JVI

Journals.ASM.org

Phylogenomic Network and Comparative Genomics Reveal a Diverged
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Bacteriophages are the largest reservoir of genetic diversity. Here we describe the novel phage ¢pJM-2012. This natural isolate
from marine Vibrio cyclitrophicus possesses very few gene contents relevant to other well-studied marine Vibrio phages. To bet-
ter understand its evolutionary history, we built a mathematical model of pairwise relationships among 1,221 phage genomes, in
which the genomes (nodes) are linked by edges representing the normalized number of shared orthologous protein families.
This weighted network revealed that ¢JM-2012 was connected to only five members of the Pseudomonas GpKZ-like phage family
in an isolated network, strongly indicating that it belongs to this phage group. However, comparative genomic analyses high-
lighted an almost complete loss of colinearity with the ¢pKZ-related genomes and little conservation of gene order, probably re-

flecting the action of distinct evolutionary forces on the genome of ¢bJM-2012. In this phage, typical conserved core genes, in-
cluding six RNA polymerase genes, were frequently displaced and the hyperplastic regions were rich in both unique genes and
predicted unidirectional promoters with highly correlated orientations. Further, analysis of the $pJM-2012 genome showed that
segments of the conserved N-terminal parts of pKZ tail fiber paralogs exhibited evidence of combinatorial assortment, having
switched transcriptional orientation, and there was recruitment and/or structural changes among phage endolysins and tail
spike protein. Thus, this naturally occurring phage appears to have branched from a common ancestor of the ¢GKZ-related
groups, showing a distinct genomic architecture and unique genes that most likely reflect adaptation to its chosen host and

environment.

Bacteriophages, which are the most abundant biological enti-
ties on Earth, typically outnumber their bacterial hosts by
about 10-fold (1, 2). In the ocean, phages act as major regulators of
host populations by lysing between 10 and 50% of the bacteria
each day (3). They have key effects in shaping viral and host ge-
nomes through horizontal gene transfers (HGTs), with an esti-
mated infection frequency of up to 10'* times/s (4), and help select
for infection-resistant bacteria (5). Over a wide range of spaces
and a time scale exceeding 3 billion years, phages have greatly
impacted microbial population dynamics, genomic diversity, and
evolution (6, 7). Metagenomic studies of the oceanic viral fraction
found only a few sequences homologous to known viruses (8, 9),
indicating that a huge amount of viral diversity still remains to be
explored.

The study of marine phage genomes is relatively new (10), with
only about 35 marine phages completely sequenced to date (11).
Nevertheless, these genomes have revealed some interesting fea-
tures. For example, several marine Vibrio phages, including
$VpV262 with T7-like features (12), T4-like $KVP40 (13), and
the recently identified phage $SIO-2 (11), exhibit diverse mor-
phologies, different patterns of host specificity, and/or unusual
genomic architectures, reflecting their unique ecological and evo-
lutionary properties. Furthermore, the presence of genes that
share robust structural or sequence similarities with those found
in unrelated bacteria and phages of nonmarine origin (14) enables
us to infer the potential spread of these phages in the ocean and
study the distribution of mobile genetic elements.

However, phage genomes are typically characterized by inde-
pendent gene contents reflecting numerous HGT events (15), lack
of universal genes (16), and frequent disconnects between genetic
relatedness and morphological distinctions (17). Thus, classical tax-
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onomic classification has proven difficult, often limiting our under-
standing of the genomic diversity and evolution of phages (18, 19). As
a promising approach, recent studies have proposed reticulated net-
work modeling, in which pairwise relationships of phage genomes are
represented as weighted phage-phage similarities in terms of gene/
protein contents (15, 20). Because the resulting phylogenomic net-
work includes the evolutionary reconstruction process for individual
gene phylogeny through normalization/weighting of the average
number of shared genes, it is generally accepted as more adequate for
tracing true evolutionary history (21, 22).

Here we report the discovery and characterization of a marine
Vibrio phage, $JM-2012. This phage exhibits a myoviral lineage
and possesses very few homologs with other well-known marine
Vibrio phages. A mathematical model of reticulate networks based
on ortholog clustering (15, 20) and subsequent comparative anal-
ysis provides strong molecular support for the notion that GJM-
2012 diverged from a common ancestor of the ¢$KZ-related
groups (23-27), most likely because of the imposition of distinct
evolutionary forces upon its genome. Thus, given that $KZ-like
phages have limited genetic diversity and a narrow host range
(23-29), these data provide novel insights into the diversity and
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evolution of $KZ-related groups at the genomic and amino acid
sequence levels.

MATERIALS AND METHODS

Bacterial strain and its bacteriophage. The bacterial host we used, Vibrio
cyclitrophicus, was obtained from the body fluid of an ascidian with soft-
tunic syndrome (30). Bacteriophage $bJM-2012 was isolated from single
plaques on host bacteria by using 0.2-p.m-filtered and autoclaved seawa-
ter supplemented with 1% Bacto tryptone and 0.5% yeast extract (Gibco,
Gaithersburg, MD). After incubation for 24 h at 15°C, a single plaque was
picked from the lawn of host cells, eluted in 0.2-pwm-filtered autoclaved
seawater, and combined with a host culture in a plaque assay. Following
several rounds of plaque isolation, the phage particles were purified by
CsCl density gradient equilibrium centrifugation as previously described
(31).

Morphological characterization by transmission electron micros-
copy (TEM). A solution (8 pl) of purified bacteriophage was dropped
onto 400-mesh Formvar carbon-coated copper grids (Ted Pella Inc., Red-
ding, CA). After 2 min, the bacteriophage solution was removed with filter
paper and the grids were stained with 8 pl of 1% aqueous uranyl acetate
(Merck, Darmstadt, Germany). The grids were examined with a Philips
TECNAI F12 FEI transmission electron microscope (FEL, Hillsboro, OR)
atan accelerating voltage of 120 kV. Bacteriophages were morphologically
classified according to the International Committee on Taxonomy of Vi-
ruses (ICTV; http://www.ictvdb.org/) classification scheme.

