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Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for
a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising
that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the
ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high in-
tracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high
D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was
verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Coculti-
vation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the pres-
ence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the �dsdA mutant during urinary
tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed
that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able
to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also pres-
ent. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor
is upregulated in the presence of D-serine and a �dsdA mutant was attenuated in virulence murine model of urinary tract
infection.

Urinary tract infections (UTIs) are common and affect mainly
women; it has been estimated that more than 50% of all

women will contract a urinary tract infection at least once in their
lifetimes (1, 2). Although many bacterial species may cause uri-
nary tract infections in patients predisposed by anatomical or
functional abnormalities, indwelling catheters or neurological
disorders, only a subset of species/strains may cause urinary tract
infections in patients without predisposing conditions (3). These
organisms/strains have mostly been found to express virulence
factors allowing them to adhere to the uroepithelium (4–6), to
invade cells of the urinary tract (7, 8), or to degrade urea (9, 10), a
component highly prevalent in urine.

In staphylococci, most species do not cause urinary tract infec-
tions in the absence of predisposing factors, and Staphylococcus
saprophyticus is the only species that typically causes these infec-
tions (11).

We have described a number of virulence factors, such as ure-
ase (12, 13), the adhesins Aas (14) and SdrI (15, 16), and the lipase
Ssp (17, 18). A role for Ssp and SdrI in virulence was described in
a murine model of UTI (19). Since similar proteins are present in
many other staphylococci (20, 21), a factor distinguishing S. sap-
rophyticus from other staphylococci has been sought. Interest-
ingly, of all sequenced staphylococcal genomes, only that of S.
saprophyticus possesses a gene coding for D-serine-deaminase
(22), an enzyme that catabolizes D-serine to pyruvate and ammo-
nia. This enzyme is also present in uropathogenic Escherichia coli
(UPEC) but not in enterohemorrhagic E. coli (23). The amino acid
D-serine is relatively prevalent in urine (3 to 115 �g/ml) (24, 25)
and is toxic or bacteriostatic to many bacteria, probably by inhib-
iting the synthesis of pantothenic acid (26–29). Therefore, the
presence of D-serine may be used as a cue for the presence within
the urinary tract of uropathogenic microorganisms. Strains of E.

coli expressing the deaminase DsdA can utilize this amino acid as
a carbon and energy source (30). The operon dsdCXA comprises
the regulator gene, dsdC, a specific transporter gene, dsdX, and the
deaminase gene, dsdA (31, 32). In S. saprophyticus, such an operon
does not exist. The dsdA gene apparently is under the control of its
own promoter, and genes in the vicinity are not related to serine
catabolism. Three genes in the genome are annotated as coding for
D-serine/D-alanine/glycine transporters but are not located next to
the dsdA gene. In UPEC, mutation of the deaminase somewhat
surprisingly led to enhanced colonization of bladders and kidneys
in experimentally infected mice and caused the mutants to be
hyperflagellated and more motile (23). However, only wild-type
(WT) UPEC strains possessing dsdA were able to grow on minimal
medium containing D-serine as the sole carbon and energy source
(23, 30). Later, it was shown that the high intracellular concentra-
tion of D-serine caused expression of the hypercolonization phe-
notype (23, 47). Regulation seems to involve the amino acid, since
mutants defective in D-serine uptake showed wild-type coloniza-
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tion capabilities, and mutants not expressing the regulator dsdC
showed the same phenotype as dsdA mutants (47).

Here we describe that the D-serine-deaminase of S. saprophyti-
cus contributes to virulence within the urinary tract and that, in
contrast to E. coli, the �dsdA mutant is attenuated in virulence.

MATERIALS AND METHODS
Bacterial strains and plasmids. The bacterial strains and plasmids used in
this study are listed in Table 1. S. saprophyticus strain 7108, a hemagglu-
tinating, fibronectin- and collagen-binding clinical isolate has been de-
scribed previously (33–35). E coli DH5� (36) was the host for expression
experiments and the intermediate host during construction of the plas-
mids for allelic replacement. The shuttle plasmid pBT2 (37) contains the
temperature-sensitive replicon of pE194, the chloramphenicol resistance
of pC194 and the multiple cloning site of pUC18. Plasmid pEC1 (38) was
used as the erm(B) source. The pPS44 vector (39) was used for cloning
experiments involving Staphylococcus carnosus strain TM300 (40) and for
complementation experiments. The plasmid pMB2200, conferring tetra-
cycline resistance, had been isolated from a clinical isolate of S. saprophyti-
cus (41).

Bacterial growth media and antibiotics. E. coli strains harboring plas-
mids were grown in lysogeny broth (LB) or on LB agar plates. S. sapro-
phyticus strain 7108 was grown in peptone-yeast extract (PY) broth or
tryptic soy broth (TSB) (Oxoid, Wesel, Germany) or on agar plates. Bac-
teria were usually incubated at 37°C, but in some experiments, tempera-
tures of 30°C and 42°C were also used. Ampicillin (100 �g/ml) was used
for the selection of plasmids in E. coli. For selection of plasmids or chro-
mosomal markers in S. saprophyticus, 10 �g/ml chloramphenicol, 5 �g/ml
erythromycin, or 10 �g/ml tetracycline was used.

