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ICESluvan, a 94-Kilobase Mosaic Integrative Conjugative Element
Conferring Interspecies Transfer of VanB-Type Glycopeptide
Resistance, a Novel Bacitracin Resistance Locus, and a Toxin-
Antitoxin Stabilization System
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A 94-kb integrative conjugative element (ICESIuvan) transferable to Enterococcus faecium and Enterococcus faecalis from an
animal isolate of Streptococcus lutetiensis consists of a mosaic of genetic fragments from different Gram-positive bacteria. A
variant of ICESluvan was confirmed in S. lutetiensis from a patient. A complete Tn5382/Tn1549 with a vanB2 operon is inte-
grated into a streptococcal ICESde3396-like region harboring a putative bacteriophage exclusion system, a putative agglutinin
receptor precursor, and key components of a type IV secretion system. Moreover, ICESIuvan encodes a putative MobC family
mobilization protein and a relaxase and, thus, in total has all genetic components essential for conjugative transfer. A 9-kb ele-
ment within Tn5382/Tn1549 encodes, among others, putative proteins similar to the TnpX site-specific recombinase in Faecali-
bacterium and VanZ in Paenibacillus, which may contribute to the detected low-level teicoplanin resistance. Furthermore,
ICESluvan encodes a novel bacitracin resistance locus that is associated with reduced susceptibility to bacitracin when trans-
ferred to E. faecium. The expression of a streptococcal pezAT toxin-antitoxin-encoding operon of ICESluvan in S. lutetiensis, E.
faecium, and E. faecalis was confirmed by reverse transcription (RT)-PCR, indicating an active toxin-antitoxin system which
may contribute to stabilizing ICESIuvan within new hosts. Junction PCR and DNA sequencing confirmed that ICESIuvan excised
to form a circular intermediate in S. lutetiensis, E. faecalis, and E. faecium. Transfer between E. faecalis cells was observed in the
presence of helper plasmid pIP964. Sequence analysis of the original S. lutetiensis donor and enterococcal transconjugants
showed that ICESluvan integrates in a site-specific manner into the C-terminal end of the chromosomal tRNA methyltransferase

gene rumaA.

H orizontal gene transfer is a key factor in bacterial evolution,
and mobile genetic elements (MGEs) play an important role
in the dissemination and persistence of antimicrobial resistance in
enterococci. Genome sequence analysis and comparative genome
hybridizations of seven Enterococcus faecium isolates from various
sources have revealed large differences in genome size, mostly due
to the variable presence of mobile genetic elements. The E. faecium
pan-genome is considered to be unrestricted in size (1), implying
that excess genes, such as those involved in environmental persis-
tence, colonization, and virulence, can easily be incorporated into
the E. faecium gene pool. Up to 38% of the E. faecium genome may
be noncore, and differences in gene content indicate that gain and
loss of genes as important in the evolution of E. faecium (1, 2, 3).
These findings are consistent with the presence of more than 25%
mobile or foreign DNA in Enterococcus faecalis V583 (3, 4), sug-
gesting extensive genome plasticity.

The first high-level vancomycin-resistant enterococci (VRE)
were described in 1988 (5, 6). VRE have since become an increas-
ing nosocomial problem both in Europe and the United States (7,
8). The origin of vancomycin resistance determinants is not
known, although soil bacteria seem to represent a rich and as-
sorted reservoir of genes closely related to vanA (9). Moreover,
analyses of genomes from invasive vanB-positive E. faecium iso-
lates and vanB-positive anaerobic gut commensals demonstrate
that vanB resistance in enterococci commonly arises through gene
transfer from members of other bacterial genera in the human
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gastrointestinal tract (10). The vanB cluster is mainly found in E.
faecium and E. faecalis, though it has also been described in isolates
of vanB-resistant Enterococcus gallinarum (11, 12, 13, 14), Entero-
coccus hirae (15), Enterococcus durans (16), Enterococcus casselifla-
vus (17), Staphylococcus (18), Streptococcus (19, 20, 21, 22), Egg-
erthella, Clostridium, Ruminococcus (23, 24, 25, 26, 27), and
Atopobium (27).

The vanB gene cluster has a conserved gene order and can be
divided into three genetic subtypes, vanB1, vanB2, and vanB3 (28,
29, 30, 31, 32). As an integral part of the conjugative transposon
Tn5382/Tn1549, vanB2 is the most-widespread subtype in clini-
cally important enterococci (30, 33, 34, 35, 36, 37, 38). Tn5382/
Tn1549is able to support transfer of the vanB2 operon from Clos-
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TABLE 1 Bacterial strains used in this study and their relevant characteristics

MIC mg liter ™"

Strain Species Properties” Vancomycin ~ Teicoplanin  Bacitracin ~ Reference(s)

5-F9 S. lutetiensis ~ Van' veal calf strain with vanB2 Tn5382 =256 3 =256 19,20
chromosomally located

NEM?760 S. lutetiensis Van' human patient strain with vanB2 =256 4 =256 22,42
chromosomally located

4-Cl11 S. gallolyticus ~ Van" veal calf strain with nontransferable vanB2 =256 32 24 19,20
Tn5382 and vanA

4-G10 S. gallolyticus  Van' veal calf strain with nontransferable vanB2 =256 64 =256 19, 20
Tn5382 and vanA

Co8 E. faecium vanB2 Tn5382 type strain 40

BM4105-RF E. faecium Rif" Fus® plasmid-free recipient 1,5 0,5 48 46

MM5-F9a E. faecium Transconjugant resulting from mating of 5-F9 and 32 3 =256 20
BM4105-RF

OGI1-RF E. faecalis Rif" Fus® recipient derived from OG1 4 0,25 24 73

OG5-F9a E. faecalis Transconjugant resulting from mating of 5-F9 and =256 3 32 This study
OGI1-RF