Genome sequencing and bioinformatic analysis. Bacteriophage
DNA was prepared for sequencing as previously described (31). The
genomic sequence of the bacteriophage was determined with an FLX Ti-
tanium genome sequencer (Roche, Mannheim, Germany) according to
the manufacturer’s standard procedures. All reads were assembled with
Newbler Assembler (version 2.3; 454 Life Sciences, Branford, CT) and the
CLC Genomics Workbench software program (version 4.5.1; CLC Bio,
Aarhus, Denmark). Sequencing and assembly were performed by Chun-
Lab Inc. (Seoul, South Korea), and the bacteriophage was designated
$JM-2012. The potential gene products of the predicted open reading
frames (ORFs) were compared with the proteins in the nonredundant
GenBank databases by using BLASTp or PSI-BLAST (http://www.ncbi
.nlm.nih.gov/blast/) (32) with E values of <10™* (as of December 2012).
The functional assignment of each ORF was predicted by local alignment
algorithm-based database searches with Pfam (version 27.0; http://pfam
.sanger.ac.uk/) (33), HHpred (version 2.0; http://toolkit.tuebingen.mpg
.de/hhpred) (34), and “pdb70_1Decl2.” Protein structures were pre-
dicted with PSIPRED (version 3.0; http://bioinf.cs.ucl.ac.uk/) (35) and/or
Phyre2 (version 2.0; http://www.sbg.bio.ic.ac.uk/phyre2/) (36). Multiple-
sequence alignment of the protein sequences of interest was performed
with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) (37).
Phylogenetic analyses of the protein sequences of interest were performed
with MEGAS (version 5.2.1; http://www.megasoftware.net/) (38). To es-
timate the robustness of the trees, we used the maximum-likelihood algo-
rithm provided with bootstrap support (n = 1,000 replicates). To search
for tRNA genes, we used tRNAscan-SE (version 1.2.1; http://lowelab.ucsc
.edu/tRNAscan-SE/) (39). The PHIRE program (version 1.00; http://www
.agr.kuleuven.ac.be/logt/PHIRE.htm) (40) was used to identify phage-
specific promoters by using the following default parameters: string
length, 20; degeneracy, 4; dominanNum, 4; window size, 20. Sequence
logos were calculated by WebLogo (version 2.8.2; http://weblogo.berkeley
.edu/) (41). The ARNold program (http://rna.igmors.u-psud.fr/toolbox
/arnold/) (42) was used to predict the rho-independent transcription ter-
minators.

Protein family clustering and comparative analysis. To represent the
evolutionary relationship of ¢$JM-2012 with other bacteriophages as a
network, we built a similarity network by using the A CLAssification of
Mobile genetic Elements (ACLAME) database (version 0.4; http://aclame
.ulb.ac.be) as previously described (20), with some modifications. Briefly,
to cluster protein sequences into orthologous families, we performed
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pairwise similarity comparisons of each predicted protein of the ¢pJM-
2012 genome (n = 173) with BLAST in ACLAME; we used a Markov
clustering (MCL) algorithm and the database of “viruses and prophages”
(as of November 2012), within an E value threshold of 0.0001. Fifty-eight
potential gene products of $JM-2012 were found to be associated with
protein families in ACLAME, while the remaining proteins were defined
as “dummy” families, e.g., the unclassified protein families 1 to 115, and
considered to assess the actual similarity between ¢pJM-2012 and those in
the ACLAME database. Because the ACLAME database is not currently
updated and does not include the most recently identified bacteriophages,
including $KZ-like bacteriophages, ®PA3 (23), 201$2-1 (25), and OBP
(27), we further examined protein families from a number of completely
sequenced bacteriophages. We downloaded a total of 1,652 predicted pro-
tein sequences representing the genomes of ¢KZ (GenBank accession
number NC_004629), $PA3 (HQ630627), 201b2-1 (NC_010821), GbEL
(NC_007623), and $OBP (NC_016571) from the GenBank database
(http://www.ncbinlm.nih.gov/GenBank/index.html). Of these, 1,145
predicted protein sequences retrieved from ¢$PA3, 201d2-1, and $OBP
were analyzed with the ACLAME database as described for ¢pJM-2012.
The protein sequences that were not assigned to any protein families in the
ACLAME database were manually subjected to all-to-all BLASTp searches
against a total set of 1,825 predicted protein sequences from the six phages
with a cutoff E value of 10™*. A sequence was added to a cluster if it shared
areciprocal best BLAST hit relationship with at least one of the sequences
in the cluster; it was thereafter considered the unclassified protein family
when we assessed phage-to-phage similarity. In addition, dot plots were
generated on the basis of the all-to-all BLASTp search results.

Network construction. The resulting output was parsed in the form of
a matrix in which the rows represented mobile genetic elements (MGEs)
and the columns represented the protein families. We then determined
the similarities of $JM-2012, GPA3, GOBP, and 201d2-1 to the related
MGE:s as previously described (15). From this, we obtained P values rep-
resenting the probability of finding a common number of protein families
between each pair of MGE vehicles on the basis of the following hypergeo-
metric equation:
min(a,b) % ( 1)
i=c Cb

Pval=P(X=c¢) =
n

where c is the number of protein families in common; a is the number of
protein families of MGEs in ACLAME hits; b is the number of protein
families in $JM-2012, $PA3, $OBP, and 201d2-1, respectively; and n is
the total number of protein families in the ACLAME database. The signif-
icance (Sig) value was obtained with the following equation Sig = —log(E
value) = —log(P value X T), where the P value was obtained from the
equation above and T = 1,221 X 1,220. Afterwards, the MGEs with Sig
values of >0 were used to construct a new network of the bacteriophage
genome-encoded protein-sharing relationships among $pJM-2012, $PA3,
$OBP, and 201¢2-1. This was visualized with the Cytoscape software
(version 1.1; http://cytoscape.org/) (43) by using an edge-weighted
spring-embedded model where MGEs that shared more protein families
are located closer together in the network.