DNA preparation. Plasmid DNA was prepared using the Qiagen plas-
mid Midi kit (Qiagen Hilden, Germany) and genomic DNA with the
Qiagen DNeasy kit (Qiagen, Hilden, Germany). For DNA preparations
from staphylococci, pelleted bacteria were resuspended in lysis buffer (20
mM Tris [pH 8.0], 2 mM EDTA, 1.2% [vol/vol] Triton X-100). To lyse the
bacteria, we added 100 �g/ml Amibicin L (Wak Chemie Medici GmbH,
Steinbach, Germany) to the lysis buffer.

Construction of an insertion mutant by allelic replacement. The
dsdA gene was deleted by the insertion of the erm(B) resistance gene, and
pBT2 (37) was used as the replacement vector. To this end, a 700-bp PCR

amplificate of the chromosomal DNA upstream of the dsdA gene gener-
ated with the primers Ssa.dsd1seq/BamHI and Ssa.dsd2/2rev/XbaI (Table
2) was digested with BamHI and XbaI and was cloned into pUC18. This
plasmid was designated pMB1401. For the construction of pMB1402, we
inserted the erm(B) cassette cut from pEC1 into plasmid pMB1401 di-
gested with the enzymes XbaI and PstI. A further 600-bp DNA amplificate
downstream of the dsdA gene was generated with the primers Ssa.dsd1rev/
HindIII and Ssa.dsd2seq/PstI and was ligated into pMB1402 cut with
these enzymes. The resultant plasmid (pMB1403) contained the upstream
and downstream flanking regions of the dsdA gene with an erm(B) cassette
in the center. The insert of pMB1403 was excised with BamHI and HindIII
and ligated into the temperature-sensitive replacement vector pBT2,
yielding pMB1404.

The pMB1404 constructs were purified from E. coli DH5� and trans-
formed into S. saprophyticus strain 7108 by protoplast transformation, as
previously described (12). Chloramphenicol- and erythromycin-resistant
clones were grown in the presence of erythromycin (5 �g/ml at 30°C for
24 h) and used to inoculate 1,000 ml of prewarmed (42°C) broth contain-
ing erythromycin. After overnight incubation, appropriate dilutions were
plated onto P-agar containing erythromycin. Clones that grew on eryth-
romycin but not on chloramphenicol had lost the plasmid, and correct
insertion of the erm(B) cassette was checked by PCR and sequencing.
Absence of the cat gene was verified by PCR.

Complementation of the �dsdA mutant. The vector part of pPS44
(39) was amplified by inverse PCR with the primers pPS44BamHI and
pPS44HindIII. The dsdA gene with its own promoter was amplified with
the primers Ssa.dsdA4seq and Ssa.dsdA4rev, and both were digested with
BamHI and HindIII. Ligation and transformation of S. carnosus TM300
(40) were performed as described elsewhere (42). The resulting plasmid
(pMB1406) was purified from this strain and introduced into the �dsdA
mutant by protoplast transformation (12).

Animal experiments. Eight-week-old female C3H/HeN mice (Har-
lan) were infected by transurethral catheterization as previously described
(43). Static bacterial cultures were started from freezer stocks, grown at
37°C for 18 h in brain heart infusion (BHI) broth and then subcultured at
1:250 or 1:100 into fresh medium. These subcultures were then grown
statically at 37°C for 18 h, pelleted, and resuspended in phosphate-buff-
ered saline (PBS), to yield 50-�l inocula containing 1 � 107 to 2 � 107

CFU. For competition experiments, bacteria were diluted appropriately

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Species or vector Size (kb) Descriptiona
Reference or
source

Strains
DH5� E. coli F� �80 dlacZ�M15 �(lacZA-argF)U169 deoR recA1 endA1 hsdR17(rK

� mK
�) phoA

supE44 �� thi-1 gyrA96 relA1; cloning host
36

M15(pREP4) E. coli nalS strS rifS lac ara gal mtl F� recA	 uvr	 (pREP4 lacIq Kanr) Qiagen
TM300 S. carnosus Cloning host 40
7108 S. saprophyticus Wild-type isolate, fibronectin binding 33–35
TM300(pMB1406) S. carnosus Cmr, contains pMB1406, expresses enzyme DsdA This study
7108 �dsdA S. saprophyticus dsdA::erm(B) isogenic knockout mutant of 7108 This study
7108 �dsdA(pMB1406) S. saprophyticus Complemented dsdA knockout mutant of 7108 containing pBM1406 This study
7108(pMB2200) S. saprophyticus Tetr 41

Plasmids
pBT2 6.97 Staphylococcal shuttle vector, temp-sensitive replicon of pE194, Cmr of pC194, Apr

of pUC18
38

pPS44 4.38 Contains replicon and cat gene of pC194
pUC18 2.69 Apr

pEC1 pUC18 4.14 Emr Apr donor of erm(B) cassette containing XbaI and PstI sites, tetracycline
resistance plasmid from a clinical isolate of S. saprophyticus