JH2-2 E. faecalis Rif" Fus" plasmid-free recipient derived from JH2 3 1 16 74

JH5-F9a E. faecalis Transconjugant resulting from mating of 5-F9 and =256 3 8 20
JH2-2

Uv202 E. faecalis Rif" Fus® plasmid-free recipient, recombination- 1,5 0,5 128 75
deficient derivative of JH2-2

UV5-Fod E. faecalis Transconjugant resulting from mating of 5-F9 and =256 3 192 20
Uv202

BM4110 E. faecalis Str' plasmid-free recipient strain derived from JH2 1,5 0,25 96 76

BM4110 pIP964 E. faecalis Str' recipient strain derived from JH2 containing 1,5 0,38 =256 76
plasmid pIP964 (pCF10 rep agg* Tra™, 65 kb)

ICESluvan BM4110 pIP964  E. faecalis 1st-generation transconjugant resulting from =256 3 =256 This study
mating of donor 5-F9 and BM4110 pIP964

ICESluvan pIP964 JH2-2 E. faecalis 2nd-generation transconjugant resulting from =256 3 =256 This study
mating of ICESIuvan BM4110 pIP964 and
JH2-2

ICESluvan pIP964 UV202  E. faecalis 2nd-generation transconjugant resulting from =256 3 192 This study

mating of ICESIuvan BM4110 pIP964 and

Uv202

@ Van', vancomycin resistant; Rif, rifampin resistant; Fus, fusidic acid resistant; Str", streptomycin resistant.

tridium to enterococci in the intestinal environment (39), but the
transposon is more often transferred as a part of larger chromo-
somal elements or plasmids (30, 35, 37, 40, 41).

An approximately 100-kb transferable chromosomal element
containing vanB2 has been described in a patient isolate of Strep-
tococcus lutetiensis previously designated Streptococcus bovis bio-
type II with vanB3 (22, 42) and in the plasmid-free S. lutetiensis
strain 5-F9 from animal feces (20). The vanB2 cluster of the 5-F9
strain has previously been shown to be an integral part of a
Tn5382/Tn1549 element (20) and was transferred to E. faecium
and E. faecalis at relatively high frequencies (1077 to 107°). In
contrast, the element was unable to transfer between E. faecium
and E. faecalis strains (20, 42), which suggests a coresident transfer
system in Streptococcus (42). Retransfer of the ~100-kb element
from the patient isolate between E. faecalis strains, including to a
recombination-deficient recipient, was obtained in the presence
of a conjugative helper plasmid (42), and the ~100-kb element
appeared to integrate in a site-specific manner (20, 42). Transfer
of this ~100-kb chromosomal element from the S. lutetiensis
strain that contains no visible plasmids into enterococci suggests
self-encoded transfer functions consistent with an integrative and
conjugative element (ICE) (20). The transfer mechanism has not
been resolved.
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Here, we describe the sequencing, annotation, and functional
analysis of the 94-kb element designated ICESIuvan, originally
detected in S. lutetiensis from animal feces in the Netherlands. A
variant of this element was confirmed in the S. lutetiensis patient
isolate from France. The element encodes VanB-type vancomycin
resistance on conjugative transposon Tn5382/Tn1549,a VanZ ho-
mologue which may contribute to the detected low-level resis-
tance to teicoplanin, a novel bacitracin locus which seems to con-
tribute to bacitracin resistance in S. lutetiensis and E. faecium, and
a streptococcal toxin-antitoxin (TA) pezAT locus, as well as all
essential components for conjugative transfer. ICESIuvan excises
to form a circular intermediate in S. lutetiensis, E. faecalis, and E.
faecium and integrates in a site-specific manner. However, trans-
fer between enterococci required a helper plasmid. The expression
of the pezA T operon indicates a functional toxin-antitoxin system.

MATERIALS AND METHODS

Bacterial strains and construction of BAC clones. The bacterial strains
used in this study and their relevant characteristics are given in Table 1.
Briefly, genomic DNA from the E. faecium transconjugant MM5-F9a was
used to generate a bacterial artificial chromosome (BAC) library with an
average insert size of 90 kb (MWG Biotech AG). MM5-F9a was obtained
by transfer of the ICESIuvan element from S. lutetiensis 5-F9, isolated from

Journal of Bacteriology


http://jb.asm.org

the feces of a veal calf in the Netherlands, to recipient E. faecium
BM4105-RF by filter mating (20). The vanB2-containing strains S. lute-
tiensis NEM760, Streptococcus gallolyticus 4-C11, and S. gallolyticus 4-G10
were included to search for ICESluvan in streptococci. E. faecalis
transconjugants OG5-F9a, JH5-F9a, and UV5-F9d and laboratory strains
OG1-RF, JH2-2, BM4110, and UV202 were used for various studies of
ICESluvan as indicated below. Total DNA from E. faecium C68 (40) was
used as the template for probe synthesis.

Selection and sequencing of BAC clones. Sequential dot blot and
Southern hybridizations were used to identify BAC clones positive for
both vanB2 and Tn5382/Tn1549. PCR-based probes were made (PCR
digoxigenin [DIG] probe synthesis kit; Boehringer Mannheim) for vanB
using the consensus primers 5-CAAAGCTCCGCAGCTTGCATG-3'
and 5'-TGCATCCAAGCACCCGATAATAC-3' (29) and for Tn5382 us-
ing primers 5'-GTTCTTATTCCGCAGGTGGTGATT-3" and 5'-ACGCC
ATGCTATTTACTTCCGGC-3’ (40). Hybridizations were detected using
the DIG luminescent detection kit (Boehringer Mannheim). Plasmid
DNA was isolated from BAC clones that scored positive for one or both
probes (n = 24). Clones were grown overnight in yeast extract-tryptone
(YT) medium containing 12.5 wg ml~"' chloramphenicol, plasmid repli-
cation was induced (Epicentre induction solution; Epicentre), and BAC
DNA was purified using the E.Z.N.A BAC/PAC kit (Omega Bio-Tek).
NotlI (New England BioLabs)-digested plasmid DNA was separated on a
1.2% agarose gel, 5 to 15 s, 6 V/cm, 16 h, at 15°C on a CHEF-DR III
(Bio-Rad) and analyzed by Southern hybridization. Five clones positive
for both probes and with an average insert size of 90 kb were selected for
sequencing.

