

High Prevalence of Extended-Spectrum-Cephalosporin-Resistant *Enterobacteriaceae* in Poultry Meat in Switzerland: Emergence of CMY-2- and VEB-6-Possessing *Proteus mirabilis*

Salome N. Seiffert,^{a,b,c} Regula Tinguely,^a Agnese Lupo,^a Catherine Neuwirth,^d Vincent Perreten,^b Andrea Endimiani^a

Institute for Infectious Diseases, University of Bern, Bern, Switzerland^a; Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland^b; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland^c; Laboratory of Bacteriology, University Hospital of Dijon, Plateau Technique de Biologie, Dijon, France^d

The spread of extended-spectrum-cephalosporin-resistant (ESC-R) *Escherichia coli* in poultry meat is a serious concern (1–3). However, data regarding this problem in Switzerland are lacking. Moreover, the role played in this matter by other *Enterobacteriaceae* remains undetermined.

We explored the prevalence of extended-spectrum- β -lactamase (ESBL)- and plasmid-mediated-AmpC (pAmpC)-possessing *Enterobacteriaceae* as contaminants of raw poultry meat retailed in Bern, Switzerland. Twenty samples were purchased on various days during November and December 2012 in three grocery stores (Table 1). Ten grams of meat was incubated overnight in LB broth, and then 50 μ l was plated on plates containing selective chromID ESBL agar, MacConkey agar plus ceftazidime (2 μ g/ml), and Drigalski agar plus cefotaxime (1.5 μ g/ml) (bio-Mérieux). Colonies were identified by MALDI-TOF MS (matrixassisted laser desorption ionization-time of flight mass spectrometry; Bruker). ESC-R *Enterobacteriaceae* were characterized using phenotypic and molecular methods as previously done (4–7) (see Table S1 in the supplemental material).

Fourteen samples (70%) contained ESC-R *E. coli* (n = 11), ESC-R *P. mirabilis* (n = 2), or both resistant species (n = 1) (Table 1). ESC-R *E. coli* strains found in meat originating from Switzerland possessed $bla_{CTX-M-1}$ and bla_{CMY-2} , whereas those detected in meat imported from other countries harbored bla_{SHV-12} , bla_{TEM-52} , or bla_{CMY-2} . Several ESC-R *E. coli* isolates belonged to the same sequence type (ST), but pandemic clones (e.g., ST131) often responsible for human infections were not found (8, 9). The recorded high prevalence of ESC-R *E. coli* (60%) was consistent with prevalences reported in other countries (1–3). However, we note that in Switzerland, CTX-M-1- and CMY-2-producing *E. coli* strains are common colonizers of food animals and may also cause human infections (4, 6, 10).

More intriguing was the detection of ESC-R *P. mirabilis* that grew in MacConkey-ceftazidime and Drigalski-cefotaxime plates. In particular, one meat sample imported from Austria harbored bla_{CMY-2} , whereas two from an unspecified European country carried bla_{VEB-6} . These samples came from the same store and same packing plant but were wrapped on different dates.

CMY-2-positive P. mirabilis isolates are commonly found in

humans (11), but only unique VEB-6-possessing P. mirabilis isolates had been previously reported as responsible for infection in France, Oman, and Australia (7, 12, 13). In our isolates, *bla*_{VEB-6} was situated in an ~17-kb class I integron which also carried aacA4, aadB, dfrA1, sul1, tet(A), and qnrA1 resistance genes and had a nucleotide sequence identical to that found in the human VEB-6-positive P. mirabilis isolate (VB1248) reported in France (12). Both VEB-6-positive P. mirabilis isolates also possessed a previously reported class II integron of \sim 4.6 kb containing *dfrA1*, sat2, and aadA1 resistance genes (GenBank no. DQ268533) and a single ~50-kb IncP plasmid. Electroporation experiments failed to transfer *bla*_{VEB-6}, suggesting the chromosomal location of the integron. By repetitive extragenic palindromic PCR (rep-PCR), the two VEB-6-positive P. mirabilis isolates were identical to each other and showed 94% genomic identity with VB1248. Based on these results, we investigated the possible presence of VEB-6-positive P. mirabilis among 484 human isolates identified in Bern during 2011-2012, and we identified only four CMY-2-positive P. mirabilis isolates which were not clonally related to those found in poultry meat (see Fig. S1 in the supplemental material).

This is the first report of bla_{VEB} -possessing *P. mirabilis* in a non-human clinical setting and the first description of ESBL- and pAmpC-positive *P. mirabilis* strains in the food chain. Our findings emphasize that not only ESC-R *E. coli* but also other species are responsible for the spread of multidrug-resistant mobile genetic elements in the raw meat. CMY-2- and VEB-6-positive *P. mirabilis* strains might represent an additional group of life-threatening pathogens that can be transmitted through the food chain to humans (8).

