes 4:1–9.
- 36. Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T. 2000. The R-type pyocin of *Pseudomonas aeruginosa* is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38:213–231.