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Prior immunity to influenza A virus (IAV) in mice changes the outcome to a subsequent lymphocytic choriomeningitis virus (LCMV)
infection and can result in severe lung pathology, similar to that observed in patients that died of the 1918 H1N1 pandemic. This pa-
thology is induced by IAV-specific memory CD8� T cells cross-reactive with LCMV. Here, we discovered that IAV-immune mice have
enhanced CD4� Foxp3� T-regulatory (Treg) cells in their lungs, leading us to question whether a modulation in the normal balance of
Treg and effector T-cell responses also contributes to enhancing lung pathology upon LCMV infection of IAV-immune mice. Treg cell
and interleukin-10 (IL-10) levels remained elevated in the lungs and mediastinal lymph nodes (mLNs) throughout the acute LCMV
response of IAV-immune mice. PC61 treatment, used to decrease Treg cell levels, did not change LCMV titers but resulted in a surpris-
ing decrease in lung pathology upon LCMV infection in IAV-immune but not in naive mice. Associated with this decrease in pathology
was a retention of Treg in the mLN and an unexpected partial clonal exhaustion of LCMV-specific CD8� T-cell responses only in IAV-
immune mice. PC61 treatment did not affect cross-reactive memory CD8� T-cell proliferation. These results suggest that in the ab-
sence of IAV-expanded Treg cells and in the presence of cross-reactive memory, the LCMV-specific response was overstimulated and
became partially exhausted, resulting in a decreased effector response. These studies suggest that Treg cells generated during past infec-
tions can influence the characteristics of effector T-cell responses and immunopathology during subsequent heterologous infections.
Thus, in humans with complex infection histories, PC61 treatment may lead to unexpected results.

During a lifetime the immune system is shaped by a history of
infections. Prior infections with one pathogen may influence

the severity of disease outcome to a subsequent infection with an
unrelated pathogen, a phenomenon known as heterologous im-
munity (1). Enhanced immunopathology, which can be mediated
by the activation of cross-reactive memory T cells, is one of the
harmful consequences of heterologous immunity. For instance, it
has been proposed during human infections that cross-reactive
IAV-specific memory CD8� T cells can contribute to the induc-
tion of severe fulminant hepatitis during hepatitis C virus (HCV)
infection and induction of acute infectious mononucleosis during
Epstein-Barr virus (EBV) infection (2–4).

Lung pathology is a common manifestation of respiratory in-
fections and can vary greatly in severity in different individuals
infected with the same pathogen. To investigate the role of altered
immunopathology during heterologous immunity in a controlled
experimental setting, we utilized a mouse model of IAV-immune
mice infected with lymphocytic choriomeningitis virus (LCMV)
(5). We initially chose these two viruses because they are phyloge-
netically unrelated and because they are naturally spread through
infection of the respiratory mucosa and induce significant inflam-
mation in the lung (6–11). Influenza virus is an extremely com-
mon respiratory pathogen in humans, and LCMV, which induces
a flu-like illness in humans, is also a relatively common pathogen,
with 5 to 14% of the general population being serologically posi-
tive (12). These IAV-immune mice infected with LCMV could
develop acute lung injury similar to that seen in individuals that
died during the H1N1 IAV pandemic in 1918, with enhanced
bronchus-associated lymphoid tissue (BALT), mononuclear
pneumonia, necrotizing bronchiolitis, vasculitis, and bronchiol-

ization (13, 14) The severity of lung pathology varied among
genetically identical mice from mild pneumonitis to severe
mononuclear pneumonia, necrotizing bronchiolitis, and bron-
chiolization, an abnormal alveolar epithelial repair process con-
sidered premalignant and associated with idiopathic pulmonary
fibrosis in humans. Although counterintuitive, severity of pathol-
ogy did not directly correlate with LCMV titers. Instead, increased
pathology was dependent on cross-reactive IAV-specific memory
CD8� T cells (15). Disease severity was directly correlated with
and could be predicted by the frequency of two IAV epitope-spe-
cific CD8� T-cell populations, PB1703 and PA224, which are cross-
reactive with LCMV-GP34 and -GP276, respectively. Eradication or
functional ablation of these pathogenic populations of IAV-spe-
cific memory T cells using mutant viral strains, peptide-based
tolerization strategies, or short-term anti-gamma interferon
(IFN-�) treatment prevented this pathology.

Here, we continue to investigate this mouse model to deter-
mine if there are other contributing factors responsible for this
variation in lung pathology and to define potential therapies. At
major mucosal interfaces such as the lung, which is frequently
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exposed to foreign antigens, discrimination between innocuous
and foreign antigen-specific immune responses is necessary to
limit chronic inflammation. T-regulatory (Treg) cells have been
shown to be key mediators in balancing inflammation and in in-
hibiting immune-mediated tissue damage, especially in organs
like the lung and gastrointestinal tract (16–18). Both natural and
induced Treg cells can suppress the function of many types of
immune cells, including CD8� and CD4� T cells, B cells, dendritic
cells (DC), NK cells, and NKT cells either by direct contact or by
production of inhibitory cytokines, such as interleukin-10 (IL-10)
and transforming growth factor beta (TGF-�) (19, 20). Treg cells
have been intensively studied in autoimmunity, tumors, and per-
sistent infections (19, 21–24). Increased numbers of Treg cells and
a loss of functional virus-specific effector T cells are reported in
persistent virus infections, such as hepatitis C virus (HCV), hu-
man immunodeficiency virus (HIV), Friend virus (FV), and her-
pes simplex virus (HSV), but not in acute virus infection (19,
25–28). Depletion of the suppressive Treg cells during a persistent
retroviral infection resulted in enhanced effector T-cell function
and reduced viral load (28, 29). Treg cells can also prevent exten-
sive immunopathology during viral infections (24, 30, 31). Deple-
tion of natural Treg cell responses, using PC61 treatment (anti-
CD25) prior to infection, enhanced antiviral responses without
any evidence of enhanced immunopathology if HSV-1 was in-
jected into the footpad (32). However, Treg cell depletion prior to

corneal HSV-1 infection resulted in severe T-cell-mediated tissue
lesions (33). These results suggest that Treg cells influence disease
outcome during viral infection differently depending on the virus
and on the site of infection. Interestingly, compared to naive age-
matched mice, we observed enhanced numbers of CD4� Foxp3�

Treg cells in the lungs, spleens, and draining lymph nodes of mice
immune to the nonpersistent virus IAV. Therefore, we were inter-
ested in determining whether Treg cells that expanded following a
viral infection could also play a role during heterologous immu-
nity, modifying immunopathology during a subsequent unrelated
infection.

