

Extraintestinal Pathogenic Escherichia coli Carrying the Shiga Toxin Gene stx_2

A. L. Wester, L. T. Brandal, U. R. Dahle

Department of Foodborne Infections, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway

The 2011 outbreak of infections with *Escherichia coli* with characteristics of both enteroaggregative *E. coli* (EAEC) and Shiga toxin-producing *E. coli* (STEC) caused a paradigm shift with regard to the human pathogenicity of STEC (1). Diarrheagenic *E. coli* (DEC) usually does not cause extraintestinal diseases such as urinary tract infections and bacteremia (2).

The DNA of 193 *E. coli* isolates from adult bacteremic patients described previously (3) was analyzed for the presence of stx_1 and stx_2 (4). All of the strains were stx_1 negative, but nine (4.7%) were stx_2 positive. According to the Scheutz subtyping protocol (5), seven belonged to subtype stx_{2c} and two belonged to stx_{2d} . Table 1 shows the associations between the clinical presentations of the patients and their stx_2 statuses.

Arbitrarily chosen, DNA from 2 of the stx_2 -postive strains and 26 of the stx-negative strains was analyzed for additional DEC genes (4, 6) and extraintestinal pathogenic *E. coli* (ExPEC) genes by PCR assay as selected by B. A. Lindstedt et al. (unpublished data) (Table 2). One of the two stx_2 -positive strains that were further analyzed for additional virulence markers carried both stx_{2c} and aggR. Seven of the 26 stx-negative strains carried other DEC genes; with or without concomitant ExPEC genes.

The stx_2 -positive strains were recultured and tested for toxin production by ImmunoCard STAT! EHEC (Meridian Bioscience, Inc.). All nine stx_2 -positive strains tested negative for toxin production. Therefore, another isolation of DNA from the viable strains was performed and new PCR assays detecting stx and aggR were run. Surprisingly, the toxin gene was lost by all nine but aggR was reproduced in the relevant strain, indicating no mix-up of strains or DNA. Loss of stx_2 -carrying bacteriophages is not a novel phenomenon (7, 8), but to our knowledge, such a frequent loss has not been described previously.

Reports of bacteremia or sepsis in patients with hemolyticuremic syndrome (HUS) caused by STEC do exist (2, 9–11). In our study, we found that almost 5% of the strains found in adult patients with bacteremia caused by *E. coli* carried stx_2 subtypes associated with HUS (12–14). Not having symptoms of gastroenteritis was associated with stx_2 -positive status, but this finding seems rather implausible. Further characterization of two stx_{2c} carrying isolates showed features of STEC and EAEC, as well as ExPEC, which, to our knowledge, is a novel finding.

If reproduced, these *stx* findings may have consequences for infection control. And if an association with clinical presentation is found, differential diagnoses of bacteremia with *E. coli* should include STEC colitis, as well as HUS. This is particularly relevant for elderly patients, who may have vague symptoms and comorbidity complicating the clinical picture. Furthermore, elderly, institutionalized patients have a unique susceptibility to STEC infection and its sequelae (15). Microbiological analyses of *E. coli* blood culture isolates to detect *stx* should therefore be encouraged, and infection control measures and contact tracing should be implemented when *stx*-carrying *E. coli* bacteremia is confirmed.

Published ahead of print 9 October 2013

Address correspondence to Astrid Louise Wester, astrid.louise.wester@fhi.no. Copyright © 2013, American Society for Microbiology. All Rights Reserved. doi:10.1128/JCM.01349-13

TABLE 1 stx₂ statuses of E. coli and clinical characteristics of 193 bacteremia patients

	No. (%) of patients				
Characteristic	All	184 stx negative	9 stx positive	P value	
Age of \geq 65 yr	133 (68.9)	126 (68.5)	7 (77.8)	0.56	
Male gender	71 (36.8)	66 (35.9)	5 (55.6)	0.23	
Symptoms of gastroenteritis	74 (38.1)	74 (40.4)	0	0.03	
Clinical presentation ^{<i>a</i>} within 1 day of admission with:					
Acute renal failure	10 (5.2)	9 (4.7)	1 (12.5)	0.35	
Thrombocytopenia ^b	18 (9.5)	18 (9.9)	0	0.25 0.63	
One or more failing organs	86 (45.7)	83 (46.1)	3 (37.5)		
Death in hospital within 14 days after admission	14 (7.3)	13 (7.1)	1 (12.5)	0.65	

^a Data were available on acute renal failure, thrombocytopenia, and one or more failing organs for 191, 190, and 188 patients, respectively.

^b <100,000 thrombocytes/μl.

