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Here we show that simian immunodeficiency virus (SIV) infection of rhesus macaques results in rapid upregulation of tetherin
(BST-2 or CD317) on peripheral blood lymphocytes, including the CD4" CCR5™ T cell targets of virus infection, with a peak of
induction that coincides with peak alpha interferon (IFN-a) levels in plasma, and that tetherin remains above baseline levels
throughout chronic infection. These observations are consistent with a role for tetherin in innate immunity to immunodefi-

ciency virus infection.

ammals have evolved a number of cellular factors that inter-

fere with specific steps of virus replication. One such factor,
tetherin (BST-2 or CD317), is an interferon-inducible transmem-
brane protein that inhibits the release of enveloped viruses from
infected cells (1, 2).

Tetherin has broad antiviral activity against diverse families of
enveloped viruses (3-8), and many viruses have in turn acquired
countermeasures to tetherin (1, 2, 4, 5, 9-11). The primate lenti-
viruses have evolved to use at least three different viral gene prod-
ucts to oppose tetherin. Whereas most simian immunodeficiency
viruses (SIVs) use Nef to counteract the tetherin proteins of their
nonhuman primate hosts (9, 10, 12), human immunodeficiency
virus type 1 (HIV-1) Vpu and HIV-2 Env counteract human teth-
erin due to the absence of sequences in the cytoplasmic domain of
the molecule required for recognition by Nef (13-15).

The antiviral activity of tetherin in vivo is dependent on im-
mune activation and interferon-induced upregulation, as illus-
trated by a comparison of murine leukemia virus replication levels
in wild-type versus tetherin-deficient mice (16). Recent studies
have also shown that overexpression or cross-linking of tetherin
can activate NF-kB, leading to the induction of proinflammatory
cytokines (17, 18, 29). Furthermore, an earlier study identified
tetherin as a ligand for ILT7, a receptor expressed by plasmacytoid
dendritic cells (pDCs), and demonstrated that engagement of
ILT7 inhibits interferon production by pDCs (19). Thus, in addi-
tion to impairing virus release from infected cells, tetherin may
serve as innate sensor of virus infection and as a negative regulator
of interferon responses.

In accordance with the induction of tetherin by type I interfer-
ons, an upregulation of tetherin mRNA transcription in CD4™
lymphocytes and a corresponding decrease in HIV-1 loads were
observed in HIV-1/hepatitis C virus (HCV)-coinfected individu-
als treated with pegylated alpha interferon (IFN-a) (20). Homann
etal. also demonstrated that tetherin expression is upregulated on
the surfaces of peripheral blood mononuclear cells (PBMCs), in-
cluding CD4™ lymphocytes, from HIV-17 individuals (21). Teth-
erin expression is highest during acute infection, declines during
chronic infection, and further decreases in patients receiving an-
tiretroviral therapy (21). These observations are consistent with
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virus replication driving the interferon response and, in turn, teth-
erin induction.

In the present study, we performed a longitudinal analysis of
tetherin expression in SIV-infected rhesus macaques. Changes in
tetherin expression were monitored in peripheral blood for a
group of six rhesus macaques following intrarectal challenge with
SIV ac230- These animals constituted the control group of a vac-
cine study and were therefore naive to SIV at the time of challenge.
At each time point, PBMCs were stained with a 9-color panel that
included antibodies to CD3, CD4, CD8, CD20, CD28, CD95,
CCRS5, CCR7, and tetherin. Tetherin was detected with a fluores-
cein isothiocyanate (FITC)-conjugated monoclonal antibody
(HM1.24), previously shown to bind to both human and rhesus
macaque tetherin by flow cytometry and Western blot analysis (9).
PBMCs were also stained in parallel with a similar panel that in-
cluded an IgG2a isotype control in place of the antibody to teth-
erin to determine the level of nonspecific staining. The samples
were then analyzed by polychromatic flow cytometry.

An increase in tetherin expression on CD20" B cells, memory
(CD95") CD8" T cells, naive CD4" T cells (CD28moderate
CD95'°"), central memory CD4" T cells (CD95Meh CD28*,
CCR7*, and CCR57), transitional memory CD4" T cells
(CD95"e" CD28*, CCR7 ", and CCR5"), and effector memory
CD4" T cells (CD95%, CD28~, CCR7 ™, and CCR5%™) was de-
tectable by day 7 postinfection (p.i.) and peaked by day 10 p.i. in
four of the six animals (Fig. 1). One animal (Mm 7142) exhibited
a delayed increase in tetherin upregulation, which peaked on day
14 p.i. Another animal (Mm 8110) did not show a detectable in-
crease in tetherin expression at any time point after challenge
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FIG 1 Tetherin is rapidly upregulated on multiple lymphocyte subsets in response to SIV infection. Naive rhesus macaques were challenged intrarectally with
a single dose of pathogenic SIV, .30, PBMCs were isolated, and BST-2 expression was characterized by polychromatic flow cytometry at longitudinal time
points. The mean fluorescence intensity (MFI) = standard error of the mean (SEM) for BST-2 staining is shown for CD20™ B cells (A), memory CD8 " CD95™
T cells (B), naive CD4™ T cells (CD28™dert¢. CD95'°%) (C), central memory CD4™ T cells (CD95"€", CD28*, CCR7*, and CCR5™) (D), transitional memory
CD4" T cells (CD95"8", CD28", CCR7, and CCR5™") (E), and effector memory CD4 ™ T cells (CD95*, CD28~, CCR7 , and CCR5%™) (F). (G) The MFI of
BST-2 staining is also shown for transitional memory CD4™" T cells of individual animals. In all cases, the MFI for the isotype control was subtracted to correct

for variation in nonspecific staining.