MATERIALS AND METHODS
Viruses and infections of mice. Six-week-old C57BL/6 (H-2b) male mice
were obtained from The Jackson Laboratory (Bar Harbor, ME). The mice
were anesthetized by inhalation of metofane (Pitman-Moore, Mundelein,
IL) and infected intranasally (i.n.) with 70 PFU of the mouse-adapted IAV
A/PR/8/34 (H1N1) or were inoculated with phosphate-buffered saline
(PBS) as a control. This virus was prepared from eggs and was not exposed
to bovine serum (5). After the immune system had returned to homeo-
stasis (6 weeks or longer), immune and control mice were challenged i.n.
with 1 � 105 PFU of LCMV clone 13 (Fig. 1e).

In experiments examining activation of cross-reactive memory CD8�

T cells, mice were infected intraperitoneally (i.p.) with 5 � 104 PFU of
LCMV Armstrong or were inoculated with PBS as a control. After the
immune system had returned to homeostasis, LCMV-immune and con-
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FIG 1 (a to c) Increased absolute number of regulatory CD4� Foxp3� T cells in lungs and mLNs of IAV-immune mice. Mice were infected i.n. with IAV or PBS
was inoculated into controls (naive). Six weeks after infection, mice were considered immune and CD4� Foxp3� Treg cell numbers were determined by flow
cytometry in lungs (a), mLNs (b), and spleens (c). Results were pooled from 2 to 3 independent experiments. Statistical analysis was done using an unpaired t test
with 8 to 12 mice/group. (d) Treg cells in lungs of IAV-immune mice showed changes in V� usage consistent with IAV inducing expansion of an antigen-specific
Treg cell population. Lymphocytes were isolated from lungs of IAV-immune or naive mice, and the V� repertoire for Treg cells was determined by MAb staining.
Data shown are gated on CD4� CD44� FoxP3� T cells. Results are means � standard errors of the means (SEM) pooled from 2 independent experiments (naïve,
n � 7; IAV-immune, n � 9). (e) Experimental setup of sequential IAV and LCMV infections. Mice were infected i.n. with IAV 6 weeks prior to LCMV infection.
As controls, age-matched mice were treated with PBS 6 weeks prior to LCMV infection.
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trol mice were challenged i.p. with 2 � 107 PFU Pichinde virus (PV;
AN3739 strain) (see Fig. 6a). LCMV and PV were propagated in BHK21
baby hamster kidney cells. The LCMV stock was diluted 1:100 in serum-
free media, and the stocks of PV were purified through a sucrose gradient
and diluted in Hanks’ balanced salt solution (34). Immune mice were sex
and age matched to control mice and housed under exactly the same
pathogen-free conditions for the same time period. All experiments were
done in compliance with institutional guidelines as approved by the In-
stitutional Animal Care and Use Committee at the University of Massa-
chusetts Medical School.

Virus titration. A 10% homogenate of lung and spleen tissue from
each individual mouse was serially diluted and titrated on Vero cells to
quantify LCMV PFU (5). Titers were reported as the arithmetic log10 PFU
for whole lungs and spleens that had been individually titrated from four
to five mice per group.

Lung histological evaluation. At days 7, 9, and 12 post-LCMV chal-
lenge, lungs from naive, IAV-immune, and Treg cell-depleted IAV-im-
mune mice were collected, fixed in 10% neutral buffered formaldehyde,
and embedded in paraffin. Tissue sections (5 �m) were stained with he-
matoxylin and eosin (H&E) and analyzed microscopically. Scoring of
lung pathology by a pathologist blinded to the experimental design was
graded based on a scale described in previously published studies (5, 15):
1, mild interstitial mononuclear infiltrates, disorganized BALT, and
perivascular edema; 2, moderate interstitial mononuclear infiltrates,
small amount of organized BALT, and pulmonary edema; 3, moderate
interstitial mononuclear infiltrates, pulmonary edema, enhanced orga-
nized BALT, mild bronchiolization, and mild consolidation; 4, severe in-
terstitial mononuclear infiltrates, greatly enhanced pulmonary edema,
enhanced organized BALT, moderate bronchiolization, moderate consol-
idation, and moderate necrotizing bronchiolitis; 5, severe interstitial
mononuclear infiltrates, greatly enhanced pulmonary edema, enhanced
organized BALT, severe bronchiolization, severe consolidation, severe ne-
crotizing bronchiolitis, and vasculitis involving more than half of the lung.
The scoring on each individual mouse was done on 4 to 5 different sec-
tions of the lung, representing 4 to 5 different lobes of the whole lung
assessing both qualitative and quantitative changes in histology. The his-
tology photographs showing high-power 10� views of a small portion of
one lobe of the lung demonstrate examples of the types of pathology
observed in different treatment groups, but evaluations of the whole lung
were used for scoring.