Libraries of the BAC inserts of each selected clone were constructed
with the use of multiplex identifiers (MIDs) and sequenced to an average
depth of 91.5-times coverage using 454-GS-FLX technology. The BAC
inserts were de novo assembled individually with Newbler (Roche).

End sequencing of the BAC inserts provided additional geographical
information for contig ordering. End sequencing and extension of contigs
were set up using extracted BAC DNA and BigDye 3.1 for cycle sequencing
and an ABI prism 377 genetic analyzer (Applied Biosystems). The cycle
sequencing program was as follows: initial denaturation at 96°C for 5 min
followed by 99 cycles of 96°C for 30 s, 52°C for 10 s, and 60°C for 4 min
(primers available on request).

DNA extraction and sequencing of transconjugants. Genomic DNA
from transconjugants was obtained using a bacterial DNA kit (E.Z.N.A)
with the following modifications: lysis was performed at 30°C for 40 min
using 1.5 mg lysozyme and 100 U mutanolysin in a total volume of 220 pl.
Direct genome sequencing of the transconjugants was performed as for
BAC end sequencing.

Gap closure and annotation. Abacas (http://abacas.sourceforge.net
/index.html) was used to map contigs from the de novo assembly against
Streptococcus suis BM407 (FM252032) and Tn1549 (AF192329). The se-
quence was annotated using Artemis software (43). Homology compari-
sons to nonredundant protein databases were performed with BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and FASTA (http://www.ebi.ac
.uk/Tools/fasta33/index.html) software. Protein motifs were identified
using Pfam (http://pfam.sanger.ac.uk/search) and Prosite (http://au
.expasy.org/prosite/). Transmembrane domains were identified with
TMHMM (http://www.cbs.dtu.dk/servicessTMHMMY/), and signal se-
quences were identified with SignalP version 3.0 (44). Comparison of the
large mobile elements was facilitated using the Artemis Comparison Tool
(ACT) (45), which enabled the visualization of BLASTN and TBLASTX
comparisons between these sequences.

Verification of sequence assembly by PCRs. To verify the sequence
assembly, over 40 PCRs with an average product size of 2.5 kb were per-
formed in ICESIuvan (see Table S1 in the supplemental material), using
genomic DNA of transconjugants E. faecium MM5-F9a and OG5-F9a and
E. faecalis JH5-F9a as templates. Some of these primers were used to con-
firm the presence of ICESIuvan regions (see Table S1) in streptococci (S.
lutetiensis 5-F9 and NEM760 and S. gallolyticus 4-C11 and 4-G10) and to
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sequence the bacitracin locus in the E. faecalis transconjugants OG5-F9a
and JH5-F9a.

RNA extraction for expression analyses. The expression of the pezAT
operon was analyzed by semiquantitative reverse transcription (RT)-
PCR. Total RNA was extracted from stationary-phase cultures using an
RNeasy minikit (Qiagen) with an extended lysis step of 1 h with 10 mg
lysozyme and 10 U mutanolysin in a total volume of 200 pl. DNA con-
tamination was removed by DNase I treatment, and RNA quality and
quantity examined by gel analyses and spectrophotometric measurements
prior to cDNA synthesis. Reverse transcription of 100 ng total RNA was
performed using SuperScript II (Invitrogen). For each sample, a control
reaction (without reverse transcriptase) with no enzyme was included.
PCR was performed using primer sets specific for each of the genes (pezAF
[5"-TGACCTGGAATCGTCTTTCC-3'] and pezAR [5'-TGGCCGAATT
GATTAACACA-3'] and pezTF [5'-TTTTTCCTGCAAATCCCTTG-3’]
and pezTR [5'-GACAAAGCGGAGCAGGTAAG-3']). In addition, PCR
using primers pezTF and pezAR was performed. Amplicons were visual-
ized on an agarose gel and confirmed by sequencing using BigDye 3.1
technology (Applied Biosystems).

Verification of ICESIuvan circularization. Circularization of the
ICESluvan element was examined by PCR using primers located on the
very end of the element (see Fig. 2), as follows: 5'-AAGGGAAAATTAGC
GATACC-3' (nucleotides [nt] 93779 to 93798), 5'-CTGCTGCAAATGT
AAATGGC-3" (nt 93383 to 93402), and 5'-TCCAAACAGACATTCACA
TCAA-3' (nt 130 to 151). PCR products were confirmed by sequencing.