Nucleotide sequence accession numbers. The sequences of the bac-
terial strain used here and its bacteriophage, $JM-2012, have been depos-
ited in GenBank and assigned accession numbers KF488567 and
JQ340088, respectively.

RESULTS

Morphology of phage $bJM-2012. TEM examination of purified
$JM-2012 particles revealed that each particle comprised an iso-
metric head, a contractile tail, and kinked tail fibers that were
probably associated with the tail (Fig. 1A). The diameter of the
DNA-filled phage heads was 124 = 4 nm. The noncontracted
phage tails, which consisted of a neck, a tail sheath, and a central
tube, were 260 * 5 nm in length and 29 = 2 nm in width, and the
contracted tail was 131 = 11 nm long. On the basis of its morpho-
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FIG 1 Morphology and genome map of bacteriophage ¢$JM-2012. (A) Electron micrographs of negatively stained purified viral particles. (B) The 167,292-bp
genome of $pJM-2012 represented in four tiers, with markers spaced at 1-kbp intervals. The ORFs are shown as boxes on either the positive (upper line) or
negative (lower line) DNA strand, depending on whether they are transcribed rightward or leftward, respectively. The ORF numbers are shown within boxes, and
each box is colored according to its putative function, which is shown above the ORFs. Other sequences, including the predicted promoters and terminators, are
indicated. The numbers of phage proteins detected per ORF are provided in Table S1 in the supplemental material. LRR, leucine-rich repeat.

logical traits, $JM-2012 was presumptively identified as a member
of the Myoviridae family.

Genome overview and annotation. The entire genome se-
quence of $JM-2012, which was determined with the Roche Ge-
nome Sequencer system, was found to be a 167,292-bp-long dou-
ble-stranded DNA comprising a total of 173 predicted ORFs. Of
these ORFs, 38 were transcribed leftward and the remaining 135
were transcribed rightward (Fig. 1B). The average G+C content
was 35.40%; this parameter did not show any large-scale varia-
tions across the sequences, but eight ORFs (ORF14, ORF36,
ORF106, ORF110, ORF113, ORF133, ORF142, and ORF164,
mostly related to hypothetical proteins) had G+C contents of
>40%. The ORF density was about 92.82%, there were 118 inter-
OREF sequences of >15 bp and only eight sequences longer than
250 bp, and 20 sequences overlapped (data not shown). No tRNA
sequence was identified by the tRNAscan-SE program. Prediction
of initiation codon usage identified 160 ORFs with AUG start
codons, while eight and five predicted ORFs used the UUG and
GUG start codons, respectively. We also identified a total of 14
putative phage-specific promoters with a consensus sequence of
WTTTAYAYCTATATATTATA (see Table S1 in the supplemen-
tal material), and these motifs were predicted to be unidirectional
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(Fig. 1B). In addition, we found 21 potential rho-independent
transcription terminators (see Table S1).

Annotation of the 173 ORFs with BLASTp, PSI-BLAST, and
HHpred revealed that 65 of them were homologous to sequences
of phage or microbial origin in the NCBI nonredundant protein
database (E values of <10™*), and 37 ORFs were predicted to have
structural similarities to known proteins (see Table S1). Because
the HHpred probability score is the most relevant statistical mea-
sure (34) and a score exceeding 90% generally indicates a true
positive hit (34, 44), we used this as the threshold. Among the 37
assignable ORFs, 11 (ORF1, ORF8, ORF24, ORF45, ORF65,
ORF93, ORF118, ORF132, ORF140, ORF160, and ORF166) were
predicted to have functions in DNA replication, recombination,
and repair; 6 (ORF31, ORF76, ORF89, ORF119, ORF157, and
ORF158) were putatively associated with translation or tran-
scription; 2 (ORF3 and ORF95) were putatively assigned to
nucleotide metabolism; and 6 (ORF2, ORF51, ORF56, ORF75,
ORF113, and ORF117) appeared to represent phage structural
proteins (Fig. 1B).

Further examination of the $JM-2012 genome revealed very
few genes with homologs in the known marine Vibrio phages. The
gene content of $JM-2012 was highly related to those of various
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other phages, especially a number of Pseudomonas $pKZ-like
phages (see Table S1 in the supplemental material). In order to
estimate the mosaicism of the phage genome that is mostly attrib-
utable to HGT events (15), we analyzed the pairwise relationships
of the gene contents of $JM-2012 by using the ACLAME database
(20).

Pairwise comparison of ¢pJM-2012 genome. ACLAME (ver-
sion 0.4, released in August 2009), one of the most effective meth-
ods of identifying homologs/orthologs among the rapidly diverg-
ing MGE sequences of plasmids, bacteriophages, and transposons,
implements the procedure of clustering of individual proteins to
the protein families that can have functions in common (20).
Hence, the member proteins belonging to identical protein fami-
lies in the ACLAME database indicate the similarity of their phy-
logenetic profiles (45).

A pairwise comparison of the $JM-2012 genome by using the
ACLAME database with an E value threshold of 0.0001 and a
database of “viruses and phages” containing 16,057 protein fam-
ilies clustered from 54,218 predicted proteins encoded by 1,217
virus and prophage/phage genomes (45) allowed us to assign 58
ORFs to 56 protein families found in 83 phages or prophages (see
Table S2 in the supplemental material). Although these ORFs oc-
cupied a relatively small portion (about 33%) of the $pJM-2012
genome, this could suggest mosaicism. We then constructed a
matrix in which “Family:vir_proph (F:v_p)” and “mge” were rep-
resented as a protein family identifier and a phage identifier, re-
spectively (Fig. 2). Of the 83 MGE:s identified, $JM-2012 shared
more genetic elements with phages belonging to the Myoviridae
family than with Siphoviridae, Podoviridae, or as-yet uncharacter-
ized viruses or prophages, suggesting a possible myoviral lineage
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(Fig. 2). At the nucleotide level, none of the ORFs tested was re-
lated to any phage or prophage gene in the ACLAME database.

