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Influenza virus is a worldwide global health concern causing seasonal morbidity mortality and economic burden. Chemothera-
peutics is available; however, rapid emergence of drug-resistant influenza virus strains has reduced its efficacy. Thus, there is a
need to discover novel antiviral agents. In this study, RNA interference (RNAi) was used to screen host genes required for influ-
enza virus replication. One pro-influenza virus host gene identified was dual-specificity phosphatase cell division cycle 25 B
(CDC25B). RNAi screening of CDC25B resulted in reduced influenza A virus replication, and a CDC25B small-molecule inhibi-
tor (NSC95397) inhibited influenza A virus replication in a dose-dependent fashion. Viral RNA synthesis was reduced by
NSC95397 in favor of increased beta interferon (IFN-�) expression, and NSC95397 was found to interfere with nuclear localiza-
tion and chromatin association of NS1, an influenza virus protein. As NS1 has been shown to be chromatin associated and to
suppress host transcription, it is likely that CDC25B supports NS1 nuclear function to hijack host transcription machinery in
favor of viral RNA synthesis, a process that is blocked by NSC95397. Importantly, NSC95397 treatment protects mice against
lethal influenza virus challenge. The findings establish CDC25B as a pro-influenza A virus host factor that may be targeted as a
novel influenza A therapeutic strategy.

Influenza A virus (IAV) causes yearly epidemics and periodic
pandemics in humans with recent estimates that 20% of the

world population is affected yearly (1). IAV undergoes antigenic
drift, a feature requiring the need for new vaccines to be developed
annually to confer protection against heterovariant strains. Peri-
odically, multiple IAV strains simultaneously infect a “mixing ves-
sel,” such as swine, leading to viruses with new gene segments and
an antigenic shift that may cause a pandemic. Although IAV vac-
cines are generally safe and effective, they cannot always meet the
population coverage demands, and due to the short time frame
between identification of a pandemic strain and need for vaccina-
tion, they are not always available or efficacious. An option to
control influenza virus infection in influenza-afflicted or at-risk
people is the use of antiviral drugs. Current FDA-approved anti-
viral drugs are the M2-ion channel inhibitor adamantanes and the
neuraminidase inhibitors zanamivir and oseltamivir (2–4). De-
spite the utility of these antiviral drugs, new and novel antivirals
are being sought due to the development of drug resistance (5–9).
Several reports have demonstrated a host factor requirement for
influenza A virus replication (10–15). Thus, targeting host genes
offers an innovative and refractory approach to drug resistance
because IAV requires host gene pathways for replication (11, 15),
and host gene targets are stable. Several host factors have been
previously identified to promote IAV replication in different
stages of the virus life cycle. Among these, organic anion trans-
porter 3 (OAT3) and vacuolar ATPase (vATPase) have recently
been shown to facilitate IAV entry into host cells, while other host
factors such as importin-� and calcium/calmodulin-dependent
protein kinase II � (CAMK2B) have postentry roles (15–17). IAV
also utilizes host factors, such as cellular P58IPK, which has been
implicated in inhibition of the host double-stranded RNA
(dsRNA)-dependent protein kinase R (PKR) response, to modu-
late antiviral responses (18). Numerous host genes have been
identified as potential drug targets for blocking key events re-
quired for influenza virus replication in host cells using a genome-

wide small interfering RNA (siRNA) assay platform (13–16, 19,
20). Among the provirus genes identified was cell division cycle 25
B (CDC25B), which is a member of the CDC25 family of phos-
phatases. CDC25B dephosphorylates cyclin-dependent kinases
(CDKs) and regulates the cell division cycle. Removal of inhibi-
tory phosphates from threonine and tyrosine residues on CDK1
and CDK2 allow these factors to promote cell cycle progression
from G2 to mitosis (21).

IAV is a single-strand negative-sense segmented RNA virus
whose genome includes nucleoproteins (NP) and a viral polymer-
ase complex (PA, PB1, and PB2) that is enclosed in a host-derived
envelope containing hemagglutinin (HA), neuraminidase (NA),
and M2 ion channel proteins to facilitate viral binding and fusion
for subsequent release of the negative-stranded viral RNA (vRNA)
genome into the cells (reviewed in references 22 and 23). Other
viral proteins such as matrix protein (M1) and nuclear export
protein (NEP) are incorporated into the virion (24). Nonstruc-
tural protein, NS1, is not incorporated into the virion but is re-
quired for efficient virus replication. NS1 protein is known to
antagonize host antiviral interferon (IFN) responses during IAV
infection by inhibiting functions of retinoic acid inducible gene I
(RIG-I), PKR, and 2=5=-oligoadenylate synthetase (OAS) (25–34).
NS1 also has been implicated in inhibition of host mRNA matu-
ration and nuclear export and promotion of translation of viral
mRNA (28, 29, 31, 35, 36). A recent study also demonstrated
strain-specific NS1 targeting to host chromatin, specifically, to

Received 5 June 2013 Accepted 3 October 2013

Published ahead of print 9 October 2013

Address correspondence to Ralph A. Tripp, ratripp@uga.edu.