Transfer of ICESIuvan. Transfer of the ICESIuvan element to E. faeca-
lis strains BM4110 and JH2-2 with pIP964 and retransfer from these first-
generation transconjugants to recipients (E. faecalis strains JH2-2, UV202,
and BM4110) without this helper plasmid were performed by filter mat-
ing as previously described (33), with some modifications. Briefly, donor
and recipient strains were grown to an A, of 0.6 and mixed in a ratio of
1:1in 2 ml of culture. The suspension was pelleted, resuspended in 150 pl
brain heart infusion (BHI), and used for filter mating before application
on selective agar plates using 8 mg liter ' vancomycin, 1,000 mg liter
streptomycin, 20 mg liter ' rifampin, and 10 mg liter ™" fusidic acid. A
control experiment (E. faecalis JH5-F9a X BM4110) with recipients con-
taining no helper plasmid was also carried out. The presence of the vanB
gene of ICES/uvan was confirmed by PCR (29), and ICESIuvan insertion
in the transconjugant genome was confirmed by visual inspection of the
Smal pulsed-field gel electrophoresis (PFGE) pattern. The presence of the
pheromone-responsive helper plasmid pIP964 (46) was determined by
PCRs that detect the pCF10 replication initiation gene rep,cg;o as de-
scribed by Jensen et al. (47), and the presence of the pheromone plasmid’s
conserved aggregation substance (agg) was detected using primers 5'-GC
TCGTGGTGATGTTCTTTC-3" and 5 -CTTTTCTACCACTAATGGCT
CTAC-3'".

PFGE analyses. Total DNA was digested with Smal (New England
BioLabs) and analyzed by PFGE as previously described (48), with some
modifications. Briefly, 5 wllysozyme (100 mg ml ') and 2 pl mutanolysin
(10 U pl™ ") were added to the agarose plugs before molding, as well as to
the lysis buffer.

Antimicrobial susceptibility testing. Susceptibility testing was per-
formed using MIC test strips for vancomycin, teicoplanin (bioMérieux), and
bacitracin (Liofilchem) on S. lutetiensis 5-F9, E. faecalis JH5-F9a, JH2-2, OG5-
F9a, and OGI1-RF, and E. faecium MM5-F9a and BM4105-RF according to
the manufacturers’ recommendations.

Nucleotide sequence accession number. The whole sequence of
ICESluvan is available in GenBank under the accession number
HE963029.

RESULTS AND DISCUSSION

Gap closure and ICESIuvan mosaic structure. The five selected
BAC clones were sequenced to an average depth of 91.5-times
coverage and assembled individually into an average of 28 contigs
(>500 bp). Mapping of contigs against reference sequences and
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FIG 1 Genetic organization of the 94,189-bp ICESIuvan element and linear DNA comparison against Tn1549, the 64-kb ICESde3396 element from S. dysga-
lactiae subsp. equisimilis, and regions from S. suis 89/1591, S. mitis B6, and Faecalibacterium prausnitzii A2-165. In ICESIuvan, coding sequences (CDSs) are
colored according to predicted functions. In the other genetic elements, black arrows indicate CDSs with no assigned functions and white arrows indicate CDSs
with putative assigned functions. Gene identifiers for Tn1549, S. dysgalactiae subsp. equisimilis, S. suis 89/1591, S. mitis B6, and F. prausnitzii A2-165 are captured
from records with GenBank accession numbers AF192329, EU142041, NZ_AAFA03000001, FN568063, and NZ_ACOP00000000, respectively. For simplicity,
the CDS prefixes are omitted in the figure. Gene names are indicated if available from annotation. Disrupted genes are linked via dashed lines, and both disrupted
and pseudogenes are indicated as crosshatched arrows. For the comparison, red shading between the genetic elements represents regions with similarity: light red
indicates regions with >65% amino acid sequence identity; red indicates regions with >90% amino acid sequence identity; and dark red indicates regions with

>99% amino acid sequence identity.

end sequencing of BAC inserts provided scaffold information for
the gap closure that resulted in one large, 94-kb contig (GenBank
accession number HE963029) containing 86 open reading frames
(OREFs) (Fig. 1; see also Table S2 in the supplemental material).
Nine smaller contigs of >1 kb with BLAST similarities to uncul-
turable organisms and transposases were discarded from further
analysis. Extensive control PCRs (see Table S1) verified the assem-
bly for E. faecium transconjugant MM5-F9a and confirmed the
presence of the ICESIuvan element in E. faecalis transconjugants
OG5-F9aand JH5-F9a (Table 1). Some primer combinations used
for MM5-F9a did not give PCR products with OG5-F9a and JH5-
F9a. However, the presence of these regions was confirmed by
altering the combination of the primers (denoted by plus signs in
Table S1). Some of the PCRs worked at one time point and not at
another, and when we sequenced the bacitracin locus of the E.
faecalis transconjugants, we found that some of the primer com-
binations did not give a PCR product even though both primers
matched the sequence 100%. Thus, we think there might be other
reasons than nucleotide differences, possibly related to the pri-
mary or secondary DNA sequence, why PCR products were not
achievable for all transconjugants in some specific regions.

Interestingly, homology searches of the 86 predicted ORFs
showed that the ICES/uvan element contains genes similar to 24
ORFs (ORF4 to -13, ORF15 to -17, ORF60 to -66, and ORF71 to
-74) of ICESde3396 found in the beta-hemolytic Streptococcus dys-
galactiae subsp. equisimilis NS3396 (49). Furthermore, ICESIuvan
ORF1 to -3, ORF14, ORF69, and ORF75 to -86 showed similarities
to ORFs from three non-beta-hemolytic streptococci, Streptococ-
cus pneumoniae, S. suis, and Streptococcus mitis.

A complete vanB2 Tn5382/Tn1549 (ORF18 to -30 and ORF39
to -59) putative conjugative transposon was integrated into the par-
tial ICESde3396-like sequence in ORF17, similar to ICESde3396_54.
The vanB2 Tn5382/Tn1549 sequence of ICESIuvan was 99% iden-
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tical at the nucleotide level to the fully sequenced Tn1549 (Fig. 1;
see also Table S2 in the supplemental material) (30). Five more
ORFs were identified in the Tn5382/Tn1549 element inserted in
ICESIuvan compared to those from previous reports (see Table
S2).Identical sequences were also present in Tn1549 (30) but have
not been annotated previously. In addition, a 9-kb contig located
within ORF30 in Tn5382/Tn1549 was flanked by directly repeti-
tive sequences with 291 of 292 nucleotides identical. Annotation
of the 9-kb contig revealed a TnpX site-specific recombinase
(ORF31), a pseudotransposase of the IS30 family (ORF33), a pu-
tative VanZ family protein (ORF34), a putative mobilization pro-
tein (ORF36), and a DNA primase (ORF37), as well as hypothet-
ical proteins (ORF32, -35, and -38) with 40 to 96% amino acid
identity to putative proteins in Faecalibacterium, Lactobacillus,
and Paenibacillus species, respectively (see Table S2).