Copyright © 2013, American Society for Microbiology. All Rights Reserved. doi:10.1128/AAC.01773-13

Published ahead of print 30 September 2013

Address correspondence to Andrea Endimiani, aendimiani@gmail.com. Supplemental material for this article may be found at http://dx.doi.org/10.1128

[/]AAC.01773-13.

							Country ^e	
			Plasmid Inc	Phylogenetic				Packaging
Meat (store)	Species	$bla_{\rm ESBL}, bla_{\rm pAmpC}$	group(s)	group	ST	Antimicrobial agents tested (MICs, $\mu g/ml$) ^b	Production	(packing plant)
Turkey slices (A)	E. coli	CMY-2	F, A/C	D	ST117	CTX (4), CAZ (4), FEP (≤1), ATM (4), TZP (≤4), MEM (≤0.5), ERT (≤0.125), GEN (≤0.5), AMK (≤2), CIP (≤0.125), SXT (≤0.25), COL (≤0.125), TGC (≤0.125)	GER	GER (I)
Turkey slices (A) Chicken slices (A)	— E. coli		— F, X1	— B1		$\begin{array}{c} \\ \\ CTX (2), CAZ (8), FEP (\leq 1), ATM (\geq 32), TZP (\leq 4), MEM (\leq 0.5), ERT (\leq 0.125), GEN (\leq 0.5),$	GER GER	GER (I) GER (Un)
Chicken slices (A)	E. coli	TEM-52	F, I1, X1	А	ST23	AMIX (≤ 2), CIP ($\leq 0.1.2^{\circ}$), SX 1 (≥ 8), CUL ($\leq 0.1.2^{\circ}$), IGC ($\leq 0.1.2^{\circ}$) CTX (4), CAZ (4), FEP (≤ 1), ATM (≤ 1), TZP (≤ 4), MEM (≤ 0.5), ERT (≤ 0.125), GEN (≤ 0.5),	GER	GER (Un)
Chicken ministeaks (A)	E. coli	CTX-M-1	F, 11	D	ST2485	$\begin{array}{l} \text{AMK} (\leq\!\!2), \text{CIP} (\leq\!\!0.125), \text{SXT} (\leq\!\!0.25), \text{COL} (\leq\!\!0.125), \text{TGC} (\leq\!\!0.125) \\ \text{CTX} (\geq\!\!64), \text{CAZ} (2), \text{FEP} (4), \text{ATM} (8), \text{TZP} (\leq\!\!4), \text{MEM} (\leq\!\!0.5), \text{ERT} (\leq\!\!0.125), \text{GEN} (\leq\!\!0.5), \end{array}$	СН	CH (II)
Chicken ministeaks (A)	I				I	AMK (\leq 2), CIP (\leq 0.125), SXT (\geq 8), COL (\leq 0.125), TGC (\leq 0.125)	СН	CH (II)
Ground chicken (A)	E. coli	CTX-M-1, TEM-1	F, FII, I1	А	ST1141	CTX (16), CAZ (≤ 0.5), FEP (4), ATM (4), TZP (≤ 4), MEM (≤ 0.5), ERT (≤ 0.125), GEN (≤ 0.5), AMK (≤ 2), CIP (≤ 0.125), SXT (≥ 8), COL (≤ 0.125), TGC (≤ 0.125)	CH	CH (II)
Chicken legs (A) Ground chicken (A)	 E. coli	 CTX-M-1	— F, I1	— B1		— CTX (8), CAZ (≤0.5), FEP (≤1), ATM (4), TZP (≤4), MEM (≤0.5), ERT (≤0.125), GEN	CH	CH (II)
Chicken legs (A)						(≤ 0.5) , AMK (≤ 2) , CIP (≤ 0.125) , SXT (≥ 8) , COL (≤ 0.125) , TGC (≤ 0.125)	СН	CH (II)
Chicken wings (B)	E. coli	CTX-M-1	μ	B1	ST1304	CTX (16), CAZ (≤ 0.5), FEP (≤ 1), ATM (4), TZP (≤ 4), MEM (≤ 0.5), ERT (≤ 0.125), GEN (≤ 0.5), AMK (≤ 2), CIP (≤ 0.125), SXT (≤ 0.25), COL (≤ 0.125), TGC (≤ 0.125)	CH CH	