Cell surface and tetramer staining. Single-cell suspensions were pre-
pared from spleens, mediastinal lymph nodes (mLNs), and lungs, and
erythrocytes were lysed with 0.84% NH4Cl solution. Splenocytes were
stained as described previously (35) using CD8	 (53-6.7), CD4 (GK1.5),
CD44 (IM7), PD-1 (J43), and V�-specific monoclonal antibody (MAb).
All surface antibodies were purchased from BD Biosciences (San Jose,
CA). For tetramer staining, cells were incubated for 60 min with allophy-
cocyanin (APC) or phycoerythrin (PE)-labeled tetramers. After 40 min of
tetramer incubation, surface antibodies were added for 20 min. Cells were
fixed in Cytofixation (BD Biosciences). Data were acquired on an LSRII
fluorescence-activated cell sorter (FACS) (BD Biosciences) and were an-
alyzed with the software FlowJo (Tree Star, Ashland, OR).

Synthetic peptides. Synthetic LCMV peptides Db NP396-404

(FQPQNGQFI), Db GP33-41 (KAVYNFATC), Db GP276-286 (SGVENPG
GYCL), and Kb NP205-212 (YTVKYPNL), as well as PV peptides Db

NP38-45 (SALDFHKV) and Kb NP205-212 (YTVKFPNM), were used in this
study. Synthetic peptides were provided by Biosource International (Ca-
marillo, CA) or 21st Century Biochemicals (Marlboro, MA) and used at a
90% level of purity.

Intracellular cytokine and Foxp3 staining. LCMV peptide-specific,
IFN-�/tumor necrosis factor alpha (TNF-	)-secreting CD8� T cells were
detected using the Cytofix/Cytoperm kit plus (with GolgiPlug; BD Biosci-
ences) as described previously (36). Splenocytes were prepared as de-
scribed above. In brief, cells were incubated with 1 to 5 �M synthetic
peptide and 10 U/ml of human recombinant IL-2 (BD Biosciences) for 5

h at 37°C. After surface staining, cells were permeabilized with Cytofix/
Cytoperm and stained intracellularly with cytokine antibodies to IFN-�
(XMG1.2) and TNF (MP6-XT22), all purchased from BD Biosciences.

Foxp3 staining of ex vivo-isolated cells was performed using the Foxp3
staining kit (eBiosciences, San Diego, CA). After surface staining, cells
were fixed and intracellularly stained with Foxp3 antibodies according to
the manufacturer’s guidelines.

Cytokine multiplex assay. Cells isolated from the spleen, lung, and
mLN harvested on days 0, 1, 3, 7, 9, and 12 after LCMV infection were
lysed and sent to Pierce/Searchlight (Rockford, IL) for enzyme-linked
immunosorbent assay (ELISA) multiplex analysis of IL-10.

PC61 treatment to remove Treg cell activity in vivo. Three days prior
to LCMV infection, IAV-immune mice received a single dose of 100 �g of
PC61 (anti-CD25) i.p. by following a well-established protocol for re-
moval of Treg cell activity in vivo (16, 33, 37, 38) (see Fig. 3a). Control
mice were treated with PBS or the isotype control (rat IgG1). The same
depletion protocol was used to remove Treg cell activity from naive and
LCMV-immune mice prior PV infection (see Fig. 6a). These antibodies
were purchased from BioExpress Inc. (Kaysville, UT). Three days post-
PC61 treatment, a 95 to 98% reduction of CD25� CD4� T cells was
observed in spleens, lungs, and mLNs.

Statistical analysis. Two-tailed Student’s t tests were performed to
compare two groups. Paired t tests were used for comparing mean values
from different organs at different time points in two different treatment
groups. Two-way analysis of variance (ANOVA) with Bonferroni posttest
was used to compare more than two groups. Linear regression was used to
measure correlation between two independent variables. Fisher’s exact
test was used to measure differences between categorical data, such as
changes in immunodominant epitope. Statistical analysis was performed
using GraphPad Prism software (San Diego, CA) (*, P � 0.05; **, P 

0.01; ***, P 
 0.001).

RESULTS
Enhanced levels of Treg cells in IAV-immune mice. Compared
to naive controls, a significant 2-fold increase in absolute number
(Fig. 1a) and percentage (naïve mice, 0.68 � 0.04%; IAV-immune
mice, 1.06 � 0.11%; P � 0.03; n � 12) of CD4� Foxp3� Treg cells
was detected in the lungs of IAV-immune mice 6 weeks after i.n.
infection with an associated alteration in the T-cell receptor rep-
ertoire (Fig. 1d). There was also a 2-fold increase in absolute Treg
cell numbers in the draining mLNs (Fig. 1b), with no difference in
the nondraining inguinal lymph nodes (iLNs) (naïve, 7.56 � 104 �
3.4 � 104; IAV immune, 11 � 104 � 5.2 � 104; P � 0.6; n � 4) and
a small increase in the spleens (Fig. 1c). In contrast, infection with
another nonpersistent virus, LCMV (Armstrong strain), did not
enhance absolute number (naïve, 3.51 � 104 � 1 � 104; LCMV-
immune, 2.31 � 104 � 1.2 � 104; P � 0.6; n � 4 to 11) or per-
centage (naïve, 0.68 � 0.04%; LCMV-immune, 0.82 � 0.11%;
n � 4 to 12) of Treg cells in the lungs of LCMV-immune mice. These
results suggest that some nonpersistent but potentially cytopathic vi-
ruses that induce lung pathology, such as IAV (5, 13, 14), could sig-
nificantly enhance the number of Treg cells, while other viruses which
induce minimal lung pathology, such as LCMV, do not. Interestingly,
these increased levels of Treg cells were still detectable long after the
acute IAV infection during the memory phase in the lung, the site of
the virus infection, and in the draining mLN.