Notably, the $JM-2012 genome showed biased pairwise rela-
tionships with two Pseudomonas $KZ-like phages; of the 56 pro-
tein families identified, 48 were shared with GKZ (24) while 42
were shared with EL (26). However, $JM-2012 shared only a few
protein families with the marine Vibrio phages and other phages.
In addition, ORF75 clustered with eight protein families mostly
related to putative lytic transglycosylases (LTs) and phage tail tape
measure proteins (TMPs) (see Table S2 in the supplemental ma-
terial); this suggested that ORF75 (2,273 amino acids [aa]) could
be a multidomain protein that shares one or more domains with
various proteins (46). Of the protein families common to 42 pro-
phages, that encoded by ORF149 was functionally categorized as
being relevant to type III secretion system (T3SS)-related proteins
of Shigella prophages.

Because of the poorly defined functions in the current
ACLAME database, arising from the recently characterized $KZ-
like phages (28), many ¢KZ-specific protein families shared with
$JM-2012 were functionally unassigned. However, by HHpred
analysis, we were able to identify seven protein families, including
member proteins of phage-encoded morphogenetic proteases
(47), tubulin-like protein PhuZ (48), phage-encoded chaperonin
(GroEL) (49), a tail sheath protease-resistant fragment (50), a cell-
piercing protein (51), a DnaB family replicative helicase, and a
fragment similar to a CAAX protease 1 homolog (this study) (see
Table S2 in the supplemental material).

Protein-sharing network for &JM-2012. To establish the evo-
lutionary relationship of $pJM-2012 with other phages and pro-
phages, we built a mathematical model of protein-sharing net-
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(dark orange) and $pEL and $OBP of the GEL-like viruses (light orange).

works (15). In parallel, because of the lack of sequence
information in the ACLAME database, we also generated a new
reticulate classification for GPA3 (23), 201$h2-1 (25), and the re-
cently characterized phage $OBP (27); these three members of the
$KZ-like groups have completely sequenced genomes and show
high relatedness in their gene contents (see Table S1 in the sup-
plemental material). Inferring a gene content-based phylog-
enomic network requires proper normalization or weighting to
counter the possibility of larger genomes sharing more genes (21,
52). Accordingly, we estimated the phage-phage similarity, which
we defined as the significance (Sig) score (15), by considering the
uncharacterized protein families (see Materials and Methods).
Our results revealed that $pJM-2012 shared 48, 49, 49, 42, and 45
protein families with bPA3, dbKZ, 201$2-1, EL, and GOBP, re-
spectively (see Table S3 in the supplemental material). We also
determined the number of families shared across the five species
(data not shown).

Next, we assessed all of the statistical relationships against a
total of 16,758 protein families clustered from 55,536 predicted
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proteins of the 1,221 virus and prophage/phage genomes and gen-
erated Sig scores for each phage. Of the MGEs comprising the
entire reticulated network, 796 that did not show any similarity to
the $JM-2012 genome (Sig scores of <0) were excluded for clar-
ity; the excluded MGEs were mostly prophage genomes. The re-
sulting network consisted of 425 nodes indicating viruses and pro-
phage/phages as MGEs and 7,256 edges representing the
significant relationships between phages (Fig. 3), in which each
MGE was placed with respect to the weight of its phage-phage
connection. Sixty-four of the MGEs were placed into nine small
interconnected components (Fig. 3A); within the largest compo-
nent, the phages belonging to Myoviridae, Siphoviridae, Podoviri-
dae, or uncharacterized and other phages were grouped into sev-
eral highly interconnected regions that had some groups or phages
interspaced among them.

Interestingly, Vibrio phage $pJM-2012 was restricted to a single
isolated network comprising five $KZ-like species that were
linked to $pJM-2012 with Sig scores ranging from 31.83 to 40.31
(Fig. 3B). Since we normalized the number of shared protein fam-

Journal of Virology


http://jvi.asm.org

A $PA3 PKZ 201¢2-1 $EL  ¢OBP  ¢JM-
ORF1 375 306 461 201 309 2012
NDF
0.294 0.283 0.532 | 0.670 0.810
———
\_\-" o
T 0.342 0.651 | 0.734 0.952
L s
Ny N
0.543 | 0.654 0.734
[ 0.310 0.740
N
<
N
g Z : N \ 0.771
DL | R I R P
2012 \{"h o SO AR

Phylogenomics and Comparative Genomics of $bJM-2012

<31413) ORF76 (1292aa) 119(32) [136¢478) | 157(671)  [BEIGED)
l65401) EEEE)ISIESA)  [77(@46) Gp211 (1096aa) |<212(500)
55(420)  71(304p 73(00) [EGERND  [80GEG) 4 178 (1451) | 480(490)
fo7(e7y [ 129(703) - EOEEED [139(447) < 2731274 (1500) | <275(s50}
24480y | 38(7ce) - [IIEOOSONND 44(433) [184(481)>| 186/187 (1067/357)
73(706) - [ EEGEAD 90(436) 277(518) | 278 (1450)

OREF color code key (protein family of RNAPs in the ACLAME database)

I F:v_p:5781 [ F:v_p:3444 M F:v_p:686

B F:v_p:5787 []F:v_p:3449 [ Fv_p:5812

FIG 4 Dot plot of protein sequence comparisons and locations of the RNAP genes on the genomes. (A) A total of 1,825 protein sequences from six phage
genomes ($pJM-2012, $KZ, $PA3, 201¢2-1, EL, and $OBP) were aligned and manually compared by using BLASTp searches with a cutoff E value of 10™% A
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201¢2-1, $EL, and GOBP are listed, respectively.

