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Rifampin is a potent inducer of cytochrome P450 (CYP) enzymes and transporters. Drug-drug interactions during tuberculosis
treatment are common. Induction by rifapentine and rifabutin is understudied. Rifampin and rifabutin significantly induced
CYP3A4 (80-fold and 20-fold, respectively) in primary human hepatocytes. The induction was concentration dependent. Rifap-
entine induced CYP3A4 in hepatocytes from 3 of 6 donors. Data were also generated for ABCB1, ABCC1, ABCC2, organic anion-
transporting polypeptide 1B1 (OATP1B1), and OATP1B3. This work serves as a basis for further study of the extent to which
rifamycins induce key metabolism and transporter genes.

Tuberculosis is a major global health problem (1). Effective
short-course therapy lasts for 6 months but requires rifampin,

and clinically significant drug-drug interactions are common due
to induction of cytochrome P450 3A4 (CYP3A4) and key drug
transporters included herein (1–3). Hence, antiretroviral coad-
ministration with tuberculosis treatment is particularly challeng-
ing. Besides CYP3A4, drug transporters can significantly alter the
absorption and distribution of drugs. Many compounds used in
human immunodeficiency virus treatment, particularly the pro-
tease inhibitors and nucleoside reverse transcriptase inhibitors,
are transported by proteins such as ABCB1 (3), ABCC2 (4), or-
ganic anion-transporting polypeptide 1B1 (OATP1B1), and
OATP1B3 (5, 6). The genes encoding these proteins are influential
in the safety, efficacy, and disposition of many drugs. For example,
the induction of ABCB1 by rifampin decreases the area under the
curve (AUC) of efavirenz by 22% (2). Rifabutin is considered a
less-potent inducer and is often used in place of rifampin for pa-
tients receiving antiretroviral drugs for human immunodeficiency
virus to reduce the risk of drug interactions (7–9). The substitu-
tion of rifapentine for rifampin may reduce the treatment dura-
tion required for cure, but the induction potential of rifapentine is
comparatively understudied (2, 10). The sterilizing activity of ri-
fapentine is dose dependent in an established mouse model of
tuberculosis, with eradication possible in 3 months or less when
high-dose rifapentine is substituted for rifampin in a multidrug
treatment regimen (11, 12). However, dose increases resulted in
less-than-dose-proportional increases in rifapentine exposures
(10, 13). In addition, the mean area under the concentration-time
curve of oral midazolam, a CYP3A4 probe, decreased by 75%
when coadministered with rifampin, compared to 92% when co-
administered with rifapentine, each given at 10 mg/kg of body
weight daily (14). We evaluated the in vitro induction of CYP3A4
and transporters by rifampin, rifabutin, and rifapentine in pri-
mary human hepatocyte samples from six donors. Other studies
have previously investigated the induction of CYP activity by ri-
fampin, rifabutin, and rifapentine (9) and the mRNA expression
of drug transporters induced by rifampin (3, 6), but no studies
have comprehensively compared the mRNA induction of CYPs

and transporters in primary human hepatocytes with all 3 com-
pounds in parallel.

Cryopreserved hepatocyte recovery medium (CHRM me-
dium), Williams’ E medium, plating and supplement medium,
cryopreserved human hepatocytes, plating cocktail, maintenance
cocktail, gene expression assays, and 96-well collagen-coated
plates were purchased from Life Technologies (Paisley, Scotland,
United Kingdom). All other chemicals were purchased from Sig-
ma-Aldrich (Poole, Dorset, United Kingdom), unless otherwise
indicated.