Chicken legs (B)	E. coli	CMY-2	F, B/O, A/	D	ST38	CTX (8), CAZ (8), FEP (\leq 1), ATM (4), TZP (\leq 4), MEM (\leq 0.5), ERT (\leq 0.125), GEN (\leq 0.5), AUX (\leq 0.5), GEN (\leq 0.5), COL (\leq 0.15), TCC (\leq 0.125), GEN (\leq 0.5), COL (\leq 0.5), C	CH	CH (III)
Chicken wings (B)	E. coli	CTX-M-1	С, м II, Y	D	ST2485	AND, $(\geq 2, \circ, \circ, \circ)$ (≥ 0.125), and $(\geq 0.2, \circ)$, (≥ 0.125) , (≤ 0.125) , (≤ 0.5)	CH	CH (III)
Ground chicken breasts (B)	E. coli	SHV-12	F, FII, I1	B1	ST155	AMK (≤2), CIP (≤0.125), SA1 (≥8), COL (≤0.12-), IGC (≤0.125), GEN (≤0.5), CTX (2), CAZ (8), FEP (≤1), ATM (16), TZP (≤4), MEM (=0.5), ERT (≤0.125), GEN (≤0.5),	AUT	CH (III)
	P. mirabilis	CMY-2	11	NA	NA	AMK (≤ 2), CIP (≤ 0.125), SX1 (≤ 0.22), COL (≤ 0.125), IGC (≤ 0.125), CIX (2), CAZ (4), HEP (≤ 1), ATM (≤ 1), TZP (≤ 4), MEM (≤ 0.5), ERT (≤ 0.125), GEN (2), CAZ (4), HEP (≤ 0.125), CIV (
Turkey slices (C)	P. mirabilis	VEB-6, TEM-1 ^{<i>d</i>}	Р	NA	NA	AMK (8), CLP (≤ 0.123), SA1 (≤ 0.23), COL (≥ 8), 1-C-(2) CTX (16), CAZ (≥ 32), FEP (8), ATM (8), TZP (≤ 4), MEM (≤ 0.5), ERT (≤ 0.125), GEN (≥ 16),	EU	CH (IV)
Turkey slices (C)	P. mirabilis	VEB-6, TEM- 1^d	Р	NA	NA	AMK (16), CIP (≥4), SXT (≥8), COL (≥8), TGC (2) CTX (16), CAZ (≥32), FEP (16), ATM (8), TZP (≤4), MEM (≤0.5), ERT (≤0.125), GEN (8),	EU	CH (IV)
Ground chicken (C)	E. coli	CTX-M-1	F, I1, P, U	А	ST23	AMK (16), CIP (≥4), SXT (≥8), COL (≥8), TGC (2) CTX (16), CAZ (≤0.5), FEP (≤1), ATM (4), TZP (≤4), MEM (≤0.5), ERT (≤0.125), GEN	СН	CH (V)
Chicken ministeaks (C)		I			I	(≤0.5), AMK (≤2), CIP (≤0.125), SXT (≥8), COL (≤0.125), TGC (≤0.125) —	СН	CH (V)
Chicken slices (C)	E. colt	CTX-M-1	F, 11	A	ST23	C1X (32), CAZ (≤ 0.3), FEP (4), A1M (4), 12P (≤ 4), MEM (≤ 0.5), EK1 (≤ 0.125), GEN (≤ 0.5), AMK (≤ 2), CIP (≤ 0.125), SXT (≥ 8), COL (≤ 0.125), TGC (≤ 0.125)	СН	CH (V)
 a —, isolates possessing bla_{ES} ^b Antibiotics and interpretati piperacillin-tazobactam (S, s 	_{SBLs} or <i>bla</i> aAmp ion of MICs ac ≤ 8 μg/ml); M	_{2Cs} were not detected ccording to EUCAST IEM, meropenem (S,	I. NA, not app criteria (14), $\leq 2 \mu g/ml$;	blicable. were as follows: ERT, ertapenen	CTX, cefo 1 (S, ≤ 0.5	axime (susceptible [S], $\leq 1 \ \mu g/ml$); CAZ (S, $\leq 1 \ \mu g/ml$); FEP, cefepime (S, $\leq 1 \ \mu g/ml$); ATM, aztreo $\mu g/ml$); CEN, gentamicin (S, $\leq 2 \ \mu g/ml$); AMK, amikacin (S, $\leq 8 \ \mu g/ml$); CIP, ciprofloxacin (S, $\leq 0 \ \mu g/ml$); CIP, cipro	onam (S, ≤ 1 μ 0.5 μg/ml); SX	⊥g/ml); TZP, T (S,≤ 2 μg/
			- 1-0	· · · · ·		$ \begin{array}{c} \begin{array}{c} \hline \\ \end{array} \\ \hline \\ \\ \\ \end{array} \\ \\ \\ \\$		