38

pMB1400 pUC18 5.69 A 3-kb fragment containing dsdA gene with own promoter This study
pMB1401 pUC18 3.39 Contains 0.7-kb fragment upstream of dsdA gene This study
pMB1402 pUC18 4.84 Contains insert from pMB1401 ligated with a 1.45-kb erm(B) cassette This study
pMB1403 pUC18 5.44 Containing insert from pMB1402 ligated with a 0.6-kb fragment downstream of

dsdA gene
This study

pMB1404 pBT2 9.72 Contains insert (2.75 kb) of pMB1403 This study
pMB1406 pPS44 3 Contains dsdA gene with its own promoter 39

a Cmr, chloramphenicol resistance; Tetr, tetracycline resistance; Apr, ampicillin resistance; Emr, erythromycin resistance.
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to achieve 107 CFU each of the wild type and dsdA mutant together in a
total volume of 50 �l. To quantify bacteria present in mouse organs,
bladder and kidneys were aseptically harvested at the indicated times
postinfection, homogenized in phosphate-buffered saline, serially di-
luted, and plated onto BHI agar plates for total CFU enumeration and
with erythromycin for mutant CFU (CFUm) enumeration. Wild-type
CFU (CFUw) were calculated as total CFU � mutant CFU. In samples
where zero CFU were recovered, the limit of detection of the protocol was
used. Competition indices (CI) were calculated similarly to the method
described by Freter et al. (44) by using the wild type as the reference strain,
as follows: CI 
 (CFUm/CFUw recovered from mice)/(CFUm/CFUw pres-
ent in the initial inoculum).

Significance was calculated using the nonparametric Wilcoxon
signed-rank test (two tailed) comparing the theoretical median CI to 1
(GraphPad Prism 5). All animal studies were performed in accordance
with the Committee for Animal Studies at Washington University School
of Medicine.

Cocultivation experiments. Cocultivation experiments were carried
out in lysogeny broth (LB) (Invitrogen, Karlsruhe, Germany) supple-
mented with 2.5, 5, or 10 mg/ml D-serine (AppliChem, Darmstadt, Ger-
many) or L-serine (AppliChem) or without any supplements. Bacteria
were precultured overnight in 10 ml medium at 37°C with a flask-to-
medium ratio of 100:10 and with shaking at 100 rpm. Cells from overnight
cultures were then resuspended in 0.9% NaCl, and the optical density at
600 nm (OD600) was adjusted to 0.5. For inoculation of the coculture, 100
�l of each strain was added to 10 ml of medium. Cultures were then
incubated for 24 h at 37°C and 100 rpm. Every 24 h, the mixed populations
were diluted 1:100 into fresh medium. Growth was checked by determin-
ing CFU every 48 h by serial dilutions (10�3 to 10�9 in 0.9% NaCl). Each
dilution was plated onto three LB agar plates (LB agar powder; Appli-
Chem): one without and two with different antibiotics for differentiation
of the strains. Erythromycin (10 �g/ml; Sigma-Aldrich) was used for se-
lection of the mutant, chloramphenicol (20 �g/ml; AppliChem) for selec-
tion of the complemented mutant, and tetracycline (10 �g/ml; Appli-
Chem) for positive selection of the wild type, which had been transformed
with a tetracycline resistance plasmid (pMB2200) isolated from a clinical
isolate of S. saprophyticus. Agar plates were incubated overnight at 37°C,
and bacterial counts were determined.

Chemically defined medium. Chemically defined medium contained
the following (per liter of water): 7 g K2HPO4 · 3H2O, 2 g KH2PO4, 0.4 g
Na3 citrate · 2H2O, 0.05 g MgSO4, 1 g (NH4)2SO4, 20 mg thymine, 0.5 g
sodium thiosulfate, 50 mg L-arginine, 100 mg L-glutamine, 50 mg L-gly-
cine, 20 mg L-histidine, 90 mg L-leucine, 50 mg L-lysine, 3 mg L-methio-

nine, 40 mg L-phenylalanine, 80 mg L-proline, 30 mg L-threonine, 10 mg
L-tryptophan, 80 mg L-valine, 5 mg FeSO4 · 7H2O, 10 mg CaCl2, 7 mg
ZnCl2, 13 mg NiSO4 · 6H2O, 10 mg MnCl2 · 4H2O, 0.5 mg thiamine
hydrochloride, 0.6 mg nicotinic acid, 0.125 mg D-pantothenic acid cal-
cium salt, and 0.125 mg biotin, adjusted to pH 7.0. Before use, the me-
dium was filter sterilized. To exclude contaminating constituents from
residues in reusable glassware, only new plastic materials were used for
preparation and growth. Also, bacterial cultures were grown in plastic
tubes (10-ml culture in a 50-ml Falcon tube). Without addition of the
carbon and energy source (glucose or D-serine), bacteria were not able to
grow.