IAV-expanded increase in Treg cells persisted during a sub-
sequent heterologous virus infection with LCMV. After finding
increased Treg cells in the lungs and mLNs of IAV-immune mice,
we questioned whether these expanded Treg cells participate in
dysregulating normal immune responses, leading to either the in-
creased lung pathology or viral titers that had been observed in
IAV-immune mice acutely infected with LCMV (5, 15). First, we
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determined if this increased number of Treg cells in IAV-immune
mice persisted throughout the subsequent LCMV infection (Fig.
1e and 2). In naive mice, all T-cell subpopulations demonstrated a
similar pattern of expansion in the mLNs during acute LCMV
infection, with significant 4- and 3-fold increases in total numbers
of CD4� (P � 0.002; n � 7) and CD8� (P � 0.05; n � 7) T cells,
respectively, by day 3. There also was a 2-fold increase in Treg cells
(P � 0.06; n � 7) (Fig. 2a). By day 7, all three T-cell subpopula-
tions had returned to preinfection levels (day 0). However, in
IAV-immune mice challenged 6 weeks later with LCMV, Treg
cells expanded and contracted in a manner discordant with CD4�

and CD8� T cells (Fig. 2a, lower). Unexpectedly, the total number
of Treg cells remained elevated from day 0 to 9 post-LCMV infec-
tion in the mLNs of IAV-immune mice (Fig. 2a and b). In fact, a
significant, 2-fold higher number of Treg cells was observed on
days 7 and 9 after LCMV infection in IAV-immune compared to
naive mice (Fig. 2b). At day 7 post-LCMV infection, there was a
significant 2-fold increase in the Treg cell/CD4�Foxp3� T cell and
Treg cell/CD8� T cell ratios in IAV-immune mice compared to
naive mice (Fig. 2c). Since the effect of Treg cells on effector T cells
is dependent upon their levels compared to each other, these data
suggest that the increased number of Treg cells is able to attenuate
the activation of LCMV-specific T-cell responses during their
priming in the mLN.

Similar to the mLN, the absolute number of Treg cells in the
lung was increased in IAV-immune mice throughout LCMV in-
fection compared to the controls, with significant increases at days
7 and 9 (Fig. 2d). Even in the spleen the absolute number of Treg

cells was increased before and during LCMV infection, reaching a
significant increase by day 9, the peak of the LCMV CD8� T-cell
response, in IAV-immune mice (Fig. 2e). By using paired t tests
for time point and organ (thereby eliminating the variability in
cell number that occurs with time after infection and organ), we
found that there was a significant overall increase of both the per-
centage (Fig. 2f) and total number (data not shown) of Treg cells
in the lung, mLN, and spleen throughout the LCMV infection
from day 0 to 12 of the IAV-immune mouse. This resulted in a
decreased ratio of effector cells to Treg cells, both CD8� (Fig. 2g)
and CD4� (data not shown), during the LCMV infection in IAV-
immune mice compared to those of controls throughout the in-
fection in all three organs.

As Treg cells are capable of producing inhibitory cytokines,
such as IL-10, we questioned whether there was any evidence of
enhanced IL-10 levels during LCMV infection in IAV-immune
mice. ELISA multiplex analysis of splenic, mLN, and lung cell
lysates demonstrated that IAV-immune mice had significantly
higher levels of IL-10 expression than naive mice throughout the
LCMV infection (Fig. 2h). Thus, it is possible that the presence of
IAV-expanded Treg cells in IAV-immune mice will suppress nor-
mal immune effector responses and either decrease LCMV clear-
ance or alter immunopathology.

PC61 treatment (anti-CD25) led to decreased lung pathology
during acute LCMV infection of IAV-immune mice. In order to
determine if the increased levels of Treg cells played a role in
mediating immunopathology or altering viral clearance during
LCMV infection of IAV-immune mice, PC61 treatment (anti-
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At the indicated time points after LCMV infection, absolute numbers of CD8�, CD4�, and Treg cells were determined in mLNs. (b to e) The total number of Treg
cells was determined between naive (white) and IAV-immune (black) mice at the indicated time points post-LCMV infection in mLNs (b), lungs (d), and spleens
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CD25), a well-established conventional technique, was used to
remove Treg cell activity (Fig. 3a) (16, 32, 33, 37, 38). LCMV
infection i.n. in naive mice induced mild interstitial mononuclear
infiltrates (Fig. 3c), whereas in IAV-immune mice it induced en-
hanced bronchus-associated lymphoid tissue (BALT), mononu-
clear pneumonic consolidations, perivascular and pulmonary
edema, bronchiolitis, and bronchiolization (Fig. 3d) (5, 15). Since
the presence of Treg cells is frequently associated with decreasing
immunopathology, we were somewhat surprised to observe a sig-
nificant reduction in the severity of lung pathology on days 7 and
9 post-LCMV infection in IAV-immune mice receiving PC61
treatment prior to challenge (Fig. 3e and f). The lung histology in
many of the PC61-treated mice resembled that in naive mice in-
fected with LCMV (Fig. 3c), with only mild mononuclear infil-
trates. The vast majority of the mice scored below level 3, when
bronchiolization, the pathognomonic finding of severe pathology,
is first observed. There was no significant difference in weight loss
(data not shown) or LCMV titers in the lungs post-LCMV chal-
lenge of PC61-treated and nontreated IAV-immune mice, sug-
gesting that the presence of enhanced levels of Treg cells in IAV-
immune mice was not altering LCMV clearance (Fig. 3g).

PC61 (anti-CD25) treatment resulted in decreased LCMV-
specific CD8� T-cell responses in the spleen and lung of LCMV-
infected IAV-immune mice. PC61 treatment prior to LCMV in-
fection in IAV-immune mice led to a significant decrease in the

overall total number of LCMV-specific CD8� T cells (NP396- and
GP33-specific response) in the spleen (Fig. 4a), associated with
lower numbers in the lung, at days 7 and 9 postinfection compared
to nontreated mice. In complete contrast, PC61 treatment re-
sulted in a significant enhancement of the total number of LCMV-
specific CD8� T cells in the draining mLN on day 7 in IAV-im-
mune mice during LCMV challenge (Fig. 4a). In the nontreated
mice, by days 7 and 9 of LCMV infection effector CD8� T cells
were decreased in the mLN and might have already trafficked to
the lung and spleen, sites of infection (Fig. 4a). Interestingly, there
was no effect of PC61 treatment on the number of LCMV GP61-
specific CD4� T cells at days 7 and 9 of LCMV infection in the
spleen and mLN in IAV-immune mice (Fig. 4b).