The mosaic pattern of the ICESIuvan element, which consists
of genes from several different streptococcal species, Faecalibacte-
rium, enterococci, and possibly other intestinal bacteria (see Table
S2 in the supplemental material), indicate that mobilization and
recombination events have been key factors in the assembly of this
element. A mosaic pattern was also observed for ICESde3396,
which is a montage of genes derived from group A, B, and G
Streptococcus organisms, in addition to genes acquired from non-
streptococcal Gram-positive bacteria, such as Listeria innocua and
E. faecalis (49).

ICESluvan variant confirmed in an S. lutetiensis isolate from
a patient in France. During examination of mixed fecal samples
from 556 veal calf herds in the Netherlands, four vancomycin-
resistant Streptococcus isolates were found. In addition to S. lute-
tiensis 5-F9, S. gallolyticus isolates 4-C11 and 4-G10 were positive
for the vanB gene and found to have a vanB2 cluster integrated in
Tn5382/Tn1549 (20). Furthermore, S. lutetiensis NEM760, iso-
lated from a stool swab of a patient in France, showed transfer of
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an approximately 100-kb element containing vanB2 (22, 42) that
inserted into the same Smal PFGE fragment as ICESIuvan in both
E. faecium BM4105-RF- and E. faecalis JH2-derived recipients (20,
22,42). Since 4-C11, 4-G10, and NEM760 are likely candidates to
contain ICESIuvan or variants of this element, we have examined
these isolates by using primers selected to confirm the ICESIuvan
sequence assembly (see Table S1 in the supplemental material).
The circa-100-kb element found in NEM760 was indeed very sim-
ilar to ICESIuvan, with some differences in the right end of the
element, while 4-C11 and 4-G10 showed the presence of Tn5382/
Tn1549 and adjacent regions but not the left or right end of
ICESluvan, which is not surprising since transfer of vanB was not
achieved for these isolates (19, 20). The presence of highly similar
variants of ICESluvan capable of interspecies transfer in two S.
lutetiensis isolates from completely different environments im-
plies that ICESIuvan is a successful element that may contribute to
resistance in enterococci.

ICESluvan type IV secretion system components. A putative
transfer system (ORF11 to -16 and ORF79 to -80) (see Table S2 in
the supplemental material) was identified in the ICESluvan ele-
ment, in addition to those encoded by Tn5382/Tn1549 (ORF21 to
-23, ORF26, and ORF43 and -44) (see Table S2) (30). ORF11 to
-15 were 94 to 99% identical to ICESde3396_59 to ICESde3396_55
(49). The ORFs display the same genetic order in the ICESIuvan
element and belong to a type IV secretion system. Three factors
have been recognized as important for DNA transfer by type IV
secretion system in Gram-positive bacteria. These are murein
hydrolase (50), which is involved in controlled local degradation
of the peptidoglycan, making space for the formation of a mating
channel, the VirB4 ATPase, which provides energy for the trans-
location, and the VirD4 coupling protein, which links the DNA
transfer intermediate to the mating channel (50, 51). In the
ICESluvan element, we identified two putative virB4 genes
(ORF15 and OFR26) encoding ATPases, a putative virB6 gene
(ORF13) encoding a putative membrane protein that has previ-
ously been shown to interact with several other Vir proteins me-
diating DNA substrate transfer through the cytoplasmic mem-
brane channel (50), and two putative virD4 genes (ORF11 and
ORF21) encoding coupling proteins of the TraG/TraD family.
ORF11 is truncated by a frameshift after codon 465, but ORF21
encodes a putative coupling protein which belongs to the same
coupling-protein family. Moreover, ICESIuvan ORF16 encodes a
putative N-acetylmuramoyl L-alanine amidase that may aid in lo-
cal degradation of the peptidoglycan by hydrolyzing the amide
bond between the N-acetylmuramic acid side chain and L-alanine
of the short peptide (52). Genes encoding putative mobilization
proteins of the MobC family (ORF79 and ORF44) and relaxases
(ORF80 and ORF43) were also identified in ICESIuvan. Taken
together, this indicates that the ICESIuvan element contains most
genes necessary for mobilization and conjugative transfer. Fur-
thermore, ICESIuvan is transferable by conjugation from S. lute-
tiensis organisms with no visible plasmids, strongly suggesting that
its transfer system is intact (20).