Pyruvate assay. The assay was conducted basically as described by
McFall (45). It measures the concentration of a colored �-keto acid that is
formed as the product of a reaction of pyruvate with 2,4-dinitrophenyl-
hydrazine under alkaline conditions. The strains used in this assay were
cultured in 100 ml peptone-yeast extract (PY) broth (10 g/liter peptone, 5
g/liter yeast, 1 g/liter glucose, 5 g/liter NaCl, 1.25 g/liter Na2HPO4 · 2H2O
[pH 7.3]) overnight (37°C and 100 rpm). The medium was supplemented
with D-serine (1 g/liter) to ensure that the D-serine-deaminase was ex-
pressed. Twenty-five milliliters of the overnight culture was pelleted by
centrifugation at 4,000 rpm for 10 min. The bacteria were then washed
with 0.07 M PBS (pH 7.4) and resuspended in 2 ml of this buffer. The
following lysis was done by addition of 10 �l lysostaphin (5 mg/ml; WAK-
Chemie, Steinbach, Germany), incubation at 37°C for 15 to 20 min, and
subsequent sonication (6 � 30 s; Branson sonifier W185, level 4). Cell
debris was removed by centrifugation (13,000 rpm, 1 min), and the lysate
was used for the following reaction. Four hundred microliters of lysate
was incubated with 100 �l D-serine (10 mg/ml) for 60 min at 37°C. 2,4-
Dinitrophenylhydrazine (Acros; 500 �l; 0.3 mg/ml in 1 N NaCl) was then
added, and incubation continued at room temperature for 20 min. The
reaction was stopped by addition of 1 ml 2.8 N NaOH. The optical density
was read at 450 nm in a spectrophotometer against an assay blank to
which all components had been added except D-serine. Additionally, a
standard curve with pyruvate from 0.5 �g/ml to 10 �g/ml was measured.
Analysis of pyruvate generation was done per mg total protein, which was
determined by the method of Markwell (46).

RNA preparation from Staphylococcus saprophyticus. For RNA
preparation, wild-type S. saprophyticus or the �dsdA mutant was grown in
the chemically defined medium supplemented with glucose or glucose
and D-serine until an OD600 between 0.450 and 0.500 was reached. For
each strain and growth condition, RNA was extracted from three biolog-
ical replicates. Before harvesting, 4 ml Bacteria Protect reagent (Qiagen)
was added to 2 ml bacterial culture, and the mixture was incubated for 5

TABLE 2 Cloning and PCR primers used in this study

Primer Sequence (5=¡3=)a Use (bp location)b

Ssa.dsd1seq/BamHI CACGGATCCGAAATTGCTGAAGATGCG Cloning
Ssa.dsd1rev/HindIII GTGAAGCTTTGTACGATGATCGTAAGG Cloning
Ssa.dsd2seq/PstI CAGCTGCAGTTTACTTTAGTTCGGTAGAG Cloning
Ssa.dsd2/2rev/XbaI GTGTCTAGAGTTCCTGACTCTTTGTGG Cloning
Ssa.dsd4rev/HindIII GCGAAGCTTCTATAAGCAAGATTTACC Cloning
Ssa.dsd4seq/BamHI GTAGGATCCAACGATTTAGCAACACTT Cloning
Ssa.dsd10rev TCACCTCGCTATATCTGG PCR
Ssa.dsd10seq TTTCTTCCACTGACGTGC PCR
catseq GTTACAGTAATATTGACT PCR, DIG probe synthesis (183–201)
catrev CATAAACAATCCTGCATG PCR, DIG probe synthesis (872–890)
ermB TCTAGAACTAGTGGATCCC PCR, DIG probe synthesis
ermB TATTGTCTGCAGccgagagtgattggtctt PCR, DIG probe synthesis
CAT473seq CAGCAAACTACGTATAGC PCR, DIG probe synthesis
CAT473rev CAAGGAATCATTGAAATCG PCR, DIG probe synthesis
pPS44rev/SstI ATAGAGCTGGTGACCACTTGTGATAACG PCR, cloning
pPS44seq/XbaI TGCTCTAGAACTCGTGTGCATAATTCACGC PCR, cloning
a Restriction sites in the 5= extensions of primers are underlined. Lowercase letters indicate nonhomologous sequences with added restriction sites.
b DIG, digoxigenin.
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min at room temperature. By a subsequent centrifugation (5,000 rpm, 10
min, room temperature), bacteria were pelleted, and pellets were stored
for not longer than 2 weeks at �20°C. RNA was prepared using the
RNeasy minikit (Qiagen). The pelleted bacteria were resuspended in 100
�l TE buffer (30 mM Tris, 1 mM EDTA [pH 8.0]), and 10 �l lysostaphin
(5 mg/ml) and 10 �l proteinase K (Applichem) were added. After under-
going vortexing and incubation (10 min, 37°C, 100 rpm), bacteria were
disrupted mechanically following the manufacturer’s instructions with
the modification that a Power Vortex was used instead of a TissueLyser.
DNase digestion was done on-column using the Qiagen RNase-free
DNase set following the manufacturer’s instructions. After elution, ali-
quots of RNA were frozen in liquid nitrogen and stored at �80°C. The
integrity and purity of RNA were checked by gel electrophoresis, and
absorbance was measured using a Nanodrop 1000. The ratio of A260 to
A280 was between 1.9 and 2.1 for all RNA samples used.