O.P. and A.C.T. are co-first authors.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.

doi:10.1128/JVI.01509-13

December 2013 Volume 87 Number 24 Journal of Virology p. 13775–13784 jvi.asm.org 13775

http://dx.doi.org/10.1128/JVI.01509-13
http://jvi.asm.org


transcriptionally active loci (e.g., viral inducible gene), by mim-
icking the histone tail to block active host transcription elongation
(37). NS1 protein is shuttled between cytoplasmic and nuclear
compartments throughout infection to facilitate these actions
(17). Another recent study described NS1 phosphorylation by
CDK1 and extracellular signal-regulated kinase 1/2 (ERK1/2)
(38), both direct downstream targets of CDC25B, and showed that
this phosphorylation is required for NS1 nuclear localization (38).

In this study, NSC95397, a specific inhibitor of CDC25B phos-
phatase (39, 40), was evaluated for its ability to modulate IAV
infection in human bronchial epithelial (BEAS2B) cells. It was
shown that NSC95397 limits IAV replication in a dose-dependent
manner and acts to block CDC25B-mediated NS1 function in the
nucleus by limiting viral RNA synthesis while upregulating IFN-�
expression. The effect of this compound was also tested in a mouse
model of IAV infection. The results show that NSC95397 inhibi-
tion of CDC25B phosphatase activity effectively controls IAV rep-
lication in the lungs of IAV-infected mice and protects mice from
lethal IAV infection, suggesting that targeting CDC25B phospha-
tase could be a valuable therapeutic approach to treat IAV infec-
tion.

MATERIALS AND METHODS
Cells and viruses. Human type II respiratory epithelial (A549) cells
(ATCC CCL-185) and Madin-Darby canine kidney (MDCK) cells (ATCC
CCL-34) were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 5% heat-inactivated fetal bovine serum (FBS) (Hy-
Clone) in a 37°C incubator with 5% CO2. Human bronchoepithelial
(BEAS2B) cells (ATCC CRL-9609) were maintained in bronchial epithe-
lial basal medium (BEBM; Lonza) supplemented with 30 �g/ml bovine
pituitary extract, 0.5 �g/ml hydrocortisone, 0.5 ng/ml human recombi-
nant epidermal growth factor, 0.5 �g/ml epinephrine, 10 �g/ml transfer-
rin, 5 �g/ml insulin, 0.1 ng/ml retinoic acid, and 6.5 ng/ml triiodothyro-
nine (BEGM SingleQuots; Lonza) at 37°C in a 5% CO2 incubator.
Representative strains of influenza A virus, A/WSN/33(H1N1) (WSN),
and influenza B virus, B/Florida/04/06, were propagated in 9-day-old em-
bryonated chicken eggs obtained from a specific-pathogen-free leghorn
chicken flock (Sunrise Farms). The allantoic fluid from this parental stock
was tested for hemagglutin (HA) activity. HA-positive allantoic fluids
were pooled, divided into aliquots, and stored at �80°C until use. A mu-
tant influenza A/WSN/33 virus expressing defective RNA-binding NS1
(NS1 R38AK41A) was a kind gift from Adolfo García-Sastre (Mount Sinai
School of Medicine) and was passaged once in MDCK cells. Mutations
were confirmed by sequence analysis. MDCK cells were used to determine
the titer of the A/WSN/33 stock virus and culture supernatant of infected
cells as previously described (41, 42).

RNAi transfection. A primary RNA interference (RNAi) screen was
performed using four pooled siRNAs to target each gene of the 4,795 genes
in the human drug target library (SMARTpool; Dharmacon Thermo-
Fisher) using A549 cells infected with influenza A/WSN/33 virus as pre-
viously described (15, 20). For a CDC25B validation study, individual
siRNAs targeting human CDC25B and a nontargeting siRNA (siNEG)
were used (Dharmacon ThermoFisher). A549 cells were reverse trans-
fected with siRNA using DharmaFECT-1 reagent (Dharmacon) as previ-
ously described (20). Transfections were carried out for 48 h to allow
maximal expression knockdown before cells were infected with influenza
A/WSN/33 virus at an a multiplicity of infection (MOI) of 0.001. The level
of infectious virus was measured 48 h postinfection (hpi) by titration of
A549 cell supernatants on MDCK cells (43). In addition, A549 cell mono-
layers on culture plates were fixed and analyzed for the presence of influ-
enza NP by immunofluorescence staining as described below. Transfected
cells were also collected to assess CDC25B gene expression knockdown

using the quantitative real-time PCR (qRT-PCR) method described
below.