These results suggest that there is a delay in effector CD8�

T-cell trafficking out of the lymph node in the absence of Treg cells
from the LCMV-infected IAV-immune mice, which is consistent
with previous reports (39). This delay in effector CD8� T-cell
trafficking to the spleen and lung after PC61 treatment may play
some role in decreasing lung pathology.

PC61 treatment during acute LCMV infection in naive mice
showed no differences in immunopathology and viral titer but
did decrease LCMV-specific CD8� T-cell responses. In order to
determine if the above-described findings are a phenomenon re-
lated to IAV-expanded Treg cells in the lungs and mLN following
sequential infection of IAV-immune mice with LCMV or just an
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effect of PC61 (anti-CD25) treatment prior to LCMV infection,
naive mice were treated with PC61 prior to LCMV infection (Fig.
5a). Unlike the IAV-immune mice, PC61-treated naive mice had
lung pathology and virus titers similar to those of control treated
mice at days 5, 7, and 9 post-LCMV infection (Fig. 5b and c). How-
ever, similar to the results for IAV-immune mice (Fig. 4), PC61-
treated naive mice had decreased LCMV-specific CD8� T-cell re-
sponses in the spleen and lung at days 7 and 9 post-LCMV infection
compared to control-treated mice (Fig. 5d). They also had increased
LCMV-specific CD8� T cells in the mLN at day 9. However, while
PC61 treatment led to retention of Treg cells in the mLN, it had no
effect on pathology or virus titers during acute LCMV infection of
naive mice. This suggests that PC61 treatment in IAV-immune mice
where Treg cells are elevated affects CD8� T cell responses during
LCMV infection differently than in naive mice.

PC61 treatment during PV infection in LCMV-immune mice
did not alter activation of cross-reactive NP205-specific CD8�

memory T cells. PC61 treatment prior to virus infection in naive

mice usually results in increasing the activation and frequency of
virus-specific CD8� T cells (16, 25, 32, 38). However, it is possible
that anti-CD25 treatment interferes with the activation of the
cross-reactive IAV-specific memory CD8� T cells responsible for
the lung pathology upon LCMV infection. In order to test this
hypothesis, we utilized a heterologous virus infection model,
LCMV-immune mice infected with PV, where there is no con-
founding variable, such as immunopathology, and there is a
strong activation of cross-reactive NP205-specific memory CD8�

T cells which become immunodominant during the second virus
infection (40, 41) (Fig. 6a). PC61 treatment of LCMV-immune
mice prior to PV infection resulted in equally effective reactivation
of the cross-reactive LCMV-NP205 memory CD8� T cells, which
instead of being very subdominant during PV infection became
codominant with the PV-NP38 response (Fig. 6b). Also, the
NP205-specific T-cell response became immunodominant in the
LCMV-specific memory response (Fig. 6c), as we have previously
reported (40). These results suggest that PC61 treatment does not
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interfere with reactivation of cross-reactive memory cells, which is
consistent with data suggesting that CD25 does not play a major
role in activation of memory CD8� T cells (42).

Partial exhaustion of LCMV-specific CD8� T-cell responses
might contribute to decreasing lung pathology in PC61-treated
IAV-immune mice. To further investigate why PC61 treatment
during LCMV infection of IAV immune mice resulted in de-
creased lung pathology, we questioned if decreased Treg cell func-
tion induced by PC61 treatment had any effect on the functional
efficiency of the LCMV-specific CD8� T-cell responses. Loss of
effector CD8� T-cell function, called exhaustion, has been de-
scribed for different persistent viruses (43–45). Exhaustion of
CD8� T cells can be divided into different stages with a gradual
loss of T-cell functions in the following order: IL-2 production
and proliferation, TNF production and cytotoxicity, and IFN-�
production (45). Partial exhaustion can occur during early peri-
ods of chronic infection or in chronic infections when the antigen
load is not exceptionally high. Partially exhausted CD8� T cells are
characterized by loss of TNF-	 production and reduced prolifer-
ation potential (45). Additionally, upregulation of PD-1 and

changes in the immunodominance hierarchy of the antigen-spe-
cific CD8� T-cell responses can be found, as some epitope-specific
responses are more sensitive to exhaustion (45–49). For instance,
NP396-specific CD8� T-cell responses during chronic LCMV in-
fection are the most sensitive to exhaustion, and this normally
immunodominant response becomes subdominant or disappears
completely (45). We began to question whether partial exhaustion
was occurring in the IAV-immune mice treated with PC61 prior
to LCMV infection, when we noticed that in the decreased LCMV-
specific CD8� T-cell response (Fig. 4) there was a disproportion-
ately greater loss of NP396-specific CD8� T cells (Fig. 7). In fact,
upon closer examination, we noted that in these PC61-treated
IAV-immune mice infected with LCMV, the NP396-specific
TNF-	-producing CD8� T cells were significantly decreased, in
contrast to the GP33-specific CD8� T cells (Fig. 7a to c). Signifi-
cantly fewer NP396-specific multicytokine-producing (TNF�

IFN-��) to single cytokine-producing (TNF� IFN-��) CD8� T
cells were observed in PC61-treated mice (ratio, 5.9 � 1) com-
pared to nontreated IAV-immune mice (2.5 � 0.3) (P � 0.025;
n � 14) (Fig. 7a). This was also associated with a decrease in the
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mean fluorescence intensity (MFI) of NP396-specific CD8� T-
cells, making both TNF and IFN-� levels consistent with de-
creased cytokine production per cell (Fig. 7a and b).