RT-qPCR. Real-time reverse transcription-quantitative PCR (RT-
qPCR) was carried out by using the QuantiFast SYBR green RT-PCR kit
(Qiagen) for one-step real-time PCR following the manufacturers’ in-
structions and the LightCycler 1.2 (Roche). The reaction volume was 20
�l. RNA was used as the template at a final concentration of 2.5 ng/
reaction. Primers were added to a final concentration of 0.5 pmol/each.
After RT for 10 min at 50°C, the following temperature protocol was used:
an initial activation step for 5 min at 95°C (temperature transition, 20°C/
s), followed by a two-step cycling PCR (40 cycles) consisting of denatur-
ation at 95°C for 10 s (temperature transition of 20°C/s), a combined
annealing and extension at 60°C for 30 s (temperature transition of 20°C/
s), and fluorescence acquisition at 60°C in single mode. Melting curve
analysis was performed at 60°C to 95°C (temperature transition, 0.1°C/s).
The specificity of the products was checked by melting point analysis and
gel electrophoresis.

Calculation of virulence factor expression. For each strain and
growth condition, RNA was extracted from three biological replicates.
Each replicate was analyzed in triplicate. The test genes where either nor-
malized to gyrB or to dpol. Calculations were done by using the formula
2

�CT test gene/2�CT reference gene, in which the change in cycle threshold
(�CT) is the difference of the CT under glucose conditions � the CT under
D-serine conditions. Values of �2.0 were defined as upregulated, and
values of �0.5 were defined as downregulated if observed in all three
independent biological replicates.

RESULTS
The D-serine-deaminase catabolizes D-serine to pyruvate and
ammonia. To show that in S. saprophyticus the D-serine-deami-
nase is functional and catabolizes D-serine to pyruvate, we con-
structed an isogenic mutant of strain 7108 by interrupting the
gene with an erythromycin resistance cassette. In addition, the
gene was cloned into a staphylococcal vector and expressed in S.
carnosus TM300. We prepared cell extracts from the wild-type S.
saprophyticus strain, the �dsdA mutant, and S. carnosus TM300 as
well as S. carnosus TM300(pMB1406) containing the dsdA gene on
a plasmid. The extracts were incubated with D-serine, and generation
of a keto acid—pyruvate in this case—was measured with the dini-
trophenylhydrazone assay (45). The S. saprophyticus wild-type strain
7108 generated 4.6 (standard deviation [SD], 0.9) �g mg�1 min�1

pyruvate, the mutant 0.4 (SD, 0.06) �g mg�1 min�1, the comple-
mented strain 80.2 (SD, 2.8) �g mg�1 min�1, S. carnosus TM300 0.5
(SD, 0.25) �g mg�1 min�1, and S. carnosus TM300(pMB1406) 36.1
(1.04) �g mg�1 min�1. The presence of the D-serine-deaminase led
to degradation of D-serine to pyruvate, whereas no degradation was
detectable in strains not containing dsdA.

The D-serine-deaminase-negative mutant has a significant
disadvantage against the wild type in coinfection experiments.
The wild-type strain, 7108, and its �dsdA mutant were used in

coinfection experiments in a murine model of urinary tract infec-
tion (Fig. 1). The animals were infected transurethrally with a
suspension containing 1 � 107 CFU of each strain. After 48 h,
the animals were sacrificed, bladders and kidneys were aseptically
removed, and CFU ml�1 tissue were determined. The competitive
index (CI) of the two strains was calculated as follows: CI 
 (CFU ·
ml�1 mutant at 0 h/CFU · ml�1 wild type at 0 h)/(CFU · ml�1 of
mutant at 48 h/CFU · ml�1 of wild type at 48 h). Competitive
indices significantly less than 1 indicate an advantage for the wild
type. The CI in the bladders was 0.47, and that for the kidneys was
0.13; both values were statistically different from 1 (P � 0.05,
Wilcoxon signed-rank test). These experiments showed that in
contrast to E. coli, the �dsdA mutation did not lead to increased
colonization but conferred a disadvantage.

The D-serine-deaminase-negative mutant is at disadvantage
in cocultivation experiments in the presence of D-serine. Since
we wanted to know if the disadvantage of the mutant in animal
experiments is solely related to its inability to catabolize D-serine,
we used in vitro competition experiments in the presence and
absence of D-serine. To allow for selection of the wild type, we
transformed this strain with plasmid encoding tetracycline resis-
tance (pMB2200) that had been isolated from a clinical strain of S.
saprophyticus (41). When this strain and the �dsdA mutant were

FIG 1 (a) Competitive indices of coinfection experiments. Mice were infected
by instillation with a mixture of cells of the wild type and the mutant, and
competitive indices (CIs) were determined for bladders and kidneys. The
dashed line represents equal numbers of CFU recovered from bladder and
kidney. Median CIs, indicated by horizontal lines, were significantly lower
than 1 (0.47 in bladders and 0.13 in kidneys), indicating a disadvantage of the
mutant in these experiments. n 
 13 for bladders and 21 for kidneys. *, P �
0.05 by Wilcoxon signed-rank test. (b) CFU data from coinfection experi-
ments. n 
 13 for bladders and 21 for kidneys. Horizontal lines represent the
geometric mean titer of each sample (n 
 13 for bladders and 21 for kidneys).
Gray circles indicate samples in which no CFU were detected and for which the
limit of detection of the protocol has been entered.
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cocultivated in broth without D-serine, the mutant outcompeted
the wild type (Fig. 2a). In cultures containing D-serine, however,
the mutant was at disadvantage (Fig. 2b). When the L-enantiomer
of serine was used for supplementation, however, the mutant
again had an advantage (Fig. 2c). These experiments show that the
mutant was only at a disadvantage if D-serine was present, exclud-
ing the possibility that the resistance gene on the plasmid caused
slower growth. When the �dsdA mutant and the complemented
mutant were cocultivated in the presence of D-serine, the mutant
was not detectable after 8 days (Fig. 2d). The effects were observed
with D-serine concentrations as low as 2.5 mg/ml in both media
(data not shown).