In vitro inhibition assays. NSC95697 (2,3-bis-[2-hydroxyethylsulfa-
nyl]-[1,4]naphthoquinone) (TOCRIS Bioscience) was dissolved in
dimethyl sulfoxide (DMSO) and serially diluted in BEBM. For dose-re-
sponse virus inhibition experiments, cells were washed with phosphate-
buffered saline (PBS) once prior to titration of NSC95607 using a
Hewlett-Packard (HP) D300 Digital Dispenser (Tecan) (44) 1 h before
infection. For time-of-addition experiments, 2 �M NSC95397 was added
at different time points pre- or postinfection. Where indicated, cells were
subsequently infected with influenza A/WSN/33 virus at MOI � 0.05
(multistep growth) or 1 (single-step growth). At the indicated time points,
cells were fixed with 4% formaldehyde for subsequent immunostaining,
collected for total RNA isolation using a Qiagen RNAeasy kit (Qiagen) for
gene expression analyses, or collected for protein analyses using immu-
noblotting. Furthermore, culture supernatant was collected for IAV titra-
tion in MDCK cells and cytotoxic analysis. Cellular toxicity was deter-
mined by measuring adenylate kinase release using a ToxiLight Bioassay
kit (Lonza).

Gene expression analyses. For measurement of influenza A viral copy
number, total RNAs collected from infected A549 cells, BEAS2B cells, or
lungs of infected mice were used for a quantitative real-time PCR (qRT-
PCR) assay using a OneStep RT-PCR kit (Qiagen). A universal influenza
primer-probe set (InfA forward primer, InfA reverse primer, and InfA
probe; Bioresearch Technologies, Inc.) was used for amplification and
detection of influenza A virus RNA as previously described (16).

For strand-specific IAV qRT-PCR analyses, primers specific for IAV
segment 5 cRNA, mRNA, and vRNA containing an additional 18-to-20-
nucleotide tag unrelated to IAV at the 5= end were used for increased
specificity to distinguish the three different IAV RNA species as described
previously (45). Briefly, equal amounts of total RNA from infected cells
were used to synthesize cDNA complementary to the three types of IAV
RNA using a Verso cDNA synthesis kit (Thermo Scientific). Quantitative
PCR analysis was performed using RT2 SYBR green qPCR Master Mix
(SABioscience) and primer sets specific to the corresponding IAV RNA
species in an MX3005P thermocycler. To assess CDC25B and IFN-� gene
expression, cDNA were synthesized using random hexamers as primers
(Thermo Scientific). cDNAs were subsequently used for quantitative PCR
amplifications using CDC25B, IFN-�, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) gene-specific primers and RT2 SYBR green
qPCR Master Mix (SABioscience) in an MX3005P thermocycler as previ-
ously described (16). The levels of viral RNA, CDC25B, and IFN-� gene
expression were normalized to that of GAPDH, and their expression levels
relative to mock-treated samples were calculated using the 2(���Ct) for-
mula.

Immunofluorescence staining. Cells were fixed with 4% formalde-
hyde for 10 min, blocked in 3% bovine serum albumin (BSA), and incu-
bated with the primary antibodies mouse anti-NP and rabbit anti-NS1
(Pierce antibodies; Thermo Scientific), followed by incubation with the
appropriate secondary antibodies Alexa 488-conjugated goat anti-mouse
and Alexa 546-conjugated goat anti-rabbit (1 �g/ml; Invitrogen) and with
DAPI (4=,6-diamidino-2-phenylindole) counterstain (2 �g/ml; Invitro-
gen). Cells were visualized using an EVOS fluorescent imaging system
(Advanced Microscopy Group). For high-content imaging, cells were vi-
sualized and counted using a Cellomics ArrayScan system (Thermo Sci-
entific) with proprietary image and analytical software.

Protein isolation, subcellular fractionation, and immunoblot anal-
ysis. To evaluate total protein expression following NSC95397 treatment,
cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (50
mM Tris HCl [pH 7.5], 150 mM NaCl, 0.5% sodium deoxycholate, 1%
Nonidet P-40, 1 mM EDTA, and 0.1% sodium dodecyl sulfate [SDS])
supplemented with Halt protease and phosphatase inhibitor cocktail
(Thermo Scientific), followed by 4°C centrifugation at 16,000 � g for 10
min to clarify lysates. For protein fractionation experiments, cell pellet
were subjected to subcellular fractionation (Pierce/Thermo Scientific) to
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biochemically isolate cytoplasmic, soluble nuclear, and chromatin-bound
proteins. Briefly, for isolation of chromatin proteins, nonsoluble nuclear
pellets were digested with micrococcal nuclease, supplied in the manufac-
turer’s kit, to digest chromatin and extract chromatin-bound proteins.

