
Activity of Ceftaroline against Enterococcus faecium PBP5

Xavier Henry,* Oliver Verlaine, Ana Amoroso, Jacques Coyette, Jean-Marie Frère, Bernard Joris

Bacterial Physiology and Genetics Unit, Center for Protein Engineering, Life Science Department, University of Liège, Liège, Belgium

The opportunistic human pathogen Enterococcus faecium overproduces the low-affinity PBP5. In clinical strains, mutations in
PBP5 further reduce its acylation rate by �-lactams. Previous studies have reported that ceftaroline had poor inhibitory activity
against �-lactam-resistant E. faecium strains. In this study, we show that ceftaroline exhibits killing activity against our labora-
tory-derived ampicillin-resistant E. faecium mutant that overproduces a wild-type PBP5 and that ceftaroline inactivates PBP5
much faster than benzylpenicillin and faster than ceftobiprole.

�-Lactam antibiotics (penicillins, cephalosporins, carbapen-
ems, and monobactams) represent the most important group

of drugs prescribed to treat bacterial infections. They form stable
acyl-enzymes with their targets, the membrane-bound D, D-trans-
peptidases, which are essential enzymes in peptidoglycan biosyn-
thesis. These proteins are usually referred to as penicillin-binding
proteins (PBPs) (1–3). The presence or overproduction of lower-
affinity PBPs is responsible for the resistance of Gram-positive
cocci against �-lactam antibiotics. It is known that the opportu-
nistic human pathogen Enterococcus faecium overproduces the
low-affinity PBP5 and that mutations further reduce the acylation
rate of PBP5 by altering its amino acid sequence (4, 5). Ceftaroline
is a cephalosporin with broad-spectrum activity against Gram-
positive organisms, including methicillin-resistant Staphylococcus
aureus (MRSA), and many common Gram-negative bacteria ex-
cept those producing extended-spectrum �-lactamase (ESBL) or
AmpC �-lactamase (6–8). The Staphylococcus aureus low-affinity
PBP2a is closely related to PBP5 (9). It is inhibited by ceftaroline,
the active metabolite of the prodrug ceftaroline fosamil, which
was recently approved by the U.S. Food and Drug Administration
(FDA) for use in adult patients with acute bacterial skin and skin-
structure infections and community-acquired bacterial pneumo-
nia and more recently approved by the European Medicines
Agency (EMA) for similar indications (10, 11). Previous studies
have reported that ceftaroline had poor inhibitory activity against
�-lactam-resistant E. faecium strains, all of which were expected to
possess a PBP5 protein (6, 12). To better understand these differ-
ences, we have characterized the interaction between a wild-type
form of PBP5 and ceftaroline.

Ceftaroline MIC values determined by the microdilution
method (13) for E. faecium D63r and D63 strains (5) were 2 and
0.25 mg · liter�1, respectively. These values contrasted with those
reported by others (10–12), who have found that most ampicillin-
resistant E. faecium clinical isolates were resistant to ceftaroline
and concluded that ceftaroline had little activity against most iso-
lates of E. faecium. The killing effects (14) of ceftaroline on E.
faecium D63 and D63r strains were studied by exposing exponen-
tially growing cultures of both strains to increasing concentrations
of antibiotics corresponding to 1 and 4 times their respective
MICs (Fig. 1). Ceftaroline showed killing effects (1 log drop after
24 h) for concentrations higher than the MICs. We determined
the 50% inhibitory concentration (IC50) values of ceftaroline,
benzylpenicillin, cefepime, and ceftazidime on the various PBPs of
E. faecium D63 and D63r by using purified membrane prepara-
tions and fluorescent ampicillin (5, 15). Titration of the PBPs by
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FIG 1 Drug binding studies for ceftaroline with D63 and D63r membrane
fractions. MICs of D63 (A) and D63r (B) for ceftaroline were 0.25 mg/liter and
2 mg/liter, respectively. The surviving bacteria were counted after 0, 4, and 24
h of incubation at 37°C by subculturing serial dilutions (at least 10-fold, to
minimize drug carryover). For all data, the standard deviations were below
10% of the mean.
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ceftaroline (Fig. 2 and Table 1) revealed that at twice the MIC
values, all high-molecular-mass PBPs were inhibited by the anti-
biotic (Fig. 2) and that the low-molecular-mass PBP6, a D, D-car-
boxypeptidase (16), was not affected. This inhibition pattern is
completely different from that obtained with benzylpenicillin, for