ICESluvan circularization, transfer, and integration. A puta-
tive site-specific serine recombinase (ORF86) (see Table S2 in the
supplemental material) that can be involved in the genomic exit
and integration of mobile genetic elements was found at the right
flank of the ICESIuvan. Although itlacks 1 or 20 amino acids in the
C-terminal end compared to the sequences of its closest homo-
logues, SsuiDRAFT_2393, identified in S. suis (98% amino acid
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identity), and SP70585_1107, identified in S. pneumoniae (95%
amino acid identity), we hypothesize that the putative site-specific
recombinase functions as normal in a transfer situation. This hy-
pothesis was supported by circularization of the ICES/uvan ele-
ment both in the S. lutetiensis donor 5-F9 and the Enterococcus
transconjugants, as shown by PCR and confirmed by sequence
analyses (Fig. 2). Furthermore, we have transferred ICESluvan
from S. lutetiensis 5-F9 to both E. faecium and E. faecalis (20).
Retransfer was only possible when ICESIuvan was transferred into
recipients that contain the helper plasmid pIP964 (Tra™), which is
restricted to E. faecalis. We did not test broad-host-range plasmids
to achieve retransfer between E. faecium strains. Retransfer from
E. faecalis BM4110 ICESluvan pIP964 to E. faecalis JH2-2 or
UV202 (Fig. 3, lanes 4 to 6) and from JH2-2 ICESluvan pIP964 to
BM4110 (data not shown) was confirmed by growth on selective
plates, ICESIuvan- and pIP964-specific PCRs, Smal PFGE analysis
(Fig. 3), and hybridization with vanB probe (data not shown)
showing transconjugant patterns with an approximately 100-kb
enlargement of one of the two 240-kb fragments compared to
the recipient patterns (Fig. 3, lanes 4 to 6). However, transconju-
gant BM4110 ICESIuvan pIP964 had gained an extra copy of
ICESluvan, as shown by the presence of a fragment around 220 kb
in Fig. 3, lane 4, which hybridized with vanB (data not shown).
The presence of more than one copy of ICESIuvan has been shown
before in other JH-derived transconjugants (20). Both Smal PFGE
patterns and DNA sequencing show that the ICESIuvan element is
integrated in a site-specific manner into the recipient chromo-
some, although the E. faecium and E. faecalis integration sites
within the C-terminal end of tRNA methyltransferase gene rumA
showed some sequence differences (Fig. 4). The same integration
site was identified within each species for all transconjugants
tested (data not shown). The ICESIuvan integration site in S. [u-
tetiensis is also within the rumA gene. However, the right flank of
ICESIuvanin S. lutetiensis showed an extended 5.7-kb region iden-
tical to part of the E. faecalis G1-01247 vanG operon which was not
transferred together with ICESIuvan into the enterococci (see Fig.
S1 in the supplemental material). Interestingly, ICESluvan ORF1
is a truncated homolog identical to the 13-amino-acid C-terminal
part of S. pneumoniae rumA (see Table S2). This C-terminal part is
in the same translational frame as the N-terminal part of the en-
terococcal rumA, and together, they form a recombined full-
length rumA gene that is likely to be functional.

Since ICESIuvan was shown to transfer from Streptococcus to
Enterococcus but retransfer between enterococci required a helper
plasmid, we hypothesize that a host factor is necessary for transfer.
This has been shown for SXT elements in Vibrio cholerae, which
require the host factors IHF and Fis for excision, recombination,
and conjugation (53). Host factors may be chromosomally en-
coded and not on the MGE itself, leading to the inability of the
MGE to conjugate in their absence. Transfer of the E. faecalis V583
pathogenicity island (PAI), containing the features of an ICE, by
an ICE-independent mechanism has been reported. Characteriza-
tion of V583 PAI transconjugants showed cotransfer of selectable
markers representing virtually all regions of the chromosome, in-
cluding a vancomycin resistance transposon, capsule genes, and
alleles which are used for multilocus sequence typing. PAI transfer
was dependent upon helper plasmid function in the donors (54).

Putative bacteriophage exclusion system. The ICESIuvan
ORF17 located upstream and ORF60 to -64 located downstream
from Tn5382/Tn1549 are 81 to 97% identical to ICESde3396_54
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FIG 2 Integrated (A) and circular (B) forms of ICESIuvan in transconjugants E. faecium MM5-F9a, E. faecalis OG5-F9a, and E. faecalis JH5-F9a, as well as donor
S. lutetiensis 5-F9. The left and right ends of ICESIuvan are colored gray and black, respectively, while the native chromosomal DNA is shown by hatching. The
sequences of the 20-bp ends of ICESIuvan are also shown. Black and gray arrows indicate the positions and directions of primers for the left and right end of
ICESluvan, respectively. The positions of primers designed from native E. faecium MM5-F9a regions are indicated with black-and-white arrows. PCR and
sequencing confirmed both the integrated and the circular form of ICESIuvan in E. faecium MM5-F9a, E. faecalis OG5-F9a, E. faecalis JH5-F9a, and S. lutetiensis

5-F9.

to ICESde3396_48. ORF60 and ORF17 are homologous to IC-
ESde3396_54 and ICESde3396_53, encoding the abortive infec-
tion proteins AbiGI and AbiGlI]I, respectively. The Lactococcus lac-
tis abiG resistance genes confer complete resistance to ¢712
phages (936 phage species) and partial resistance to ¢¢c2 phages (2
species) (55). Most Abi systems are plasmid encoded and are
widespread in bacteria (56). The abi genes are also known to be
involved in increased stress tolerance of the host. These genes are
commonly found in Streptococcus (57). Transposon Tn5382/
Tn1549 was inserted in the C-terminal end after codon 251 of
abiGII in ICESIuvan (Fig. 1), thereby disrupting this gene. Since
this leads to an AbiGII protein lacking 30 amino acids compared
to its closest homologue, it is not known whether these abi genes
encode a functional system.

Putative virulence determinants. The ICES/uvan ORF61 was
95% identical at the nucleotide level to ICESde3396_52, which
encodes a putative agglutinin receptor precursor protein that har-
bors an LPXTG motif known to be common among several viru-
lence factors in enterococci (58). Human salivary agglutinin has

5386 jb.asm.org

previously been shown to interact with streptococci in a calcium-
dependent reaction for oral bacterial aggregation (59, 60). The
ICESluvan putative agglutinin receptor precursor is located next
to a putative Ca®" binding protein (ORF62). Studies have shown
that transformation of nonaggregating E. faecalis with the strep-
tococcal surface antigen SSP-5 confers an aggregation-positive
phenotype in the presence of saliva agglutinin (61).