Equivalent protein amounts were diluted in SDS sample buffer (for
4� buffer, 40% glycerol, 240 mM Tris/HCl [pH 6.8], 8% SDS, 0.04%
bromophenol blue, 5% �-mercaptoethanol), boiled, and resolved by
SDS-polyacrylamide gel electrophoresis followed by immunoblotting. The
primary antibodies used for immunoblot analyses were mouse anti-NP, rab-
bit anti-NS1 (Pierce antibodies; Thermo Scientific), mouse anti-NS1 (Santa
Cruz Biotechnology), mouse anti-CDK1 and rabbit anti-CDK1 pY15
(Abcam), rabbit anti-ERK1/2, ERK1/2 pT202/Y204, interferon regulatory
factor 3 (IRF3) pS396, and histone H3 (Cell Signaling Technology),
mouse anti-IRF3 (a kind gift from Michael Gale, Jr., University of Wash-
ington) (46), and rabbit anti-GAPDH (Millipore). Horseradish peroxi-
dase-conjugated goat anti-rabbit and anti-mouse antibodies (Sigma-
Aldrich) were used as secondary antibodies. Protein bands were visualized
following addition of SuperSignal West Dura Extended Duration sub-
strate (Pierce/Thermo Scientific) and using a FluorChem-E Western im-
aging system (ProteinSimple).

Mice and infections. BALB/c female mice (8 to 10 weeks old) were
obtained from NCI. All experiments and procedures were approved by
the Institutional Animal Care and Use Committee (IACUC) of the Uni-
versity of Georgia. Mice were treated with DMSO or NSC95397 orally by
gavage at 24 h pre- or postinfection. Prior to virus inoculation, mice were
anesthetized with Avertin and intranasally infected with a lethal (103 PFU)
or sublethal (70 PFU) dose of influenza A/WSN/33 virus–50 �l PBS. Body
weight and survival were evaluated daily for 14 days. For assessment of
lung viral burden, lungs of infected mice were collected at 72 hpi and
homogenized in TRizol (Invitrogen) for total RNA isolation. Five nano-
grams of total RNA was used for assessment of IAV copy number by
qRT-PCR analysis as described above. Experiments were performed with
10 mice per group.

Statistical analyses. The Student t test was used throughout, except
for the survival curves where one-way analysis of variance (ANOVA) and
the Mantel-Cox test were employed. P values 	 0.05 are considered sig-
nificant.

RESULTS
CDC25B is a pro-influenza virus host factor. The RNAi screen-
ing that was performed identified numerous host cell genes that
are required for IAV replication (16, 19, 20). One of the genes
identified was CDC25B, a member of the dual-specificity CDC25
phosphatases that has been shown to dephosphorylate CDK1 and
ERK1/2 (21, 47). To validate this finding, individual nonpooled
siRNAs targeting CDC25B (siCDC25B) were used for transfection
of A549 cells 48 h prior to infection with influenza A/WSN/33
virus (MOI � 0.05). siCDC25B transfection resulted in a reduc-
tion of influenza A virus NP-positive cell numbers at 48 hpi com-
pared to nontargeting siRNA (siNEG) transfection as visualized
and quantified by high-content imaging (Fig. 1A; quantified in the
bottom panel). Similarly, siCDC25B-transfected cells also had sig-
nificant (P 	 0.05) reductions of influenza A/WSN/33 virus titers
in culture supernatant collected at 48 hpi compared to siNEG-
transfected cells (Fig. 1B). To verify knockdown of CDC25B gene
expression following siRNA transfection, mock- or A/WSN/33-
infected, siRNA-transfected cells were collected for total RNA iso-
lation and qRT-PCR analysis. A549 cells transfected with
siCDC25B showed an 80% or 45% reduction of CDC25B relative
to GAPDH mRNA levels for mock-infected cells (P 	 0.01) or
A/WSN/33-infected cells (P 	 0.05), respectively, compared to
siNEG-transfected, mock-infected cells (Fig. 1C). Interestingly,
influenza A/WSN/33 virus infection resulted in upregulation of
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CDC25B Inhibitor Controls Influenza A Virus Infection

December 2013 Volume 87 Number 24 jvi.asm.org 13777

http://jvi.asm.org


CDC25B gene expression, further indicating a role for virus repli-
cation.

NSC95397 modulates CDC25B phosphatase activity during
IAV infection. To further determine if CDC25B is a viable target
to limit IAV replication, a selective and irreversible inhibitor of
CDC25B phosphatase, i.e., NSC95397, was evaluated (39, 40, 48).
CDC25B has been found to be overexpressed in carcinoma cells
(49, 50); thus, nonneoplastic human bronchoepithelial BEAS2B
cells were employed in the subsequent studies. To demonstrate
that NSC95397 inhibits CDC25B activity in the context of virus
infection, levels of phosphorylated CDK1 and ERK1/2, both
known targets of CDC25B phosphatase activity, were evaluated in
mock- or influenza A/WSN/33 virus-infected BEAS2B cells in the
presence or absence of NSC95397. BEAS2B cells were pretreated
with DMSO or increasing doses of NSC95397 for 1 h prior to
mock or IAV infection at an MOI � 1, and protein lysates were
collected at 8 hpi for immunoblot analyses (Fig. 2A). Mock- or
IAV-infected cells pretreated with NSC95397 displayed higher
levels of phosphorylated CDK1 and ERK1/2 proteins in a dose-
dependent fashion. Levels of total CDK1 and ERK1/2, as detected
by immunoblot assays, appeared to be diminished as levels of
phosphorylated CDK1 and ERK1/2 increased. This is presumably
due to a reduced affinity of CDK1 and ERK1/2 antibodies for
phosphorylated CDK1 and ERK1/2, respectively. Consistent with
Fig. 1C, the CDC25B protein level was upregulated in IAV-in-
fected cells (Fig. 2A, lane 5) compared to mock-infected cells (lane
1) in the absence of treatment. However, the CDC25B protein
level was reduced at high concentrations of NSC95397 regardless
of infection status (lanes 3 and 4 and lanes 7 and 8). Importantly,
NSC95397 treatment was able to reduce the level of influenza NP
protein in a dose-dependent manner (lanes 5 to 8), with 71.8%
and 81.5% reductions of NP expression for 1 �M and 5 �M
NSC95397, respectively.