The Staphylococcus saprophyticus wild-type strain is able to
use D-serine as the sole carbon and energy source. To analyze if S.
saprophyticus is able to grow with D-serine as the sole carbon and
energy source, like E. coli (30), we conducted growth experiments
in a chemically defined medium supplemented with 10 mM D-ser-
ine. Whereas the �dsdA mutant was not able to grow with D-serine
as the sole carbon source, wild-type S. saprophyticus started grow-
ing after an extended lag time (168 h), and the complemented
mutant also grew after a shorter lag time (48 h) compared to the
wild type (Fig. 3). Since D-serine is catabolized to pyruvate and
ammonia, we also supplemented the medium with 10 mM pyru-
vate instead of D-serine. In this medium, the wild type, the �dsdA
mutant, and the complemented mutant grew immediately (lag
phase of about 8 h) and reached high cellular densities (data not
shown). If no carbon source was added, none of the strains was
able to grow.

D-Serine is not only an additional nutrient for Staphylococ-
cus saprophyticus. To analyze if the growth advantage of wild-
type S. saprophyticus in cocultivation experiments was due to the

utilization of D-serine as an additional nutrient, we analyzed the
influence of D-serine on growth in the S. saprophyticus wild-type
strain and the �dsdA mutant. To this end, we cultivated S. sapro-
phyticus in our chemically defined medium supplemented with
2.5 mM glucose or 2.5 mM glucose and 5 mM D-serine. Both the
wild type and the �dsdA mutant grew more slowly in the presence
of D-serine (Fig. 4). This indicates that D-serine has an inhibitory
effect on growth of S. saprophyticus.

Regulation of known virulence factor in the presence of D-
serine. For uropathogenic E. coli, it was shown that a �dsdA mu-
tant is hyperflagellated and more motile than the wild type (23).

FIG 2 (a to d) The ability to degrade D-serine confers a growth advantage. Pairs of strains were grown in full medium in the presence or absence of D-serine. (a)
Wild type and mutant grown without D-serine. The mutant outcompetes the wild type. (b) Wild type and mutant in the presence of D-serine. The wild type
outcompetes the mutant. (c) Both strains in the presence of L-serine. The mutant again has an advantage. (d) Mutant and the complemented mutant in the
presence of D-serine. The complemented mutant outcompetes the mutant. Values are the means of at least three experiments and SD (log CFU/ml).

FIG 3 Staphylococcus saprophyticus is able to use D-serine as the sole carbon
source. The S. saprophyticus 7108 wild-type strain and the complemented
�dsdA mutant strain [7108 �dsdA(pMB1406)] are able to grow in chemically
defined medium supplemented with D-serine (DS) (10 mM) as the sole carbon
source. The �dsdA mutant was not able to grow. Without any additional
supplements, none of the strains could grow. Values are means of at least three
experiments and SD.
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This hyperflagellation leads to hypercolonization; therefore, the
�dsdA mutant of E. coli is more virulent than the wild type. D-Ser-
ine acts as a signal for upregulation of genes encoding fimbriae and
some other virulence factors (47, 48). In S. saprophyticus, the
�dsdA mutant is attenuated in virulence, suggesting that the in-
fluence of D-serine and D-serine metabolism on virulence gene
expression is different from that in E. coli. To investigate if there is
also a connection between virulence and D-serine in S. saprophyti-
cus, we analyzed the expression of known virulence factors in the
presence and absence of D-serine in the wild-type S. saprophyticus
strain and the �dsdA mutant. Using chemically defined medium
for these experiments, we were able to study the effect of D-serine
without the influence of other, unknown components of the me-
dium. Wild-type strain 7108 of S. saprophyticus and the �dsdA
mutant were grown in chemically defined medium supplemented
with 2.5 mM glucose or with 2.5 mM glucose and 5 mM D-serine
to an OD600 between 0.450 and 0.500, which represents the late
exponential phase. RNA was prepared, and the expression of
known virulence factors was measured by RT-qPCR. The genes
and primers used in this study are listed in Table 3.

We analyzed the expression of the genes by relative quantifica-
tion using gyrB as an internal reference gene, as previously de-
scribed for Staphylococcus aureus (49, 50). While it is common
practice to use only one reference gene for relative quantification,
this practice assumes that the reference gene is not altered under
the conditions being examined. However, it has been shown that
the conventional normalization strategy based on a single gene
can lead to significant errors (51). Therefore, we decided to use a
second reference gene, dpol, along with gyrB because their gene
products, DNA polymerase and gyrase subunit B, respectively, are
not involved in metabolism and therefore should be constantly
expressed under the different conditions we were interested in.
Accordingly, we observed only minute differences in the expres-
sion of both reference genes when strains were grown with glucose
compared to D-serine. Fig. 5a to c present the fold changes of each
gene under D-serine conditions compared to glucose conditions
referenced either to gyrB or to dpol in wild-type S. saprophyticus
(Fig. 5a) and the �dsdA mutant (Fig. 5b).