ml); COL, colistin (S, $\leq 2 \ \mu g/m$); TGC, tigecycline (S, $\leq 1 \ \mu g/m$). MICs were determined by using GNX2F plates (Trek Diagnostics).

^c GER, Germany; CH, Switzerland; AUT, Austria; EU, European Union (the country was not specified on the package sticker). I, II, III, IV, V, and Un (unknown) indicate the different meat-packing plants. ^d Both isolates possessed the following non-bla resistance genes according to the AMR-ve 0.5-m microarray (Alere): bla_{YEB}, bla_{YEB}, aadA, aadB, catA, ant2Ia, aac6-Ib, aphA, qnr, sul1, sul2, tetA, strB, intI, and intII. bla_{YEB-6} was carried by a chromosomally located class I integron. For each isolate, analytical isoelectric focusing showed two β-lactamase bands at pl 5.4 (TEM-1) and 7.2 (VEB-6).

TABLE 1 Phenotypic and molecular characteristics of the bla_{ESBL}- and bla_{pAmpC}-possessing E. coli and P. mirabilis isolates found in poultry meat retailed in Bern during the study period^a

ACKNOWLEDGMENTS

We thank Sara Droz and Alexandra Collaud for advice and technical assistance.

This work was supported by internal funds of the Institute of Infectious Diseases of Bern (IFIK) and by grant 1.12.06 (2012–2014) from the Swiss Veterinary Federal Office (BVET). Salome N. Seiffert is a Ph.D. student supported by IFIK and BVET.

REFERENCES

- Kola A, Kohler C, Pfeifer Y, Schwab F, Kuhn K, Schulz K, Balau V, Breitbach K, Bast A, Witte W, Gastmeier P, Steinmetz I. 2012. High prevalence of extended-spectrum-β-lactamase-producing *Enterobacteriaceae* in organic and conventional retail chicken meat, Germany. J. Antimicrob. Chemother. 67:2631–2634.
- Egea P, Lopez-Cerero L, Torres E, del Gomez-Sanchez MC, Serrano L, Navarro Sanchez-Ortiz MD, Rodriguez-Bano J, Pascual A. 2012. Increased raw poultry meat colonization by extended spectrum β-lactamase-producing *Escherichia coli* in the south of Spain. Int. J. Food Microbiol. 159:69–73.
- 3. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Platteel T, Fluit AC, van de Sande-Bruinsma N, Scharinga J, Bonten MJ, Mevius DJ. 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 17:873–880.
- Seiffert SN, Hilty M, Kronenberg A, Droz S, Perreten V, Endimiani A. 2013. Extended-spectrum cephalosporin-resistant *Escherichia coli* in community, specialized outpatient clinic and hospital settings in Switzerland. J. Antimicrob. Chemother. 68:2249–2254.
- Hilty M, Betsch BY, Bögli-Stuber K, Heiniger N, Stadler M, Kuffer M, Kronenberg A, Rohrer C, Aebi S, Endimiani A, Droz S, Mühlemann K. 2012. Transmission dynamics of extended-spectrum β-lactamase-

producing *Enterobacteriaceae* in the tertiary care hospital and the house-hold setting. Clin. Infect. Dis. 55:967–975.

- 6. Endimiani A, Rossano A, Kunz D, Overesch G, Perreten V. 2012. First countrywide survey of third-generation cephalosporin-resistant *Escherichia coli* from broilers, swine, and cattle in Switzerland. Diagn. Microbiol. Infect. Dis. 73:31–38.
- 7. Zong Z, Partridge SR, Iredell JR. 2009. A $bla_{\rm VEB-1}$ variant, $bla_{\rm VEB-6}$, associated with repeated elements in a complex genetic structure. Antimicrob. Agents Chemother. 53:1693–1697.
- Seiffert SN, Hilty M, Perreten V, Endimiani A. 2013. Extendedspectrum cephalosporin-resistant gram-negative organisms in livestock: an emerging problem for human health? Drug Resist. Updat. 16:22–45.
- Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gramnegative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35:736–755.
- 10. Endimiani A, Hilty M, Perreten V. 2012. CMY-2-producing *Escherichia coli* in the nose of pigs. Antimicrob. Agents Chemother. 56:4556–4557.
- 11. D'Andrea MM, Literacka E, Zioga A, Giani T, Baraniak A, Fiett J, Sadowy E, Tassios PT, Rossolini GM, Gniadkowski M, Miriagou V. 2011. Evolution and spread of a multidrug-resistant *Proteus mirabilis* clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob. Agents Chemother. 55:2735–2742.
- Siebor E, Neuwirth C. 2011. The new variant of *Salmonella* genomic island 1 (SGI1-V) from a *Proteus mirabilis* French clinical isolate harbours *bla*_{VEB-6} and qnrA1 in the multiple antibiotic resistance region. J. Antimicrob. Chemother. 66:2513–2520.
- Potron A, Poirel L, Elhag K, Al Yaqoubi F, Nordmann P. 2009. VEB-6 extended-spectrum β-lactamase-producing *Proteus mirabilis* from Sultanate of Oman. Int. J. Antimicrob. Agents 34:493–494.
- 14. EUCAST. 2013. European Committee on Antimicrobial Susceptibility Testing clinical breakpoints. Version 3.0.