ilies with respect to the weighted similarities (15), none of the 81
MGEs that had only one or two shared protein families (see Table
S2 in the supplemental material) could be reliably placed in the
network. Our results therefore suggest that $JM-2012 shares its
closest evolutionary linkage with the $KZ-like phages. Addition-
ally, two other remarkable features emerged from this analysis.
First, the small network distribution of the five $KZ-like phages is
unusual; they failed to link with any component within the retic-
ulate representation (Fig. 3A), possibly because they form an evo-
lutionarily distinct branch of the Myoviridae family (28). Second,
although the bKZ-like phages were densely interconnected, $KZ,
$PA3, and 201¢2-1 were more closely related (Sig score range,
138.13 to 216.90), suggesting two possible groups in this phage
family, the other group being $EL and $pOBP (Sig score, 80.81)
(Fig. 3B). This supports the recent taxonomic classification of the
$KZ-like phages as $KZ-like and GEL-like viruses (25, 27),
whereas the similarity values of $JM-2012 suggest that it is prob-
ably an emerging member of the $KZ-related group.
Comparative analysis of genomic organization. Given the
gene content-based relationships described above, we next exam-
ined the potential conservation of gene order in the $pJM-2012
genome with respect to that of the $KZ-like phages. The lack of
appreciable DNA homology among the ¢pKZ-related genomes
(27) was also reflected in the $JM-2012 genome, as described in its
pairwise comparison. At the genome-wide predicted-protein
level, the alignments and pairwise similarities of the six phages are
shown as a dot matrix plot in which each protein sequence is
shown as the best hit shared by two phages (E value cutoff, 10™*)
in the BLASTp search. To clarify the shared core genes and non-
$KZ-related ORFs (unique genes), we screened the preliminary
ACLAME database clustering for the six phages. We found that
most of the unique genes were functionally unassigned (E values
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of >107* in PSI-/BLASTp or ACLAME, probability score of
<90% in HHpred).

In the $pJM-2012 genome, we observed a considerable disrup-
tion of gene order compared to that of the $KZ- and $HEL-like
viruses (Fig. 4A, see the nearly continuous dotted line along the
diagonal). To further evaluate the extent of disruption between
$JM-2012 and the other two genera, we measured the neighbor-
hood disruption frequency (NDF). This is the number of mea-
sured breakpoints between gene neighbors divided by the number
of genes shared by the genomes; an NDF of 0 indicates that there is
absolute conservation of gene order, while an NDF of 1 indicates
absolute shuffling (53). As shown in the dot matrix, the $pJM-2012
genome exhibited a higher degree of NDFs (close to 1) than those
found between and within the two genera, reflecting extensive
genome rearrangement in ¢JM-2012 (53, 54).

With respect to the 55 shared core genes, the rearrangement
patterns were considered by using reciprocal best BLAST hit, be-
cause $GJM-2012 did not appear to have a biased relationship to
either the $KZ- or GpEL-like viruses. The results of this analysis
suggested that gene rearrangement events may have potentially
inverted two or three consecutive ORFs in a number of places
(e.g., ORF17 to ORF19, ORF42 and ORF43, ORF64 and ORF65,
ORF79 and ORF80, ORF112 and ORF113, and ORF116 and
ORF117), disrupted 19 ORFs with gaps, and repositioned 16 ORFs
to different locations in the genome (see Table S3 in the supple-
mental material). The interruption of gene order by frequent in-
versions, insertions, and transpositions resulted in ¢$JM-2012
sharing only a few gene sets with the counterpart gene products in
the bKZ- or GpEL-like viruses, even though most of these genes are
conserved in colinear (synteny) blocks within the ¢pKZ-related
genomes (25, 27). In particular, on the basis of ACLAME cluster-
ing, we observed gene order disruption among the putative genes
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FIG 5 Schematic representation of the HPRs and regional relevance of the sense and antisense genes in the $JM-2012 genome. (A) Genes were classified into the
following three categories: core, present in all $KZ-related groups; accessory, present in one or more phages; unique, present only in ¢pJM-2012. Red cells
correspond to core or accessory genes of $pJM-2012. Unique genes are further divided into those that were functionally assignable in HHpred searches (blue) or
not assignable (gray). Purple arrows indicate predicted promoters. Regions with more hyperplastic characteristics (HPRs I to IX) are boxed. Dark and light
orange cells represent gene products shared with the $KZ- and $pEL-like viruses, respectively. (B) Comparisons of genes that are positive (blue) or negative
(green) with respect to the sense of their predicted transcriptional orientations in the $JM-2012 genome.

for six RNA polymerase (RNAP) beta and beta’ subunit genes of
$JM-2012 compared to those in the other $KZ-like phages (Fig.
4B). This group of multisubunit RNAPs is widely conserved
among the $KZ-like phages (23).

As expected, the large-scale genomic rearrangement in the
$JM-2012 genome facilitated the positional relocation of shared
core genes, resulting in extensive disruption of synteny conserva-
tion and hyperplastic regions (HPRs) typically exhibited by $KZ-
related genomes (27). Nonetheless, we found specific regions with
dense grouping of unique genes and a few accessory genes. Fur-
ther, most of these genes are not annotated and are also substan-
tially smaller than the remaining genes (~506 versus 1,057 bp),
which shows HPR characteristics (55, 56). Hence, we assumed
that these regions are $pJM-2012-specific HPRs and were desig-
nated HPRs I to IX (ORF4 to ORF7, ORF9 to ORF16, ORF25 to
OREF30, ORF45 to ORF55, ORF68 to ORF73, ORF81 to ORF9S,
ORF103 to ORF111, ORF120 to ORF128, and ORFI142 to
ORF152, respectively) (Fig. 5A). In addition, of the 14 putative
phage-specific promoters, 10 were found in eight HPRs, all of
them immediately preceding unique genes. Except for one, the
remaining sequences are located in the upstream regions of
unique genes not localized in the HPRs. In addition, the transcrip-
tional orientations of HPR gene sequences were more highly cor-
related with their predicted unidirectional promoters than were
the orientations of core genes (Fig. 5B). Most of the HPR-related
genes (about 91%) were positive for sense-oriented transcription.
Notably, a consensus sequence of the promoter motifs is highly
similar to those of GbEL (26) (Fig. 6).