Study identification no.	O serogroup	DEC VGs ^a	ExPEC VGs ^b			
			Adhesins	Iron acquisition	Cytotoxins	Other
11	O?			sitA, iroC		ibeA, iss, traT, tsh, kps1
52	O2		papC	iutA, sitA, iucD, iroC		iss, traT, tsh, etsA, kps1
81	O103 ^c	stx_{2c}	рарС	iutA, sitA, iucD, iroC		kps1, tsh, etsA, iss, traT
100	O?	ehaA				-
282	O?			iutA, sitA, iucD	sat	iss, traT
325	O6		sfaS	sitA, iroC	cnf1	iss, traT, tsh, kps1
336	O?	ehaA	-	iutA, iucD	-	iss, etsA
387	O?			iutA, iucD, iroC		iss, traT, tsh, etsA
447	O2		papC	iutA, sitA, iucD, iroD		iss, traT, tsh, etsA, kps1
585	O2	cdt		iutA, iucD, sitA, iroC	cnf1, sat	iss, kps1, tsh
668	O2		papC	iutA, sitA, iroC, iucD	-	iss, traT, tsh, etsA
685	O15	stx _{2c} , aggR		iutA, sitA, iucD	sat	iss, traT
687	O12			iutA, iucD, iroC		iss, traT, tsh, etsA
713	O6/O7			iutA, sitA, iucD, iroC		iss, sat, tsh
803	O?			iutA, sitA, iucD	sat	ibeA, iss
804	O6			sitA, iroC		ibeA, iss, traT, tsh, kps1
839	O103 ^c		papC	iutA, sitA, iucD, iroC		iss, traT, tsh, etsA, kps1
859	O?	ehaA		sitA, iucD	sat	iss, traT
865	O?	ehaA		iutA, iucD, icoC		iss, traT, etsA
891	O2			sitA		iss, etsA, kps1
895	O4/O12			iutA, sitA, iucD, iroC	cnf1	iss, tsh, kps1
915	O75			sitA, iroC	cnf1	ibeA, iss, tsh, kps1
952	O?			sitA, iroC		ibeA, iss, tsh, kps1
972	O18	cdt	sfaS	iutA, sitA, iucD, iroC		ibeA, iss, traT, gimB, tsh, etsA, kps1
1010	O6			iutA, sitA, iucD, iroC	cnf1, sat	iss, traT,tsh
1095	O1		papC	sitA		iss, traT, tsh, kps1
1121	O103 ^c	eaeB, ehaA				-
1127	O?			sitA, iroC		ibeA, iss, traT, tsh, kps1

^a Virulence genes (VGs) associated with DEC: ST1a, ST1b, ehxA, aggR, LT1, stx₁, stx₂, eaeB, ipaH, bfpB, saa, nleB, stcE, cdt, and subA.

^b VGs associated with ExPEC: adhesins (*papC* and *sfaS*), iron acquisition (*iutA*, *sitA*, *iucD*, and *iroC*), cytotoxins (*cnf1*, *cnf2*, *cnf3*, and *sat*), and others (*kps1*, *ibeA*, *iss*, *traT*, and *tsh*). ^c Flagellar antigen H2.

REFERENCES

- Beutin L, Martin A. 2012. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J. Food Prot. 75: 408–418.
- Lienemann T, Salo E, Rimhanen-Finne R, Ronnholm K, Taimisto M, Hirvonen JJ, Tarkka E, Kuusi M, Siitonen A. 2012. Shiga toxinproducing Escherichia coli serotype O78:H(-) in family, Finland, 2009. Emerg. Infect. Dis. 18:577–581.
- Wester AL, Dunlop O, Melby KK, Dahle UR, Wyller TB. 2013. Agerelated differences in symptoms, diagnosis and prognosis of bacteremia. BMC Infect. Dis. 13:346. doi:10.1186/1471-2334-13-346.
- Brandal LT, Lindstedt BA, Aas L, Stavnes TL, Lassen J, Kapperud G. 2007. Octaplex PCR and fluorescence-based capillary electrophoresis for identification of human diarrheagenic Escherichia coli and Shigella spp. J. Microbiol. Methods 68:331–341.
- Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson S, O'Brien AD. 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 50:2951–2963.
- Brandal LT, Sekse C, Lindstedt BA, Sunde M, Lobersli I, Urdahl AM, Kapperud G. 2012. Norwegian sheep are an important reservoir for human-pathogenic *Escherichia coli* O26:H11. Appl. Environ. Microbiol. 78: 4083–4091.
- Bielaszewska M, Prager R, Kock R, Mellmann A, Zhang W, Tschape H, Tarr PI, Karch H. 2007. Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic *Escherichia coli* O26 infection in humans. Appl. Environ. Microbiol. 73:3144–3150.

- Mellmann A, Lu S, Karch H, Xu JG, Harmsen D, Schmidt MA, Bielaszewska M. 2008. Recycling of Shiga toxin 2 genes in sorbitolfermenting enterohemorrhagic *Escherichia coli* O157:NM. Appl. Environ. Microbiol. 74:67–72.
- Buvens G, De Rauw K, Roisin S, Vanfraechem G, Denis O, Jacobs F, Scheutz F, Pierard D. 2013. Verocytotoxin-producing *Escherichia coli* 0128ab:H2 bacteremia in a 27-year-old male with hemolytic-uremic syndrome. J. Clin. Microbiol. 51:1633–1635.
- Chiurchiu C, Firrincieli A, Santostefano M, Fusaroli M, Remuzzi G, Ruggenenti P. 2003. Adult nondiarrhea hemolytic uremic syndrome associated with Shiga toxin Escherichia coli O157:H7 bacteremia and urinary tract infection. Am. J. Kidney Dis. 41:E4. doi:10.1016/S0272-6386(03)00365-2.
- Manton N, Smith NM, Byard RW. 2000. Unexpected childhood death due to hemolytic uremic syndrome. Am. J. Forensic Med. Pathol. 21: 90–92.
- Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T, Ammon A, Karch H. 2002. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis. 185:74–84.
- Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA. 2011. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 79:1329–1337.
- 14. Persson S, Olsen KE, Ethelberg S, Scheutz F. 2007. Subtyping method for *Escherichia coli* Shiga toxin (Verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 45:2020–2024.
- Reiss G, Kunz P, Koin D, Keeffe EB. 2006. Escherichia coli O157:H7 infection in nursing homes: review of literature and report of recent outbreak. J. Am. Geriatr. Soc. 54:680–684.