Resistance to glycopeptides and bacitracin. The ICESIuvan
element encodes vancomycin resistance mediated by a vanB2 cluster
(ORF48 to -54) located in Tn5382/Tn1549. S. lutetiensis 5-F9 and the
transconjugants, as well as S. Iutetiensis NEM760 and S. gallolyticus
4-Cl11 and 4-G10, accordingly expressed resistance to vancomycin,
whereas the recipient strains E. faecium BM4105-RF and E. faecalis
OGI1-RF,JH2-2,UV202, BM4110, and BM4110 pIP964 were suscep-
tible to vancomycin according to EUCAST clinical breakpoints for
enterococci (MIC, =4 mg liter ") (Table 1). In addition, ORF34 on
the 9-kb element inserted into Tn5382/Tn1549 encoded a protein
with 40% amino acid similarity to a putative VanZ family protein
from Paenibacillus (see Table S2 in the supplemental material).
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FIG 3 PFGE of Smal-digested total DNA of recipient, donor, and transcon-
jugants from filter matings. Lanes 1 and 9, low-range PFGE marker; lane 2,
ICESluvan donor S. lutetiensis 5-F9; lane 3, recipient BM4110 containing
pIP964; lane 4, 1st-generation transconjugant/2nd-generation donor BM4110
ICESluvan pIP964; lane 5, 2nd-generation transconjugant JH2-2 ICESluvan
pIP964; lane 6, 2nd-generation transconjugant UV202 ICESIuvan pIP964; lane
7, recipient JH2-2; lane 8, recipient UV202. Vancomycin, streptomycin, and
rifampin and fusidic acid resistance are indicated by plus signs opposite Van',
Str', and Rif" Fus", respectively. The presence of ICESluvan was verified by
vanB PCR and visual inspection of the Smal PFGE pattern, where ICESluvan
insertion in a 240-kb band results in replacement of one of the 240-kb double
bands with a 340-kb band, as shown previously for JH2-derived recipients
(20). The presence of the pheromone-responsive plasmid pIP964 was verified
by rep,cpio and agg PCRs.

The vanZ gene, contributing to teicoplanin resistance, is normally
located within the vanA gene cluster, whereas vanB usually only
confers resistance to vancomycin. The functionality of the VanZ
homologue was supported by Etest results showing MICs of 3 or 4
mg liter ™' to teicoplanin (low-level resistance according to EU-
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CAST clinical breakpoints for enterococci) for S. lutetiensis
NEM760 and 5-F9 and the 5-F9 transconjugants, which was at
least 3-fold higher than the MICs of the corresponding susceptible
recipient strains (BM4105-RF and UV202 MIC, 0.5 mg liter;
JH2-2 MIC, 1 mg liter'; BM4110 pIP964 MIC, 0.38 mg liter 5
and OG1-RF MIC, 0.25 mg liter ") (Table 1). The finding of this
vanZ gene illustrates the dynamics and the potential of the Strep-
tococcus and Enterococcus genomes to acquire and collect genes
which may increase their ability for environmental adaptation.
The streptococcal ICESde3396 encodes resistance toward cad-
mium and arsenic (49). These resistance genes were not identified
in ICESIuvan. Rather, ORF81 to -84 encode an ABC transporter
(ATPase and permease) and a putative two-component system
(histidine kinase and response regulator) resembling proteins
BceA, -B, -R,and -S (previously designated MbrABCD), which are
involved in bacitracin resistance in S. mutans through active efflux
of bacitracin (GenBank accession number AB078507) (62, 63).
ORF81 encodes 249 amino acids with 48% identity to the original
S. mutans BeceA (250 amino acids) and 82% identity to a putative
BceA of S. mitis (GenBank accession number EFN94736) (245
amino acids), ORF82 encodes 672 amino acids with 29% identity
to the original S. mutans BceB (667 amino acids) and 67% identity
to a putative ABC transporter permease of S. mitis (GenBank
accession number EFN94737) (671 amino acids), ORF83 encodes
524 amino acids with >20% identity to BceS (249 amino acids)
and 65% identity to a putative membrane protein with a histi-
dine kinase domain of S. mitis (GenBank accession number
EFN94738) (524 amino acids), and ORF84 encodes 198 amino
acids with 24% identity to BceR (223 amino acids) and 75% iden-
tity to a putative response regulator of S. mitis (GenBank accession
number EFN94739) (198 amino acids). Compared to the bceABRS
locus of S. mutans, ICESIuvan holds a different gene order of the
putative response regulator and histidine kinase. The putative
bacitracin locus of ICESIuvan shows about 20% amino acid iden-
tity to components encoded by a bcrRABD locus conferring high-
level bacitracin resistance in E. faecalis, which show yet another
synteny with the regulator gene upstream from the ATPase, per-
mease, and kinase genes (64). Phenotypic testing indeed shows at

A) gatC gatA gatB yegSs rumA rps/
1R [ > = > >Ef>
MMS5.F9a >| >| Jveeneeee] dl:>
gatC gatA gatB yegS rumA rps/
B)
K Vv Q P V DL F P Q T H H | E L V A S F V K G E #
E. faecium BM4105-RF aaagttcagcctgtagatcttttcccacaaacccat | qftend ICESIuvan Rightend C€atatcgaattagtcgcticattcgttaaaggagaataaaaa
PEEEEEEEE R e e e e e e e et PEEEEEEEE R e e e e e e e e
E. faecium MM5-F9a aaagttcagcctgtagatcttttcccacaaacccat CACGTGGAGT 7’~94kb/—CCAGACAACAcatatcgaattagtcgct tcattcgttaaaggagaataaaaa
[N R AR [AEENRRERN RN R R N [ | [
E I @ PV DN F P QTT H I E S V T L L T K A V D #