Rifampin, rifabutin, and rifapentine were prepared as 10 mM
stocks in methanol and further diluted in hepatocyte medium to
the required concentrations. Cryopreserved human hepatocytes
(from 6 human donors) were thawed according to the manufac-
turer’s instructions (15) and resuspended in William’s E medium
supplemented with plating cocktail (1 �M dexamethasone, a 1%
solution of penicillin-streptomycin, 4 �g/ml insulin, 5% fetal bo-
vine serum, 2 mM GlutaMAX, and 15 mM HEPES [Life Technol-
ogies, Paisley, United Kingdom]). Cell numbers and viability were
assessed using trypan blue exclusion. Cells were seeded in 24-well
plates precoated with collagen at a density of 2 � 105 cells per well
and were incubated for 12 h at 37°C with 5% CO2 and 95% hu-
midity. The medium was replaced with Williams’ E medium sup-
plemented with maintenance cocktail (0.1 �M dexamethasone, a
0.5% solution of penicillin-streptomycin, 2 mM GlutaMAX, 15
mM HEPES, 6.25 �g/ml human recombinant insulin, 6 �g/ml
human transferrin, 6 �g/ml selenous acid, 1.25 �g/ml bovine se-
rum albumin, and 5.35 �g/ml linoleic acid [Life Technologies,
Paisley, United Kingdom]). Hepatocytes were incubated with ri-
fampin, rifabutin, or rifapentine at concentrations spanning the
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therapeutic range (0.5, 5, and 10 �M) for 24 h; for rifampin, these
concentrations have previously been shown to cause no toxicity
(3). Control cells (0 �M) contained the same volume of methanol
and hepatocyte medium. RNA was extracted using TRIzol reagent
and reverse transcribed using the standard methodology recom-
mended by Life Technologies. Gene expression analysis was con-
ducted for OATP1B1, OATP1B3, ABCB1, ABCC1, ABCC2, and
CYP3A4 by real-time PCR. Gene expression was normalized to
that of the housekeeping gene, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), and compared to that of the control (0 �M)
using the comparative CT method (CT � 2���CT; CT, cycle num-
ber at which the fluorescence in the reaction crosses the preset
arbitrary threshold; �CT, difference between the CT target and
reference; ��CT, difference between the �CT of the test and the
�CT of the preassigned control). The normality of the data was
assessed using a Shapiro-Wilk test, and statistical analysis con-
ducted using the paired t test or Wilcoxon signed-rank test for
normally or nonnormally distributed data, respectively.

The effects of rifampin, rifabutin, and rifapentine on ABCB1
and CYP3A4 mRNA are shown in Fig. 1. The fold changes in gene
expression for OATP1B1, OATP1B3, ABCC1, and ABCC2 when
treated with rifampin, rifabutin, and rifapentine are shown in
Table 1. Rifampin elicited significant upregulation of ABCB1 from

5 �M and of CYP3A4 from 0.5 �M. Concentration-dependent
induction was observed for both genes, with the greatest induction
observed at 10 �M (80-fold [P � 0.03] and 5-fold [P � 0.03] for
CYP3A4 and ABCB1, respectively). Rifampin significantly up-
regulated OATP1B1 (2-fold [P � 0.03]) and ABCC2 (3-fold [P �
0.03]) at 10 �M (similar to the results of Haenisch et al., 2011).
Rifabutin elicited a 20-fold upregulation in CYP3A4 gene expres-
sion (P � 0.05) and a 4-fold upregulation of OATP1B3 (P � 0.04)
at 5 �M.

When analyzed as the average of the results for the hepatocytes
from the 6 donors, rifapentine did not significantly induce the
expression of CYP3A4, but significant induction was observed in
hepatocytes from 3 of 6 donors when analyzed individually.
ABCB1 was the only gene significantly induced by rifapentine (4-
fold [P � 0.04]) at 10 �M. The results herein suggest the hierarchy
of the rifamycins’ potency as CYP3A4 inducers to be rifampin �
rifabutin � rifapentine, while previous studies found that rifap-
entine was more potent than rifabutin (8). However, both studies
agree that rifampin is the most-potent inducer of CYP3A4.