Unique genes and potential hot spot in HPRs of ¢bJM-2012.
The high level of sequence divergence among phage proteins and
the large number of novel viruses often lead to a lack of sequence
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similarity (27, 57). Since structural similarity is considered an
ideal measure for predicting viral protein function and evolution-
ary links (57), in the absence of significant sequence similarity, we
examined the unique genes by using the structure-predicting tools
HHpred, PSIPRED, and Phyre2.

Among the unique HPR genes, the most potentially informa-
tive match appeared to be ORF45 in HPR IV. Our initial HHpred
analysis revealed that ORF45 had strong similarities to the Holli-
day junction resolvases (HJRs) of Escherichia coli RuvC (see Table
S1in the supplemental material). HJR, a site-specific recombinase
belonging to the tyrosine recombinase family, catalyzes DNA re-
arrangement via viral DNA integration into and excision from the
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FIG 6 Logo representation of phage-specific promoters of $JM-2012 in com-
parison to a motif of phage $pEL. The motifs that contain similar base charac-
teristics indicate that these promoters may be functionally interchangeable.
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host genomes (58). The overall tertiary structure of ORF45 (de-
termined by Phyre2) was similar to that of E. coli RuvC (data not
shown). Their C termini differed; this is likely to reflect distinct
dimerization interactions, as seen for E. coli RuvC and Thermus
thermophilus RuvC (58).

In HPRIX, an apparent insertion of nine extra genes was found
between ORF141 and ORF151 (Fig. 7). Interestingly, the regions
harboring the flanking gene products of the identical protein fam-
ilies in the $KZ- and GEL-like viruses resemble the HPRs of $pJM-
2012. The functions of the newly acquired genes are mostly un-
known. However, the ACLAME database assigned ORF149 to the
prophage-encoded invasion plasmid antigen (IpaH) of Shigella
flexneri (see Table S2 in the supplemental material). Its secondary
structure (predicted by HHpred) was found to be highly similar to
that of a partial leucine-rich repeat domain at the N terminus of
IpaH3 (59) (see Table S1). ORF150 was also a candidate for the
Salmonella enterica serovar Typhimurium virulence factor SspH2.
We noticed that these two novel genes together with the Salmo-
nella prophage Gifsy-1-carrying T3SS substrate GogB moron (60,
61), were grouped into the same protein family in the ACLAME
database; this family was functionally annotated as “gene ontology
(GO) interaction with host via protein secreted by T3SS.” Such
prophage-carrying morons frequently encode proven or sus-
pected virulence factors. More importantly, we identified a puta-
tive promoter positioned between ORF146 and ORF147 (Fig. 7);
such an arrangement is typically observed in transcriptionally au-
tonomous moron units (60, 62).

Unique genes of structural and infectivity traits. Regarding
structural components, we saw striking interspecies differences in
the tail fiber-related genes. The extensive swapping of tail fiber
genes between loci complicates the detection of sequence homol-
ogy (7, 63), so we used local alignment algorithm-based searches
(e.g., HHpred or pfam) in conjunction with the secondary-struc-
ture prediction tool PSRPRED. HHpred analysis initially identi-
fied a single tail fiber-related gene immediately adjacent to HPR
IV (ORF56) (see Table S1 in the supplemental material). The C-
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terminal residues of ORF56 were predicted to encode an N-termi-
nal portion of the distal-end subunit of bacteriophage T4 gene
product 37 (gp37) (Fig. 8A, top), which is responsible for host
recognition and attachment (64). Regarding the N terminus of
this ORF, residues 1 to 146 showed notable similarities in se-
quence (Fig. 8A, right panel) and predicted secondary structure
(Fig. 8A, bottom, and B) to the N-terminal portions of $KZ gp134
and gp135 and $pPA3 gp154, which all diverged from $pKZ gp131.
gpl131 and its orthologs/paralogs, which appear to confer tail fi-
ber-associated substrate binding, have conserved N-terminal fea-
tures, such as predominant (3-strands and sequence similarity pat-
terns (65). The N-terminal part of ORF56 (aa 35 to 153) also
shared secondary-structure similarity with EL gp113 (aa 35 to
151) of the $OBP ortholog (27). A comparable structural similar-
ity pattern was observed in the N terminus of the preceding ORF,
OREFS55 (Fig. 8A, bottom, and B). In addition, given the extraordi-
nary variability of phage tail fiber genes and the typical lack of
sequence similarity among virus structural proteins (7), we fur-
ther sought to identify additional relevant genes by using a broad
E value cutoff of 1 in the ACLAME database. We identified two
candidates that matched members of the tail fiber protein families,
ORF27, which matched the gp34 proximal tail fiber subunit of a
T4-like A. salmonicida phage, and ORF139, which matched the
L-shaped tail fiber protein of a T5-like E. coli phage (Fig. 8A, top).
This suggests that, unlike its evolutionary neighbors, $pJM-2012
shows mosaicism among its tail fiber-related genes (at least for the
few ORFs identified to date).