Using our criteria for up- and downregulation, only ssp in
wild-type S. saprophyticus was consistently induced in the pres-
ence of D-serine. The ability to metabolize D-serine is required for

ssp induction, as we did not observe this upregulation in the
�dsdA mutant. Given the intersample variability in ssp induction,
we confirmed the result in three freshly prepared biological sam-
ples (Fig. 5c). None of the other genes examined in S. saprophyti-
cus displayed reproducibly altered transcription in the presence of
D-serine. None of the genes analyzed in the �dsdA mutant was
clearly regulated.

DISCUSSION

We have shown previously that S. saprophyticus is the only species
of Staphylococcus that possesses a D-serine-deaminase and grows
in the presence of high concentrations of D-serine (52). When the
dsdA gene is transferred to S. aureus (36) or S. carnosus (this work),
which do not naturally express the deaminase, these species can
grow in the presence of the same concentration of D-serine as S.
saprophyticus. We used the dsdA homologue cloned from S. sap-
rophyticus into S. carnosus to show that its product indeed causes
degradation of D-serine. In addition we showed that the S. sapro-
phyticus wild type produces pyruvate from D-serine, whereas the
�dsdA mutant and S. carnosus TM300 did not.

In uropathogenic E. coli (UPEC), D-serine is used as a cue for
the organism’s presence in the urinary tract, can be used as the sole
carbon source, and regulates the expression of virulence factors
(48). Curiously, a dsdA UPEC mutant expressed higher adherence
capabilities as well as increased flagellation (23) and outcompeted
the wild type in coinfection experiments, which indicates that ser-
ine metabolism is important but that there are functions of D-ser-
ine besides the pure generation of energy.

In order to analyze the role and relevance of the D-serine-
deaminase for virulence of S. saprophyticus, we performed coin-
fection experiments in mice infected with the wild-type and
�dsdA mutant strains. In these experiments, the mutant had a
distinct disadvantage compared to the wild type. The effect was
more pronounced in the bladders of the animals than in the kid-
neys, although the mutant had a significant disadvantage in both
organs. These results clearly indicate that the D-serine-deaminase
is important for S. saprophyticus during experimental infection.

To show that the disadvantage of the �dsdA mutant in vivo was

FIG 4 Influence of D-serine on growth of S. saprophyticus. D-Serine (DS) leads
to growth impairment of the dsdA-knockout mutant as well as the wild-type
strain, 7108, when the chemically defined medium was supplemented with
glucose (2.5 mM) and D-serine (5 mM). Values are means of at least three
experiments and SD.

TABLE 3 Primer used for RT-qPCR in this study

GenBank
accession no. Primer name Sequence (5=¡3=)

Product
size (bp)

AF402316 RNA_sdrI_F1 GCAGACGCAGACGCAGAC 147
RNA_sdrI_R1 CAGCATCTGCATCTGCATCTGAG

AY551101 RNA_ssp_F1 TGGTGCTGCACATGCAGAAAG 129
RNA-ssp_R1 ACGGACAGTTTGTCCTCCCATAC

YP_300522 RNA_dsdA_F2 TTACTGAACCAACACATGCCCC 147
RNA_dsdA_R2 ATTTGCCCGACTAAGCGAGATG

AJ000007 RNA_aas_F1 GCCGACTACGCAGCAACTAAC 136
RNA_aas_R1 CCATGAGGGTCAGAGTGGTCAG

Q4A0V8 RNA_uafA_F1 CGATTACCGTAACGGGTTATCCAG 131
RNA_uafA_R1 GAGAGCCAGAATTACCTCCGAATG

YP_300353 RNA_ureC_F1 ACACATATCGGTGGCGGTACAG 121
RNA_ureC_R1 GGTTTACAGCTTGCCCTTTACCAG

YP_300095 RNA_gyrB_F1 GCAGAGTCACCCTCGACGATAAAG 118
RNA_gyrB_R1 GTGAAGTTACGCGCCGTAAATCAG

YP_301165 RNA_dpoI_F1 TGCGTAGACAAGCGAAAGCAG 140
RNA_dpoI_R1 GTTTCACACCAGGGAAACTATCGAG
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caused by its inability to metabolize D-serine, we conducted coc-
ultivation experiments in the presence and absence of D-serine. To
allow positive selection of the wild-type strain, 7108, we trans-
formed it with a naturally occurring tetracycline resistance plas-
mid of S. saprophyticus, pMB2200, which we had isolated from a
clinical strain (41). When the wild-type strain (Tcr) and the mu-
tant were grown in LB without D-serine, the mutant outcompeted
the wild type; in the presence of D-serine, the wild type, however,
outcompeted the mutant. When we used the L-enantiomer of ser-
ine, the mutant again grew better than the wild type. The advan-
tage of the mutant in the absence of D-serine can be explained by
the additional burden the tetracycline plasmid represents; in the
presence of D-serine, the advantage of the mutant does not com-
pensate for the effects of D-serine. We therefore conclude that