To further evaluate the kinetic of NSC95397 activity toward
CDC25B during IAV infection, BEAS2B cells were pretreated with
DMSO or 5 �M NSC95397 1 h prior to mock or influenza
A/WSN/33 virus infection at MOI � 1 (Fig. 2B). Protein lysates
were collected for immunoblotting at 1, 3, or 7 hpi. Levels of
phosphorylated CDK1 and ERK1/2 were readily observable at 2 h
following NSC95397 treatment (1 hpi) in both mock- or IAV-
infected cells and diminished by 8 h posttreatment (7 hpi) (Fig.
2B, lanes 4 to 6 and lanes 10 to 12) but not in DMSO-treated cells
(lanes 1 to 3 and lanes 7 to 9). Cells treated with NSC95397 main-
tained a CDC25B protein level for up to 4 h posttreatment, but the
level diminished by 8 h (lanes 4 to 6 and lanes 10 to 12). It is
important that the increase in CDK1 and ERK1/2 phosphoryla-
tion preceded the downregulation of the CDC25B protein level,
suggesting that NSC95397 acted to inhibit the activity of CDC25B
to dephosphorylate CDK1 and ERK1/2. However, this modula-
tion of CDC25B by NSC95397 would ultimately result in reduc-
tion of CDC25B protein abundance, presumably by affecting its
stability. Importantly, while NP protein can be detected at 8 hpi in
DMSO-treated cells (lane 9), NSC95397 treatment resulted in di-
minished NP expression (lane 12), in agreement with the finding
represented in Fig. 2A, demonstrating the ability of NSC95397 to
limit IAV growth as indicated by viral protein expression.

To further evaluate NSC95397 inhibition of the IAV growth
kinetic, BEAS2B cells were treated with DMSO or 5 �M
NSC95397 prior to infection with influenza A/WSN/33 virus at
MOI � 0.05 (Fig. 2C). Culture supernatants were collected at 12,

24, and 48 hpi for virus titration by plaque assays. Cells pretreated
with NSC95397 displayed a significant reduction of virus titers
compared to DMSO-treated cells at 12, 24, and 48 hpi (P 	 0.01,
P 	 0.01, and P 	 0.005, respectively). Together, these findings
demonstrate that inhibition of CDC25B activity by NSC95397
ultimately led to a reduction of IAV growth and replication.

NSC95397 limits IAV replication in BEAS2B cells. To further
determine if CDC25B is a druggable target for inhibiting influenza
virus replication, the efficacy of NSC95397 against influenza A
and B viruses was evaluated (Fig. 3). In agreement with the find-
ings represented in Fig. 2, BEAS2B cells pretreated for 1 h with
NSC95397 and subsequently infected with A/WSN/33 (MOI �
0.05) displayed reduced virus titers at 24 hpi (Fig. 3A). NSC95397
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was able to limit influenza A/WSN/33 virus replication in BEAS2B
cells in a dose-dependent manner, with a 50% inhibitory concen-
tration (IC50) of 5.73 �M (Fig. 3B). Similarly, NSC95397 treat-
ment was also able to reduce influenza B/Florida/04/06 virus titers
in a dose-dependent manner, with an IC50 of 8.41 �M (Fig. 3C and
D). NSC95397-treated BEAS2B cells displayed minimal cytotox-
icity up to 302 �M, where 50% cellular cytotoxicity (CC50) was yet
to be observed (CC50 
 302 �M; Fig. 3E). These results demon-
strated the efficacy of NSC95397 against representative strains of
both influenza A and B viruses, with selectivity indices (S.I.) of

52.7 and 
35.9, respectively (Fig. 3F). Taken together, these
results further confirmed that CDC25B has a proviral role during
IAV replication and that its inhibition by RNAi or by a small-
molecule inhibitor limits IAV infection in vitro.