Our HHpred- and ACLAME-based analyses revealed that
$JM-2012 harbors two identifiable lysozyme-like proteins, repre-
sented by ORF51 and ORF75. ORF51, which islocated in HPR1V,
encodes two domains, one from N-terminal glycoside hydrolase
family 108 (PF05838; 7.6e-06) and a C-terminal peptidoglycan
(PG)-binding domain (PF09374; 4.3e-08), connected via a short
linker (Fig. 9A). This modular structure is characteristic of a fam-
ily of phage muraminidases responsible for mediating phage re-
lease (66, 67), which is different from the lysis-related PG hydro-
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lases of the ¢pKZ-related group (68). The second identified ORF,
ORF?75, was preliminarily predicted to be a potential multidomain
protein orthologous to members of the LT or TMP family, the
latter of which includes $KZ gp181 (Fig. 2). The size of ORF75
and the presence of a small C-terminal lysozyme-like domain,
both of which are characteristic of the TMPs (69), seem to support
this alignment. However, the phylogenetic position of ORF75
among the other TMP family members (all >2,000 aa) indicated
that the features of ORF75 differed from those of $KZ gp181 or its
orthologs (Fig. 9B). Sequence analysis of the functional domains
showed that ORF75 is more similar to soluble LT 70 (SLT70).
More specifically, within motif IV, which serves as a signature for
distinguishing the individual subfamilies of LTs (70), Pro2080,
Glu2089, Thr2090, Tyr2093, and Val2094 were conserved be-
tween ORF75 and SLT70 family members (Fig. 9B).

With respect to the cell-puncturing devices used by phages to
penetrate the bacterial cell envelope during infection, the
ACLAME database initially categorized the candidate member
proteins of $pJM-2012, dbPA3, dKZ, and 201d2-1 as potentially
corresponding to two known orthologs of EL-like viruses that are
similar to the injection needle protein of myovirus P2 (P2-Gpv)
(27) (see Table S3 in the supplemental material); however, their
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C-terminal regions were found to be quite different. Multiple-
sequence alignment revealed that the double-histidine iron-bind-
ing motif (HxH) typically conserved in $P2-Gpv (51) was lacking
in all three corresponding proteins of $KZ-like viruses, as well as
in ORF170 of $pJM-2012 (Fig. 9C). ORF170 failed to yield any
reliable bioinformatic matches, and PSIPRED identified varia-
tions in the length and number of disordered residues in the C-
terminal part that are critical for conformational changes in the
tail tube complexes, including the tail spike (57, 71). In addition,
the extreme C terminus of ORF75 did not show any clear sequence
or structural similarity to the C-terminal distal end of $KZ gp181
and its orthologs that have been proposed to act as membrane-
puncturing needles (68, 72; data not shown).

DISCUSSION

We describe here the isolation and genomic characterization of a
novel marine V. cyclitrophicus bacteriophage that we designated
$JM-2012. Our mathematical estimation of the pairwise relation-
ships between its gene content and those of $KZ-related genomes
and our subsequent comparative analysis provide strong molecu-
lar support for the notion that $pJM-2012 underwent adaptive
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reconstruction because of the imposition of distinct evolutionary
forces upon its genome.

A phylogenomic network is a model that can be used to display
and quantify the effect of non-tree-like reticulate processes on the
evolutionary history of an organism (21, 22). Networks of shared
genes are reconstructed from the presence/absence pattern of all
protein families that are a set of homologous proteins (i.e., pro-
teins with a common origin) found in diverse species. Here we
used a protein-sharing network that is specific for the taxonomic
classification of phages and plasmids and mathematically weights
the similarity between phage genomes in terms of shared gene
contents (15, 20). The considerable genome size variation of
phage species ranging from 17 kbp to 0.5 Mbp (73) requires a
proper normalization or weighting to counter the possibility that
larger genomes share more genes (21, 52). Because a weighted
edge signifies the strength of the connection, such mathematical
models are better able to trace the true evolutionary linkage than
are unweighted networks (21). Our network representation fur-
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ther considered probable close relatives that were absent from the
ACLAME database. Remarkably, $JM-2012 was found to inter-
connect solely with the five $KZ-like phages, strongly indicating
that $JM-2012 and the $KZ-related groups evolved from a com-
mon ancestor. In addition, the results of our network approach
support the recent taxonomic subdivision of the $pKZ-related
groups into the $KZ- and GEL-like viruses (25, 27).

As an emerging new genus, the Pseudomonas bKZ-like phages
show limited genetic diversity and a narrow host range, having
been isolated only from Pseudomonas species to date (27). The
$KZ-like phages also lack similarity to other phages at the DNA
and protein levels (29) and thus form a distinct evolutionary
branch within the Myoviridae family. These apparently unique
evolutionary constraints raise two obvious questions, i.e., (i) how
did this natural phage evolve to interact with an altered (not just
expanded) host range within a common bacterial species, and (ii)
what factors facilitate its niche-adaptive processes?

We therefore investigated the genomic organization of $pJM-
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2012 and the $pKZ-related groups, as genomic evolution can be
traced by patterns of colinear (synteny) blocks (i.e., chromosomal
regions that share a conserved order of genes within close rela-
tives) (54, 74) and HPRs (55, 56). Surprisingly, our comparative
analysis of the six phage genomes showed that ¢pJM-2012 had
undergone extensive genome rearrangement and showed little
lineage-specific synteny with the ¢pKZ-related genomes. Given
that synteny blocks can be a strong indicator of conserved gene
function (54, 60, 75), this suggests that distinct evolutionary forces
acting on the genome may have altered its functional relatedness
to the $KZ-like phages. In addition, a potential reengineering of
the regulatory system of $JM-2012 can be evidenced by the loss of
the conserved positional patterns of notable orthologs, such as
RNAPs (54, 76), that are highly associated with the evolution of
transcriptional regulation among the bKZ-like phages (23).

With respect to the HPRs specific to $JM-2012, our identifica-
tion of regional features has two intriguing implications. First, the
presence of unidirectional promoters that showed a consensus
sequence similar to that of EL and their preponderance in most
of the HPRs may reflect the fact that $JM-2012 retained this par-
ticular feature of the $KZ-related hyperplastic portion (27), de-
spite the extensive disruption of its genomic architecture. Second,
relative to the other regions, the higher correlation of putative
promoters and the transcriptional orientations of the predicted
gene sequences in the HPRs suggest that the HPR-related genes
may be functional (77). Thus, these variable regions could have
specific niche-defining roles in the adaptation of $pJM-2012 to its
particular host and environment (78).