LCMV-specific CD8� T-cell responses have a highly predict-
able hierarchy during acute LCMV infection in naive mice which
is not altered in IAV-immune mice (Fig. 7d). During acute LCMV
infection, either NP396 or GP33/34 CD8� T-cell responses may
be more dominant, or they can be fully codominant (50). During
the phases of T-cell exhaustion, the LCMV NP396-specific CD8�

T-cell response becomes nonfunctional before the GP33/34 re-
sponse (45). Thus, changes in immunodominance hierarchy dur-
ing LCMV infection are one way to assess the severity of clonal
exhaustion. Thus, as the NP396-specific CD8� T-cell response
was becoming less functional during LCMV infection in PC61-
treated IAV-immune mice, the GP33/34-specific CD8� T-cell re-
sponse became dominant more often than the NP396-specific re-
sponse (Fig. 7d). This change in immunodominance hierarchy
was unique to PC61-treated IAV-immune mice, as there was no
significant difference in hierarchy in PC61-treated naive mice in-
fected with LCMV (Fig. 7e).

Also consistent with ongoing partial CD8� T-cell exhaustion,
significantly enhanced PD-1 expression was observed on NP396-
specific CD8� T cells at days 7 and 9 of LCMV infection in PC61-
treated IAV-immune mice compared to nontreated naive or IAV-
immune mice (Fig. 7f). This difference in PD-1 expression had
disappeared by day 12, when virus had cleared from these mice.

These changes in the characteristics of the LCMV-specific
CD8� T-cell responses (Fig. 7a to f), including alteration in im-
munodominance hierarchy (Fig. 7d), decreased TNF production

(Fig. 7a to c), and enhanced PD-1 expression (Fig. 7f), was not
observed in PC61-treated naive mice infected with LCMV. Thus,
Treg cell depletion using PC61 treatment did not lead to any evi-
dence of partial clonal exhaustion upon LCMV infection in naive
mice (Fig. 7e). Only when the increased numbers of Treg cells
present in IAV-immune mice were depleted by PC61-treatment
did the LCMV-specific CD8� T cells demonstrate these features of
partial clonal exhaustion. This decreased CD8� T-cell response
would result in decreased IFN-� production, one of the mediators
of severe lung pathology (15). These results suggest that the in-
creased levels of IAV-expanded Treg cells is attenuating LCMV-
specific CD8� T-cell activation and preventing partial T-cell ex-
haustion in the presence of the higher viral loads in IAV-immune
mice (5).

In the absence of functional Treg cells, the ratio of LCMV-
GP33/34 to NP396 response directly correlated with the severity
of lung pathology. In IAV-immune mice infected with LCMV,
the severity of the lung pathology directly correlated with and was
predicted by the frequency of IAV-PB1703- and IAV-PA224-spe-
cific memory responses, which cross-reacted with LCMV-
GP33/34 and -GP276, respectively (15). Eradication or functional
ablation of these pathogenic memory T-cell populations, using
mutant virus strains, peptide-based tolerization strategies, or
short-term anti-IFN-� treatment, inhibited severe lesions, such as
bronchiolization, from occurring. In PC61-treated IAV-immune
mice, the ratio of GP33/34 to NP396 CD8� T-cell responses di-
rectly correlated with the severity of the residual lung pathology,
which suggests that the greater the cross-reactive GP33/34-spe-
cific and the lower the non-cross-reactive NP396-specific CD8�
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T-cell response, the greater the lung pathology (Fig. 7g). This cor-
relation was not observed in control nontreated IAV-immune
mice at day 9 post-LCMV infection (Fig. 7 h). These data suggest
that the partial exhaustion of the NP396-specific CD8� T-cell re-
sponse in PC61-treated IAV-immune mice during LCMV chal-
lenge resulted in a greater dependence on the cross-reactive GP33/
34-specific response to induce the residual pathology. This is an
interesting observation, as the LCMV-GP34 CD8� T-cell re-
sponse is cross-reactive with the IAV-PB1 response, and we have
shown that the expansion of memory IAV-PB1-specific CD8� T
cells during LCMV infection directly correlated with the severity
of lung pathology (15). However, it would appear that only when
we deplete the confounding influence of the Treg cells in IAV-
immune mice can we observe a direct correlation between cross-
reactive LCMV epitope-specific responses and severity of lung
pathology. This is another indication that PC61 treatment did not
affect the activation and proliferation of cross-reactive memory
cells.

DISCUSSION

Recently, antigen-specific IAV-induced Treg cells have been re-
ported to attenuate subsequent T cell responses and decrease pa-
thology during a secondary challenge with heterosubtypic IAV
infection (51, 52). Here, we show for the first time that virus-
expanded Treg cells could attenuate immune responses and influ-

ence induction of lung pathology during a subsequent unrelated
nonpersistent virus infection. The presence of increased Treg cells
during persistent viral infections in naive mice is well documented
and is known to influence viral clearance and immunopathology
(19, 25–28). Our results suggest that Treg cells generated during
an acute infection that clears but where tissue damage occurs can
influence the qualitative characteristics of effector T-cell re-
sponses and their ability to contribute to lung pathology during a
subsequent heterologous virus infection. Thus, an individual’s
history of infection and specific sequence of infection can alter
Treg cell populations, resulting in greatly altered disease outcome
during subsequent new infections.