Consistent with all primary hepatocyte studies, great interdo-
nor variability was observed (16). However, concentration-de-
pendent responses were seen for most genes (including CYP3A4).
This work highlights the extent to which rifampin induces

FIG 1 Relative gene expression of cytochrome P450 isoenzyme 3A4 and ABCB1 in primary hepatocytes when incubated with rifampin (RIF), rifabutin (RBT),
or rifapentine (RPT) at 0, 0.5, 5, and 10 �M. Data were normalized to results for GAPDH housekeeping gene and for control primary hepatocytes (0 �M) using
the comparative CT method (CT � 2���CT). Tukey box plot represents the means and interquartile ranges (IQR) (n � 6 donors completed in triplicate), with
boxes showing IQR and whiskers representing �1.5 � IQR. Data outside 1.5 � IQR are labeled as outliers (●). An asterisk indicates a significant difference from
the control (0 �M) by paired t test or Wilcoxon signed-rank test (P � 0.05).
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CYP3A4-mediated metabolism and the transport of compounds
compared to the induction by rifapentine, a potential alternative.
Larger increases in CYP3A4 mRNA expression were observed
when hepatocytes were treated with rifampin than with rifabutin
and rifapentine at the same micromolar concentration. In con-
trast to the data herein, a study with healthy volunteers found that
the AUC of midazolam was decreased 17% more when coadmin-
istered with rifapentine than with rifampin (14). However, at
standard daily doses, the average rifampin, rifabutin, and rifapen-
tine concentrations are approximately 2.3 �M, 0.3 �M, and 15.7
�M, respectively (8, 17, 18). Of particular note, the plasma con-
centrations of rifabutin in patients are comparatively low, and this
may help rationalize the limited induction by rifabutin seen clin-
ically. Thus, there is a spectrum of levels of induction by rifampin,
rifabutin, and rifapentine, but the data should be interpreted in
the context of differences in plasma concentrations seen clinically.
The data should also be interpreted in the context that concentra-
tions in hepatocytes and/or gut may exceed those found in the
plasma of patients. The unbound plasma concentration is often
used to estimate clinical drug interactions. However, protein
binding can be dependent on health status. For example, rifampin
is 87 to 91% bound in healthy individuals but 84 to 88% bound in
tuberculosis-infected individuals (19). Nonetheless, it should be
noted that several previous investigations have shown that effects
at the mRNA level are not always translated to activity (3, 7, 20).

An ATP binding cassette transporter (ABC), ABCB1, is a trans-
membrane efflux protein responsible for the removal of a broad
range of bile acids, lipids, and xenobiotics from hepatocytes (21).
Rifampin and rifapentine significantly induced ABCB1; hence, an
enhanced clearance of coadministered substrates may be pre-
dicted. Also, rifampin, rifapentine, ethambutol, and isoniazid are
all substrates of ABCB1 (7, 22, 23), suggesting a potential role in
autoinduction and potential effects between drugs within a Myco-
bacterium tuberculosis treatment regimen. A significant upregula-
tion of OATP1B1 mRNA was also observed with 10 �M rifampin.
Given that rifampin is in itself a substrate for OATP1B1 (24) and
that polymorphisms within the SLCO1B1 gene affect rifampin
pharmacokinetics (25), these data indicate an involvement of
OATP1B1 in the reported rifampin autoinduction (26).

Current clinical trials are investigating high-dose daily rifapen-

tine (Tuberculosis Trials Consortium Study 29X [27]) and high-
dose rifampin (PanACEA Consortium [28]) as potential regimens
to shorten tuberculosis treatment. In vitro results suggest that in-
creasing the concentration of rifapentine may lead to clinically
relevant drug-drug interactions mediated through ABCB1.
Boeree et al. (28) found that 35 mg/kg of rifampin daily was safe
and well tolerated over 14 days and that early bactericidal activity
increased with increasing dose, with no apparent plateau. Trials
are now being planned to assess the activity of high-dose rifampin
over 8 weeks. Our data suggest that concentration-dependent in-
duction should be considered when interpreting the results of
ongoing trials of higher-dose rifampin and rifapentine, since it
cannot be assumed that maximum autoinduction is achieved at
standard doses. With the absence of an apparent ceiling as drug
exposure increases (28), rifampin doses above those used in the
clinic today may lead to significant and highly variable drug-drug
interactions, which is of considerable clinical concern.
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