We further examined the gene contents and clustering of the
HPRs. In HPR 1V, $JM-2012 was found to harbor a site-specific
recombinase (HJR)-related gene. Although future studies are war-
ranted to functionally characterize this gene, its presence in or
absence from the six phage genomes indicated that HJR, which is
known to be associated with a temperate life cycle (79), could play
an important role in the rearrangement of the $JM-2012 genome
(53). Another notable feature that we identified was the localiza-
tion of prophage-related genes (with the ACLAME database) in
HPRs IV and IX (the latter of which is likely to be a hot spot, as it
contains two moron-like elements). Prophage-carrying morons
encode proven or suspected virulence factors (e.g., extracellular
toxins, outer membrane proteins, and enzymes) and thus provide
selective benefits for both phages and (via selection) their bacterial
hosts (60). Their location is not random, and many phage-encod-
ing virulence factors have been found near the tail fiber regions
(80). By further analysis with HHpred, we found that the pro-
phage-related genes in HPR IV of $JM-2012, which are adjacent
to the tail fiber-related genes, were similar to those of the S. en-
terica serovar Typhi phage Vi type I tail spike-carrying acetylxylan
esterase domain (81), and this portion of HPR IV, which includes
the HJR, phage muramidase, prophage-related, and tail fiber-re-
lated genes, may be similar to the pathogenicity islet in S. enterica
serovar Typhi that is critical for toxin secretion (67). Although it is
unclear whether their positional relationships within HPRs are
strategic, this finding prompted us to speculate on some potential
mechanisms underlying the movement of transferable elements.

Essentially, there are two current models to explain genome
mosaicism: homologous/nonhomologous recombinations and il-
legitimate moron accumulation (60, 62). Curiously, we failed to
detect any specific linker sequences around the HPRs of ¢pJM-
2012. However, this does not necessarily indicate the presence of
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nonhomologous or illegitimate recombination, since it could be
explained by the presence of relatively short and little-known con-
served sequences at the gene boundaries (19, 60) and the lack of
information on intermediate-sequence similarities (60). Thus, it
is difficult to explicitly determine the genetic mechanisms of this
recombination (19, 60). Nevertheless, on the basis of the presence
of relevant genes, we propose that all types of recombination (il-
legitimate, homologous, and site specific) are likely to be respon-
sible for the mosaic architecture of the $JM-2012 genome.

Our assessment of candidate infection-related structural pro-
teins in $pJM-2012 and its closest relatives revealed considerable
changes in conserved motifs, alterations in structural elements,
and genetic exchanges. This may explain the shift of $JM-2012 in
host tropism, because structural proteins are involved in host rec-
ognition, attachment, penetration, and lysis (57, 64, 68). The
modular structures and sequence features of the functional do-
mains of the two putative structural lysins of $JM-2012 were dif-
ferent from those of the lysis-related PG hydrolases and infection-
related structural lysins of $KZ-like phages, respectively (27, 68,
72). With respect to injection needle-like proteins, the lack of an
HxH motif and the functional importance of the disordered re-
gion allow us to hypothesize that ORF170 reflects a distinctive
ability of ¢pJM-2012 to puncture the cell membrane, or (more
likely) this phage harbors yet-to-be-identified components that
participate in this process. For example, ORF53 and ORF54,
which carry an acetyl esterase domain, were located immediately
adjacent to the tail fiber-related genes, in an arrangement similar
to that of the tail spike proteins in S. enterica serovar Typhi phage
Vi type I (81). In particular, tail fiber-related genes evolve much
more rapidly than other phage genes, since they allow shuffling of
sequences between otherwise unrelated genes (63). A classical case
is phage Mu, which contains a recombinase capable of reversing
the orientations of receptor-interacting genes, leading to new re-
ceptor recognition specificity (82, 83). In addition, the similarities
among the tail fiber genes of coliphages and those of other phage
families indicate the presence of illegitimate recombination-
driven domain exchanges (84). In the present study, we found that
$JM-2012 harbored two obvious fragments of ORF55 and
ORF56, providing evidence of an illegitimate-recombination-like
process in the conserved structural parts of $bKZ tail fiber or-
thologs or paralogs. This could provide some important insights
into how the evolutionary process operates in diverged members
of the $KZ tail fiber gene family (65). Notably, the orientations of
ORF55 and ORF56 were reversed compared to those in the other
$KZ tail fiber orthologs or paralogs (which undergo sense-posi-
tioned transcription). Given the absence of predicted reverse pro-
moters in $pJM-2012, it can be inferred that these structural genes
have nonessential functions (27, 77). In contrast, ORF27 and
ORF139, which harbor new relevant genes, appear to be func-
tional. Given that tail fiber proteins are generally indispensable to
phage survival, such changes may be related to its ability to infect
a different host.

Finally, comparative genomic analysis revealed a highly dis-
rupted genome of $pJM-2012. Compared to small-scale changes in
gene order and inversion processes that are often involved in the
genetic divergence of $KZ-related genomes with a common bac-
terial host, Pseudomonas species, our observations clearly suggest
that genomic rearrangement is a key component of its high level of
divergence. This dramatic change in gene order most likely re-
sulted from natural selection and/or adaptation to a heteroge-
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neous environment, although it is difficult to detect the fragile
sites (synteny breakpoints) in the $JM-2012 genome. In addition,
relative to the shared core genes, the higher proportion of unique
genes that are well preceded by promoters on the transcriptional
strand may have facilitated its evolution. Collectively, our results
yield novel insights into the diversity and evolution of ¢pKZ-re-
lated phages at the genomic and amino acid sequence levels.
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