NSC95397 inhibits IAV RNA synthesis and promotes type I
IFN expression. To identify a mechanism of action for NSC95397
inhibition of IAV replication, the point in the virus life cycle in-
hibited by NSC95397 was determined. To address this, BEAS2B

cells were treated with 2 �M NSC95397 at different time points
pre- or post-influenza A/WSN/33 virus infection at MOI � 1 (Fig.
4A). Culture supernatant of infected cells was collected at 24 hpi
for virus titration in MDCK cells (Fig. 4B). Different periods of 2
�M NSC95397 treatment over 24 hpi had no effect on host cell
viability as assessed by ToxiLight bioassay and by phase-contrast
microscopy (data not shown). However, a significant reduction in
virus titer was evident in cells treated with NSC95397 before 6 hpi,
indicating that NSC95397 inhibits IAV replication midcycle, i.e.,
when virus RNA replication is occurring in the nucleus. To deter-
mine if viral RNA synthesis was inhibited by NSC95397, strand-
specific qRT-PCR was employed to evaluate the abundance of
viral cRNA, mRNA, and vRNA at 7 hpi (Fig. 4C). The levels of
positive-sense [(�)sense] viral cRNA and mRNA were reduced
55% and 80%, respectively, by NSC95397 compared to DMSO-
treated cells (P 	 0.01). Although a slight reduction of (�)sense
vRNA was also observed in the presence of NSC95397, this differ-
ence was not statistically significant. Importantly, while the abun-
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dance of viral RNA was reduced, higher IFN-� expression was
observed following NSC95397 treatment compared to DMSO-
treated cell results (Fig. 4D). A/WSN/33-infected cells treated with
DMSO did not show s significant increase of IFN-� expression at
4 and 7 hpi, consistent with previous findings on antagonism of
the host IFN response by IAV. Remarkably, cells infected with
A/WSN/33 in the presence of 2 �M NSC95397 displayed 23-fold
and 10-fold increases of IFN-� mRNA expression at 4 and 7 hpi,
respectively. This was a significant increase compared to DMSO-
treated cells at the corresponding time points postinfection (P 	
0.01 and P 	 0.05 for 4 and 7 hpi, respectively). In the absence of
infection, neither DMSO nor NSC95397 exposure resulted in up-
regulation of IFN-� expression. Higher expression of type III IFN
(IFN-�1) was also detected in the presence of NSC95397 at 4 hpi
(data not shown). Together, these results suggest that NSC95397
inhibits IAV (�)sense RNA synthesis while inducing a higher level
of host type I and type III IFN gene expression. Since influenza
virus is known to antagonize host IFN responses by inhibiting the
RIG-I-like receptor (RLR) signaling pathway through the action
of viral NS1 protein (32–34), the signaling event downstream of
RLR activation, i.e., phosphorylation of interferon regulatory fac-
tor 3 (IRF3) during the course of IAV infection, was evaluated in
the absence or presence of NSC95397 treatment. BEAS2B cells
were pretreated with DMSO or 5 �M NSC95397 1 h prior to mock

or influenza A/WSN/33 virus infection (MOI � 1). Cells were
harvested for protein isolation at 1, 3, or 7 hpi, and levels of phos-
phorylated and total IRF3 were evaluated by immunoblotting
(Fig. 5A). Despite the higher level of IFN-� expression observed in
NSC95397-treated cells relative to DMSO-treated cells at 4 hpi
(Fig. 4D), the level of phosphorylated IRF3 was lower in
NSC95397-treated cells relative to DMSO-treated cells infected
with IAV at 1 and 3 hpi. This finding suggests that NSC95397 acts
to upregulate IFN expression by means other than relieving virus
inhibition of cytoplasmic RLR signaling.

NSC95397 modulates NS1 nuclear localization and its asso-
ciation with cellular chromatin. In addition to its known role in
the cytoplasm to inhibit RLR signaling, a pool of influenza NS1
protein is also found in the nucleus of infected cells which is
thought to modulate transcription of the host’s antiviral genes
(17, 51, 52). Nuclear NS1 has been shown to inhibit transcription
elongation in addition to maturation and export of host mRNA
(28, 37, 53). Additionally, a report has previously shown that IAV
expressing nonphosphorylated NS1 protein is attenuated in vitro,
displaying slower growth, smaller plaque size, and delayed local-
ization into discrete intranuclear foci (38). Therefore, the effect of
NSC95397 on nuclear NS1 function was further evaluated. To
determine if NS1 localization is modulated in the presence of
NSC95397, BEAS2B cells were infected with IAV in the presence
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of DMSO or 2 �M NSC95397, fixed at 7 hpi, and stained for viral
NP and NS1 proteins. Consistent with previous findings (17, 54),
NP and NS1 proteins were nuclear at 7 hpi in DMSO-treated cells
(Fig. 5A). However, NSC95397-treated cells displayed diffused
NS1 staining but nuclear NP staining, suggesting that NS1 protein
is no longer retained in the nucleus in NSC95397-treated cells.
Since NS1 nuclear foci are observed in certain IAV strains (17),
NS1 chromatin association was also determined using subcellular
fractionation and nucleases to extract chromatin-bound proteins
from an insoluble nuclear pellet. In DMSO-treated BEAS2B cells
infected with A/WSN/33, NS1 and NP proteins were found to be
associated with cellular chromatin (Fig. 5B). This finding is in
agreement with previous findings that NS1 is chromatin bound to
prevent transcription elongation of antiviral genes and that vRNP
is found associated with cellular chromatin (37, 55). In contrast,
NS1 and NP proteins are not found in the chromatin fraction of
infected cells treated with NSC95397. GAPDH (a cytoplasmic
protein) and SP1 (a soluble nuclear protein) were not found in the
chromatin fraction, whereas histone H3 was enriched in the chro-
matin fraction.