Whereas Treg cell inactivation with PC61 treatment prior to an
acute LCMV infection had no influence on the LCMV-induced
immunopathology in the lung, depletion prior to LCMV infection
in IAV-immune mice resulted in significantly decreased immuno-
pathology. Increased numbers of Treg cells in IAV-immune mice
appeared to attenuate activation of both non-cross-reactive and
cross-reactive LCMV-specific CD8� T cells, and their presence
was detrimental for the host in terms of immunopathology. In the
absence of Treg cells there was a delay in effector CD8� T cells
trafficking to the lung and spleen, and the non-cross-reactive
NP396 CD8� T-cell response was so strongly activated that it be-
came partially clonally exhausted, leading to decreased immuno-
pathology. Furthermore, depletion of Treg cells in these sequen-
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FIG 7 Partial exhaustion of LCMV-specific CD8� T-cell response may contribute to decreasing lung pathology in PC61-treated IAV-immune mice. LCMV-
specific CD8� T-cell responses were determined in naive, IAV-immune, and PC61-treated IAV-immune mice post-LCMV infection (see the experimental set up
described in the legend to Fig. 3a). (a to c) IFN-� and TNF production was measured using an intracellular cytokine assay in response to LCMV-NP396 or GP33
stimulation (gated on CD8� CD44� T cells) in the spleen of nontreated (IAV) and PC61-treated IAV-immune (IAV�PC61Tx) mice at day 7 post-LCMV
infection. The partial exhaustion phenotype is demonstrated by FACS plots of two representative mice showing the NP396-specific CD8� T-cell response (a), by
graphing the MFI of the TNF-	� IFN-�� NP396-specific CD8� T cell response (b), and by the percentage of TNF-	� IFN-�-producing cells in either group (c).
(d and e) The dominant epitope hierarchies of LCMV-specific CD8� T-cell responses in spleens at day 7 post-LCMV infection are shown from naive (white bars),
IAV-immune (black bars), and PC61-treated IAV-immune mice (diagonally striped bars) (the experimental set-up is described in the legend to Fig. 3a) (d) and
LCMV-infected naive (white bars) and PC61-treated naive (horizontally striped bars) mice (n � 14 to 19 mice/group from panels b and c) (the experimental
set-up is described in the legend to Fig. 5a) (e). Statistical analysis used the chi-square test. (f) MFI of PD-1 on LCMV NP396-specific CD8� CD44� IFN-�� T
cells of LCMV-infected naive, IAV-immune, and PC61-treated IAV-immune mice at days 7, 9, and 12 post-LCMV infections in the spleen. (For this, data from
Fig. 1 to 2 for pooled independent experiments with 5 to 10 mice/group and time point were used; Student’s t test was used for statistical analysis). (g and h) Direct
correlation of severity of lung pathology and the ratio of LCMV-specific GP33/NP396 responses in the spleen of day 9 LCMV-infected, PC61-treated IAV-
immune mice (g) and day 9 LCMV-infected control nontreated IAV-immune mice (h).
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tially infected mice led to revealing a direct correlation between
the ratio of cross-reactive LCMV GP33/34 to non-cross-reactive
NP396 CD8� T-cell responses and the severity of the residual lung
pathology. These data suggest that prior shaping of the immune
system with unrelated infections is as important as the character-
istics of a specific pathogen in terms of influencing Treg cell in-
duction and their beneficial or detrimental effects for the host.

Treg cells were increased in the lung and draining lymph node
(mLN) of IAV-immune mice even 6 weeks after resolution of the
acute infection. This is consistent with recent reports (51, 52) that
IAV can induce IAV antigen-specific Treg cells, which can directly
attenuate the function of IAV-specific effector T cell function,
including proliferation and IFN-� production. Increased Treg
cells have been found in chronic virus infections like hepatitis B/C
virus, HIV, and Friend virus (19, 26, 28, 53). Punkosdy et al.
showed that Treg cell expansions depend on viral chronicity (54).
Since replicating IAV is cleared within the first 10 days postinfec-
tion (55–57), one possibility for the significantly enhanced num-
bers of Treg cells in the lungs and mLNs of IAV-immune mice is
the response to self-antigens presented as a result of the damaged
lung tissue during acute IAV infection (5). In this case, constant
self-specific antigen and T cells would still be around after IAV is
cleared. This might explain why we found significantly increased
Treg cell numbers in IAV-immune mice even up to several
months post-IAV infection. However, it is also possible that Treg
cells were maintained at significantly higher numbers due to per-
sistent IAV-derived antigen presentation, which has been de-
scribed by others (58). Jelley-Gibbs et al. showed that antigen-
specific CD4� T cell responses could be generated up to 3 to 4
weeks post-IAV clearance. These late primed IAV-specific CD4�

T cells have an intermediate phenotype with decreased contrac-
tion capacity. Interestingly, these IAV-specific CD4� T cells are
V� 4, 7, and 14 (58). Treg cells in the lungs of our IAV-immune
mice showed enhanced usage of V� 4 and 7 and significantly en-
hanced V� 14 (Fig. 1d). This is an indication that late IAV antigen
presentation has an influence on the enhanced IAV-expanded
Treg cell numbers in lungs of IAV-immune mice. The results from
the recently reported IAV-induced Treg studies suggest that these
cells are activated in an antigen-specific manner, raising the ques-
tion of whether cross-reactive LCMV-specific antigens could ac-
tivate these IAV-expanded Treg cells. Our unpublished results
(M. F. Wlodarczyk, A. R. M. Kraft, L. L. Kenney, E. Carter, and
L. K. Selin) suggest that there are cross-reactive CD4� T-cell re-
sponses between LCMV and IAV, much as we have reported
cross-reactive CD8� T cell responses (15).