which PBP5 is the most resistant PBP (17). The IC50s for ceftaro-
line on PBP5 were 1.40 � 0.09 mg/liter and 0.7 mg/liter when
determined with membrane preparations and the purified sPBP5,
respectively. The kinetic parameters governing the acylation of
PBP5 by ceftaroline were determined by using the sPBP5 (a solu-
ble PBP5 from which the N-terminal membrane anchoring pep-
tide was removed), which was overproduced and purified as pre-
viously described, except that the molecular sieve step was
eliminated (18). The kinetics model used has been described pre-
viously (17). On the basis of the data shown in Fig. 3, the second-
order rate constant k�2/K for ceftaroline was 950 � 70 M�1 s�1,
i.e., 50 to 100 times higher than the value reported for benzylpen-
icillin (15 to 24 M�1 s�1), which indicates that ceftaroline inacti-
vates sPBP5 much faster than benzylpenicillin (5) and faster than
ceftobiprole, another anti-MRSA cephalosporin (k�2/K � 110 �
10 M�1 s�1 [13]). While the inhibitory activity of ceftaroline for E.
faecium PBP5 is significant, the k�2/K rate constant for sPBP5 is 15
to 25 times lower than those determined for MRSA PBP2a
(23,600 � 2,000 M�1 s�1 [unpublished data]) produced and pu-
rified in our laboratory (19) and for the penicillin-resistant Strep-
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FIG 2 PBP binding studies for ceftaroline with membrane fractions from D63
and D63r. The concentration of ceftaroline in the competition assay with
fluorescent ampicillin is indicated in �g/ml.

TABLE 1 Inhibition of PBPs from E. faecium D63 and D63r strains

Strain Antibiotic

IC50
a (mg/liter) for PBP:

MIC (mg/liter)1 2 3 4 5 6

D63r Benzylpenicillin 1.6 � 0.4 0.06 � 0.01 0.6 � 0.3 8 � 5 55 � 15 2 � 1 70
Cefepime 1.7 � 0.6 0.6 � 0.3 0.5 � 0.1 �200 �200 �50 �100
Ceftazidime 0.9 � 0.6 0.5 � 0.3 0.04 � 0.01 �200 �200 �50 �100
Ceftobiprole 0.7 � 0.1 0.2 � 0.1 0.5 � 0.1 1.8 � 0.2 1 � 0.2 �16 8
Ceftaroline 0.63 � 0.09 0.07 � 0.01 0.06 � 0.01 0.97 � 0.03 1.38 � 0.1 �50 2

D63 Benzylpenicillin 0.9 � 0.7 0.1 � 0.07 1.3 � 0.6 10 � 8 75 � 25 1.5 � 1 5
Ceftobiprole 0.6 � 0.2 0.2 � 0.1 0.6 � 0.2 1.5 � 0.3 0.7 � 0.1 �16 2
Ceftaroline 0.64 � 0.04 0.07 � 0.01 0.06 � 0.01 0.212 � 0.03 0.53 � 0.03 �50 0.25

a Concentration of �-lactam antibiotic that reduced binding of fluorescent ampicillin by 50% compared to a control containing no drug. IC50s for D63r PBP5 against antibiotics
other than ceftaroline were previously published (17).
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FIG 3 Variation of the pseudo-first-order inactivation rate constant (ka) as a
function of ceftaroline concentration. The opening of the ceftaroline �-lactam
ring due to the acylation reaction was monitored by recording the decrease of
absorbance at 300 nm (	ε � 4,330 M�1 cm�1) with a Specord 200 spectro-
photometer (Analytik Jena, Germany), at 30°C in 10 mM phosphate buffer
(pH 7.0) with 10 �M sPBP5.

Ceftaroline against Enterococcus faecium

December 2013 Volume 57 Number 12 aac.asm.org 6359

http://aac.asm.org


tococcus pneumoniae PBP2x (12,600 M�1 s�1) (20). The sPBP5-
ceftaroline adduct was very stable. Indeed, no free enzyme could
be detected after a 4-hour incubation of the isolated acyl-enzyme
at 37°C.

We have shown that ceftaroline inactivates the low-affinity E.
faecium PBP5 more efficiently than benzylpenicillin. It exhibits
bacterial killing against our laboratory-derived ampicillin-resis-
tant E. faecium mutant that overproduces the wild-type PBP5.
Such a profile differs from those of most E. faecium clinical iso-
lates, which were reported as resistant to all �-lactams, including
ceftaroline (6). Like other cephalosporins, ceftaroline is not indi-
cated for treatment of enterococcal infections. It is likely that most
E. faecium clinical isolates produce mutant PBP5 forms with re-
duced affinity. This suggests that simple overexpression of wild-
type PBP5 is sufficient to moderately increase the MIC for ceftaro-
line but that amino acid substitutions in the protein are necessary
to confer high-level resistance. Among the �-lactams tested to
date, ceftaroline has the highest affinity for wild-type PBP5, which
makes it a potentially useful tool for PBP5 studies.
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