To confirm that NSC95397 acts to block NS1 function, growth
of recombinant influenza A/WSN/33 virus expressing defective
NS1 protein (NS1 R38AK41A [NS1 RK]) was assessed in the pres-
ence of DMSO or NSC95397 (Fig. 5C). In agreement with our
previous findings, the wild-type influenza A/WSN/33 virus titer
was significantly lower at 24 hpi in cells treated with NSC95397
(P 	 0.001). However, growth of A/WSN/33 NS1 RK virus was not
affected by NSC95397 treatment, demonstrating that NSC95397 acts
to limit IAV replication by inhibition of NS1 action.

NSC95397 protects mice against lethal IAV infection. To as-
sess if NSC95397 can be used to limit IAV replication in vivo, mice
were treated with NSC95397 (2.5 mg/kg of body weight) at 24 h
pre- or postchallenge with a lethal dose (103 PFU) of A/WSN/33
virus. Mice were monitored daily for 14 days to observe survival
(Fig. 6A) and weight loss (Fig. 6B). Mice treated with NSC95397
pre- or postinfection were fully protected against lethal
A/WSN/33 infection (P 	 0.001) and displayed less-severe weight
loss than DMSO-treated mice (P 	 0.001 or P 	 0.5). To assess
lung viral burden, mice were treated with DMSO or increasing
doses of NSC95397 preinfection (prophylactic) or postinfection
(therapeutic) and infected with a sublethal dose (70 PFU) of
A/WSN/33 (Fig. 6C). At 72 hpi, mice treated prophylactically with
NSC95397 at 2.5 mg/kg (24 h preinfection; P 	 0.01) and at 5
mg/kg (two administrations of 2.5 mg/kg each at 24 and 12 h
preinfection; P 	 0.001) displayed a significant reduction of lung
virus copy number. Additionally, 5 mg/kg NSC95397 adminis-
tered therapeutically (two administrations of 2.5 mg/kg dose at 12
and 24 hpi) also significantly reduced lung virus copy number
(P 	 0.001). A suboptimal NSC95397 dose (0.5 mg/kg) adminis-
tered prophylactically or therapeutically did not significantly re-
duce virus copy number. In sublethal WSN infection (70 PFU), a
single 2.5 mg/kg dose of NSC95397 administered at 24 hpi also did
not significantly reduce the lung virus burden, although this dose
was protective against mortality associated with lethal WSN infec-
tion (103 PFU). However, this treatment regimen provided only
partial but statistically significant protection from weight loss
during lethal infection (P 	 0.05). Taken together, these results
demonstrate that inhibition of CDC25B function by its small-
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molecule inhibitor NSC95397 can potentially be used as a novel
influenza antiviral therapeutic strategy.

DISCUSSION

There are limited influenza drugs available and few new drug ther-
apies or approaches reported to control influenza virus replication
(10). However, as investigators have begun to harness the power
of RNAi, a greater understanding of how influenza viruses co-opt
host cell pathways to facilitate replication is being uncovered (11,
15), and this is opening new avenues for drug targeting and repur-
posing for specific host cell pathways. This present report repre-
sents a continuation of earlier work that identified and validated
mammalian host genes in A549 type II respiratory epithelial cells
required for A/WSN/33 replication using a high-throughput
siRNA screening approach similar to that described by others (12–
16, 19, 20, 56, 57). One gene in the phosphatase family, i.e., the
CDC25B gene, is critical for A/WSN/33 replication in A549 cells
(Fig. 1). In the present study, inhibition of CDC25B using
NSC95397 was shown to prevent IAV replication in BEAS2B cells.
NSC95397 (p-naphthoquinone) is a small molecule previously
identified to inhibit CDC25B activity in vitro through a screen of
10,070 compounds against recombinant human CDC25B and is
the most potent CDC25 inhibitor described to date (39, 40).
CDC25B is a proto-oncogene as it facilitates mitotic entry during
the cell cycle progression. Thus, overexpression of CDC25B has
been reported in several cancers and is associated with a poor
prognosis, and its inhibition has been suggested for anticancer
therapeutics (21, 49, 50, 58). NSC95397 is thought to inhibit
CDC25B phosphatase activity function by covalently modifying
serine residues on the active site of CDC25 and has been shown to
increase levels of phosphorylated CDC25B targets such as CDK1,
CDK2, and ERK (Fig. 2) (47, 48). In this study, pretreatment of
BEAS2B cells with NSC95397 effectively reduced replication of
influenza A/WSN/33 and B/Florida/04/06 viruses, which are rep-
resentative strains of influenza A virus and B virus, respectively
(Fig. 3). Furthermore, mice treated with NSC95397, administered
prophylactically (preinfection) or therapeutically (postinfection),
were completely protected against lethal A/WSN/33 virus chal-
lenge (Fig. 6), which suggests the potential use of NSC95397 as an
IAV therapeutic.