FIG 4 (A) Operon into which ICESluvan has been integrated in E. faecium MM5-F9a compared to the corresponding region in the fully sequenced E. faecalis
OG1-RF (accession number CP002621). Dark gray shading indicates regions of similarity between compared CDSs. The tRNA (uracil-5)-methyltransferase
rumA disrupted by the insertion is colored light gray, and the insertion is indicated with a dotted line. (B) Sequence comparison of the insertion regions of
ICESluvan in E. faecium MM5-F9a and E. faecalis OG5-F9a and the corresponding regions in their recipient strains, E. faecium BM4105-RF and E. faecalis
OG1-REF, respectively. Vertical lines indicate identical nucleotides. Left- and right-end sequences of ICESIuvan are shown in uppercase. Amino acid residues of
CDSs that have been disrupted upon insertion of ICESIuvan are marked (capital and boldface), together with their respective codons. #, stop codon.
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least a 5-fold-increased MIC for bacitracin associated with trans-
fer of ICESluvan from S. lutetiensis 5-F9 to E. faecium. The E.
faecium transconjugant MM5-F9a expressed a bacitracin MIC of
=256 mg liter ', while the MIC of the corresponding E. faecium
recipient BM4105-RF was 48 mg liter ', implying functionality of
the putative bacitracin locus of ICESuvan as a novel bacitracin
resistance locus. On the other hand, the E. faecalis transconjugants
and their corresponding recipients showed similar low or high
MIC:s to bacitracin, except for the second-generation transconju-
gant JH2-2 ICESIuvan pIP964, which after transfer from the high-
bacitracin-MIC background in E. faecalis BM4110 pIP964 showed
atleast a 16-fold-increased MIC compared to that of JH2-2 (Table
1). Undecaprenyl pyrophosphate phosphatase has recently been
shown to account for the low-level resistance to bacitracin (MICs
of 32 to 48 mg liter ') in both laboratory (JH2-2) and clinical
(V583) strains of E. faecalis (65), while variants of the transferable
berRABD locus may be responsible for the high-level bacitracin
resistance (MIC =128 mg liter ') in enterococci (64, 66). Alter-
native primer combinations had to be used to confirm the baci-
tracin locus region of ICESIuvan (see Q38 in Table S1 in the sup-
plemental material) in E. faecalis JH5-F9a and OGS5-F9a
compared to that in E. faeciurn MM5-F9a, indicating some se-
quence differences. However, sequencing E. faecalis JH5-F9a and
OGS5-F9a revealed identical nucleotides of the bacitracin locus
(nt 85669 to 91794) compared to the sequence of MM5-F9a
(GenBank accession number HE963029). Thus, host-related fac-
tors of E. faecalis and E. faecium may be a possible explanation for
the lack of increased bacitracin MICs when ICESIuvan was intro-
duced directly into E. faecalis strains with low-level resistance to
bacitracin.

ICESluvan expresses a pezAT TA system. ICESluvan ORF75
and ORF76 are 93 and 89% identical at the nucleotide level to the
pezAT plasmid maintenance system previously described in S.
pneumoniae (67), S. agalacticae (57, 67), and S. suis (57). The
pezAT gene cassette consists of two genes, encoding an epsilon
antitoxin and a zeta toxin, respectively. Toxin-antitoxin systems
are traditionally known as plasmid addiction systems that ensure
stable maintenance of plasmids in a bacterial population (68).
However, during recent years, these gene loci have been found on
MGESs and shown to promote the maintenance of ICE elements in
V. cholerae (69, 70). Experimental evidence also indicated that TA
systems are involved in the stress response, enabling the cell to
survive hostile growth conditions (71, 72). Analyses of the DNA
sequence upstream from the pezAT locus showed the presence of
a putative —10 promoter sequence (TATAAT) 34 bp upstream
from an indicated start codon and a —35 promoter sequence (GT
GCGTT) 19 bp from the putative Pribnow box. In addition, a
putative ribosome-binding site (AGGAG) was shown 12 bp up-
stream from the putative start codon. All except the —35 sequence
were identical to the S. pneumoniae sequences (67). RT-PCR anal-
yses revealed the expression of both pezAT genes (data not shown)
in all of the donor and transconjugant strains tested. Figure 5
shows the PCR products of both genes. Moreover, both genes were
detected in a single transcript (Fig. 5), confirming that pezA and
pezT constitute an operon, as in S. pneumoniae (67). PCR prod-
ucts were not detected in the absence of reverse transcriptase or in
the recipient strain (BM4105-RF). All sequences were identical to
the sequence found in our E. faecium transconjugant. These ob-
servations suggest that this is a functional toxin-antitoxin system
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FIG 5 Expression of pezAT toxin-antitoxin loci in original donor S. lutetiensis
5-F9, transconjugants E. faecalis JH5-F9a, E. faecium MM5-F9a, and E. faecalis
OG5-F9a, and recipient strain E. faecium BM4105-RF tested with RT-PCR
(+RT). As DNA contamination controls, reaction mixtures with no reverse
transcriptase added were included (-RT). L, kb ladder.

that may contribute to the stabilization of ICESIuvan after inte-
gration into new hosts.

In conclusion, our report describes the complete genetic struc-
ture of a 94-kb element, named ICESIuvan, originally detected in
S. lutetiensis from veal calf feces in the Netherlands. A variant of
ICESIuvan is confirmed for an S. lutetiensis isolate from a patient
in France. ICESIuvan encodes glycopeptide and bacitracin resis-
tance loci, a putative bacteriophage exclusion system, a putative
virulence gene, and components necessary for conjugative trans-
fer, as well as a toxin-antitoxin stabilization system. This element
is a novel ICE, since it forms a circular intermediate, is self-trans-
ferable from streptococci to enterococci, and integrates into the
chromosome in a site-specific manner.
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