The presence of Treg cells is usually associated with decreased
immunopathology in models of autoimmune diseases, such as
inflammatory bowel or celiac disease (5), and in some pathogen
infections, such as respiratory syncytial virus (RSV) (16, 38) and
IAV (51, 52), suggesting that depletion of Treg cells in IAV-im-
mune mice resulted in increased lung pathology compared to
nondepleted mice or even death after LCMV infection. Depletion
of Treg cells by PC61 treatment prior to acute viral infection with,
for instance, corneal HSV-1, neonatal HSV-1, or i.n. RSV, signif-
icantly enhances severe pathology mediated by increased virus-
specific T-cell responses (16, 33, 38). These studies support the
concept that the presence of Treg cells results in attenuation of
effector T-cell activation. In IAV-immune mice prior to and
throughout the subsequent LCMV infection, we found signifi-
cantly increased numbers of IAV-expanded Treg cells and the sup-

pressive cytokine IL-10, which has been shown to decrease pathol-
ogy (19, 59, 60) or contribute to induction of chronic infection
with high-dose LCMV clone 13 by induction of CD8� T-cell ex-
haustion (61–63). Thus, it was possible that depletion of Treg cell
function prior to LCMV infection further increased the severity of
lung pathology upon LCMV infection in IAV-immune mice. Sur-
prisingly, depletion of Treg cells in IAV-immune mice prior to
LCMV infection resulted in decreased lung pathology, with no
differences in viral titers and significantly decreased LCMV-spe-
cific CD8� T-cell responses in the spleen but not the mLN. These
results suggest that there is a delay in effector T cells trafficking out
of the lymph node in the absence of Treg cells in both the LCMV-
infected IAV-immune and the naive mice, which is consistent
with previous reports demonstrating that Treg cells play a role in
controlling egress of effector T cells from the lymph node (39).
However, Treg depletion with PC61 treatment did not alter the
severity of immunopathology or viral load in naive mice infected
with LCMV. In contrast to findings of Treg depletion via PC61
treatment during acute RSV or IAV infection, depletion of the
IAV-expanded Treg cells during LCMV infection did not signifi-
cantly enhance virus-specific T-cell responses (16, 25, 38). In stark
contrast, the significant reduction in the severity of lung pathology
appears to be mediated by overactivation and subsequent partial
exhaustion of the LCMV-specific CD8� T-cell response in
LCMV-infected, Treg cell-depleted, IAV-immune mice.

High doses of LCMV clone 13 given intravenously leads to
chronic infection that is thought to occur because the high antigen
load drives LCMV-specific CD8� T-cell exhaustion (45–48).
These antigen-specific cells can be in various phases of partial to
complete exhaustion thought to correlate with antigen load (45).
Exhaustion includes disruption of predictable immunodomi-
nance hierarchies of the LCMV-specific CD8� T-cell responses
(loss of the dominant NP396-specific CD8� T-cell response), im-
pairment of functional T-cell responses, including loss of TNF-	
production, and upregulation of PD-1 expression on exhausted
virus-specific T cells (45). All of these parameters of exhaustion
were detected on LCMV-specific CD8� T cells in the spleens of
Treg-depleted, IAV-immune mice but not in Treg-depleted, naive
mice after LCMV infection.

Why would Treg depletion with PC61 treatment prior to
LCMV infection in IAV-immune mice but not Treg depletion in
naive mice result in partial exhaustion? There was no evidence to
suggest that effector CD4� T-cell activation and function in the
IAV-immune or naive mice infected with LCMV was directly af-
fected by the PC61 treatment. In naive mice infected with LCMV,
the only effect that PC61 treatment had was to slightly decrease the
size of the LCMV-specific CD8� T-cell effector response in the
spleen while it increased in the mLN, consistent with a delay in
egress from the lymph node, a finding consistent with Treg deple-
tion in Foxp3-DTR mice (39). A similar delay in LCMV-specific
CD8� effector T-cell expansion was observed in the Treg-depleted
IAV-immune mice. There was no effect on the viral load or im-
munopathology in Treg-depleted (PC61Tx) naive mice. How-
ever, only in the IAV-immune mice did the PC61 treatment result
in partial exhaustion of the non-cross-reactive NP396-specific
CD8� T-cell response and decreased immunopathology, as sum-
marized in Table 1. The unique features of the LCMV response in
IAV-immune mice are the presence of increased numbers of IAV-
expanded Treg cells, increased IL-10 level, weakly activated cross-
reactive IAV-specific memory CD8� T cells with increased levels
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of IFN-� (15), and greater viral load than that in naive mice (5)
(Table 1). This contrasts with sequential infection with Pichinde
virus in LCMV-immune mice, where no evidence for LCMV-ex-
panded Treg cells existed (Fig. 1) and where a strong cross-reactive
memory CD8� T-cell response rapidly expands and clears PV
after infection with no significant immunopathology (40). PC61
treatment in these LCMV-immune mice did not affect activation
and immunodomination of the cross-reactive NP205-specific
CD8� T-cell response upon PV infection (Fig. 6), suggesting that
PC61 treatment did not affect cross-reactive memory cell activa-
tion and severity of lung pathology in IAV-immune mice infected
with LCMV.

It is unlikely that the IAV-expanded Treg cells had a significant
effect on the activation of the cross-reactive memory T cells but
instead were able to attenuate the priming of the naive, non-cross-
reactive LCMV-specific CD8� T-cell responses. Depletion of
these activated IAV-expanded Treg cells in this setting would al-
low a strong activation of these non-cross-reactive naive NP396-
specific CD8� T-cell responses in the presence of activated cross-
reactive IAV-specific memory CD8� T cells and the increased
viral load observed in IAV-immune mice (5). This overactivation
could lead to partial exhaustion of the LCMV-specific responses,
decreased IFN-� production, and less pathology. This is only par-
tial exhaustion, as the LCMV infection was ultimately cleared and
a persistent LCMV infection was not established (45). Based on
our studies, it is interesting to speculate about studies done using
PC61 treatment (anti-CD25) to prevent rejection following hu-
man kidney transplantation or in clinical trials to treat patients
with multiple sclerosis (MS) (64). It has been postulated that PC61
treatment was effective, as it led to an impairment of CD8� T cells
by blocking priming or depleting activated CD8� T cells. Our
findings suggest another hypothesis in these cases in which large
amounts of donor organ antigen or self-antigen in MS patients is

present: PC61 treatment leads to depletion of induced Treg cells,
and unwanted antigen-specific CD8� T-cell responses become
exhausted.
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