Although NSC95397 was found to be effective to limit IAV
infection, its mechanism of action against IAV is unclear. One
possibility is that a decrease of CDC25B phosphatase activity
could result in inhibition of its target, i.e., the CDK/cyclin com-

plexes affecting influenza virus replication. Many RNA and DNA
viruses depend on the host cell cycle for replication, with some
such as simian virus 40 (59) and adenovirus (60) encoding pro-
teins that promote cell cycle progression to support viral replica-
tion. In contrast, human immunodeficiency virus type 1 (HIV-1)
encodes viral proteins that induce cell cycle arrest in the G2/M
phase (61). A recent study demonstrated that upregulation of cell
cycle molecules, including CDC25B and CDK2, may be linked to
disease severity associated with IAV infection (62). It is likely that
more than one viral protein is involved in host cell cycle modula-
tion; however, IAV NS1 protein was recently shown to be phos-
phorylated by CDK1 at its threonine-215 residue (38). Recombi-
nant IAV expressing nonphosphorylatable NS1 protein was
attenuated in vitro and displayed slower growth, smaller plaque
size, and slower nuclear localization of NS1 protein (38).

To determine when and where CDC25B is involved in IAV
replication, NSC95397 was added to BEAS2B cells before or after
IAV infection. NSC95397 was found to be effective only when
added prior to 6 hpi (Fig. 4), suggesting that CDC25B has a role in
support of IAV replication at midcycle. Regarding the IAV repli-
cation cycle, vRNP has been shown to be imported into the nu-
cleus between 1.5 and 2 h post-virus binding and uncoating (23,
63). Once in the nucleus, (�)sense viral mRNA is synthesized
using the incoming (�)sense genomic vRNA for subsequent viral
protein translation in the cytoplasm (64, 65). Additionally,
(�)sense viral cRNA is also synthesized from vRNA as the tem-
plates for nascent vRNA, followed by vRNP export to the cyto-
plasm at approximately 8 hpi, for packaging and release of new
viral progenies to complete the viral replication cycle, which is
approximately 12 hpi (22–24). Based on this outline of IAV repli-
cation, the effect of NSC95397 in altering the abundance of spe-
cific viral RNA species was evaluated. NSC95397 was found to
specifically reduce the abundance of (�)sense viral RNAs, i.e.,
mRNA and cRNA, while upregulating expression of host type I
and type III IFNs (Fig. 4D). Various reports have demonstrated
influenza virus NS1 protein’s action to block the RIG-I-like recep-
tor (RLR) signaling upstream of IRF3 activation to suppress the
host’s IFN expression (26, 32–34). Interestingly, the presence of
NSC95397 did not result in increased IRF3 phosphorylation (Fig.
4E). This suggests that NSC95397 did not act to upregulate IFN
expression by means of inhibiting NS1 action in the cytoplasm to
block intracellular pattern recognition receptor signaling (i.e.,
RLR signaling).
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Due to diverse roles of NS1 that include modulating host pro-
cesses and to the evidence that NS1 phosphorylation by CDC25B
target CDK1 was shown to modulate its nuclear localization,
NSC95397 activity on NS1 function was evaluated. One interest-
ing finding is the demonstration that NS1 is chromatin bound to
prevent transcription elongation of antiviral genes (37, 55). In this
study, NSC95397 treatment was found to modulate nuclear local-
ization of NS1 protein and its association with cellular chromatin
(Fig. 5). Based on this finding and previously reported functions,
we postulated that CDC25B promotes IAV replication by activat-
ing CDK1 and ERK kinases, a step that is blocked by CDC25B
inhibitor NSC95397, to phosphorylate NS1 at the threonine-215
residue, which ultimately resulted in repression of host antiviral
gene expression, such as that by type I and III IFNs.

Taken together, the results of this study show that a better
understanding of the host genes required for IAV replication can
provide critical information about host cell pathways co-opted by
influenza virus, and this in turn can be used to repurpose or repo-
sition existing drugs to inhibit functions of these host factors and
limit virus replication. The studies performed here utilized
BEAS2B cells that are biosimilar to normal bronchial epithelium
cells and corroborated findings in a mouse model. Importantly,
this report demonstrates that whole-genome siRNA screens (such
as the siGENOME screen) can be used to identify host genes crit-
ical for IAV replication, which can then be translated to other cell
culture systems as well as in vivo murine studies, features that
should hasten novel antiviral drug discovery for IAV.
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