D-serine is the factor that caused the disadvantage of the mutant in
these experiments. This conclusion is corroborated by our finding
that the wild type and the complemented mutant can grow when
D-serine is the only carbon and energy source, whereas the mutant
cannot. In these experiments, the lag phases were quite long.
When the strains were grown with pyruvate instead of D-serine, all
of them grew very fast, suggesting that the velocity of the DsdA
enzyme was the limiting factor in these experiments. This is sup-
ported by the fact that the complemented mutant grew faster than
the wild type. In the presence of glucose, D-serine had a negative
effect on growth of the �dsdA mutant as well as on the wild type,
mainly because of a prolonged lag phase of at least 45 h. Strains
start to grow after the prolonged lag phase but apparently also
replicate more slowly. We therefore conclude that the growth ad-

FIG 5 (a to c) Regulation of known virulence factors in the presence of D-serine. Each test gene was analyzed in three biological replicates and referenced to gyrB
and dpol as the control genes. The values of the biological replicates are means of two or three experiments and SD. Dashed lines represent the threshold values
for up- and downregulation. (a) Regulation of known virulence in wild-type S. saprophyticus. (b) Regulation of known virulence genes in the �dsdA mutant. (c)
Regulation of ssp in wild-type S. saprophyticus analyzed in three additional biological replicates.
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vantage of the wild type in the presence of D-serine cannot be
explained just by an additional nutrient source and that the influ-
ence of D-serine on S. saprophyticus is more complex. Obviously,
there is an inhibitory effect on growth in the presence of glucose;
on the other hand, S. saprophyticus is able to grow with D-serine as
the sole carbon and energy source.

DsdA catabolizes D-serine by forming pyruvate and ammonia.
Bacteria not able to catabolize D-serine are usually inhibited by the
compound, and it is thought that this effect is due to inhibition of
the synthesis of pantothenic acid by D-serine, which functions as
an analogue of �-alanine (29). In other species, D-serine inhibits
pantothenic acid biosynthesis at different steps (26–28, 53). In E.
coli, the target of D-serine inhibition is the pantoate-�-alanine
ligase, encoded by panC, and it was shown that there is a second
target of D-serine inhibition, the L-serine metabolism (29). For
growth in our chemically defined medium, S. saprophyticus re-
quires pantothenic acid or �-alanine; therefore, our chemically
defined medium contains pantothenic acid. As we saw growth
inhibition caused by D-serine in this medium, it is unlikely that
growth impairment is caused by this classical mechanism.

In E. coli, D-serine regulates expression of virulence factors (47,
48). Because of our findings that wild-type S. saprophyticus has an
advantage over the �dsdA mutant in coinfection experiments as
well as in cocultivation experiments in the presence of D-serine, we
hypothesized that D-serine metabolism affects S. saprophyticus vir-
ulence factor expression, albeit in a different way than in E. coli. To
test this hypothesis, we analyzed the expression of known S. sap-
rophyticus virulence factors in the presence and absence of D-ser-
ine in the wild type and the �dsdA mutant by RT-qPCR. Since we
observed slight differences in expression of our chosen reference
genes under both conditions, we decided to regard only those
results as certain that were �2.0 or �0.5 in RNA preparations
from three biological replicates referenced to both genes. Using
these criteria, only ssp in wild-type S. saprophyticus was induced in
the presence of D-serine. This result was confirmed by additional
experiments (Fig. 5c). Therefore, we conclude that ssp is upregu-
lated. It has been shown that an ssp-knockout mutant is less viru-
lent in a murine model of UTI (19), although the role of the lipase
during infection remains undefined. It has been suggested that
lipases may be important for colonization, possibly in terms of
nutrition or by release of free fatty acids which may promote ad-
herence (54, 55). We conclude that the D-serine metabolism in-
duces S. saprophyticus to produce greater amounts of lipase, which
is needed during infection. Our hypothesis is that D-serine is used
as a cue for the presence in the urinary tract and induces a different
metabolism, including expression of Ssp in S. saprophyticus. It is
not yet clear if D-serine directly or indirectly regulates ssp; these
analyses will be the subjects of subsequent studies.

In conclusion, we have shown that S. saprophyticus is able to
use D-serine as the sole carbon and energy source, like E. coli (30),
but D-serine also has a negative effect on growth of S. saprophyti-
cus. Coinfection experiments and cocultivation experiments
showed that the D-serine-deaminase confers an advantage to the
wild-type strain. Coinfection experiments demonstrated that the
D-serine-deaminase is important for virulence of S. saprophyticus
during urinary tract infection. In the presence of D-serine, the
virulence-associated lipase Ssp is upregulated in the wild type,
which may explain its advantage in experimental infections. We
conclude that the D-serine-deaminase acts as a virulence factor in
two different ways. First, it catabolizes D-serine, which is toxic or

bacteriostatic to many bacteria and other staphylococci. Only
strains that expressed this enzyme are able to grow in the presence
of D-serine and to catabolize this amino acid. Second, D-serine, the
D-serine-deaminase, or D-serine metabolism affects the expres-
sion of at least one virulence factor, the lipase Ssp, suggesting that
D-serine may serve as a cue to the bacteria for their presence in the
urinary tract and to induce adaptation to this environment.
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