(Fig. 1G). The lack of tetherin upregulation by Mm 8110 can be
explained by the failure of infection to occur following mucosal
SIV challenge of this animal (Fig. 2B), providing a useful, albeit
unintended, internal control for these analyses. Comparison of
the average changes in tetherin expression for the five infected
animals revealed that the peak of tetherin upregulation occurred
on day 10 p.i. in each of the lymphocyte subsets (Fig. 1). In each
case, the extent of tetherin expression subsequently declined but
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remained above prechallenge levels during chronic infection (Fig.
1). Overall, these results reveal a significant increase in the surface
expression of tetherin on multiple lymphocyte subsets, including
CD4" CCR5™ transitional memory T cells, which represent the
principal targets of SIV infection.

Levels of IFN-a and viral RNA in plasma were measured at
each of the time points after SIV challenge to determine the kinet-
ics of tetherin induction with respect to the interferon response
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FIG 2 The peak of IFN-a production coincides with the peak of tetherin induction but precedes peak viremia. (A) IFN-a levels in plasma (pg/ml) were measured
using a macaque-specific enzyme-linked immunosorbent assay (ELISA) and are plotted relative to the MFI of BST-2 staining on CD4" CD95™" T cells at each time
point for individual animals. (B) Viral RNA loads in plasma (copy equvalent/ml) are shown at time points concurrent with the MFI of BST-2 staining on CD4™"

CD95™" T cells for individual animals. The average MFIs for BST-2 staining on CD4" CD95 " T cells relative to mean concentrations of IFN-« (C) and geometric
mean viral RNA loads (D) in plasma are shown for the five SIV-infected animals. Error bars indicate SEMs at each time point.

and virus replication. Tetherin upregulation on memory CD4"  erin expression coincided precisely with the peak of IFN-a for
CD95™ T cells closely coincided with IFN-a levels in plasma, con-  each of the five SIV-infected animals (Fig. 2A). IFN-« levels de-
sistent with the regulation of tetherin by type I interferons. clined by day 14 p.i. and, with the exception of a couple of time
Whereas no increase in tetherin or IFN-a was observed in the points for Mm 7178, were largely undetectable during chronic
animal that did not become infected (Mm 8110), the peak of teth-  infection (Fig. 2A). Although a corresponding decrease in tetherin
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was also observed, tetherin expression on peripheral blood lym-
phocytes remained above baseline levels during chronic infection
(Fig. 2A).

A similar analysis of tetherin upregulation with respect to virus
replication revealed that tetherin expression peaked prior to peak
viremia. Viral loads peaked on day 14 p.i. for four animals in
which tetherin upregulation peaked on day 10 p.i. and on day 17
p.i. for one animal (Mm 7142) in which tetherin upregulation
peaked on day 14 p.i. (Fig. 2B). Longitudinal changes in tetherin
expression on CD4" CD95™ T cells for the five SIV-infected ani-
mals with respect to mean IFN-a concentrations in plasma and
geometric mean viral loads are summarized in Fig. 2C and D,
respectively.

Despite the close temporal relationship between tetherin in-
duction and IFN-a levels, the magnitude of tetherin upregulation
did not correlate with the magnitude of IFN-a production. Al-
though tetherin expression on memory CD4" T cells was gener-
ally higher in animals with higher concentrations of IFN-a in
plasma, this trend was not significant (Pearson correlation, P =
0.27). Likewise, we did not observe a correlation between viral
loads and tetherin expression on memory CD4™ T cells (Pearson
correlation, P = 0.45). However, there was a significant relation-
ship between viral loads and IFN-a levels on day 10 p.i. (Pearson
correlation, P = 0.02), reflecting a role for virus replication in
driving the interferon response.

Coincident with peak viremia, tetherin expression sharply de-
clined by day 14 postinfection. This decrease in tetherin expres-
sion was paralleled by a decrease in IFN-a production, which,
with a couple of exceptions, remained below the limit of detection
throughout chronic infection. These declines correspond well to
the massive infection and depletion of 30 to 60% of memory
CD4™ T cells that occurs 10 to 14 days after SIV infection (22) and
to the well-documented loss of circulating pDCs during acute in-
fection, as a result of cell death and/or pDC homing to lymphoid
compartments (23, 24). Thus, decreases in IFN-a and tetherin
levels during peak viremia are probably due, at least in part, to the
loss of IFN-a production as a result of pDC dysregulation. Con-
sequently, tetherin may contribute little to the resolution of acute
viremia, which may explain why viral loads do not decline with the
peak of tetherin induction.

In accordance with ongoing immune activation that is a hall-
mark of pathogenic SIV infection (25), tetherin expression re-
mained above baseline levels during chronic infection. Although
IFN-a concentrations in plasma were below the limit of detection
at most time points, elevated levels of tetherin are consistent with
the broad upregulation of interferon-stimulated genes previously
observed during chronic SIV infection of rhesus macaques by
transcriptional profiling (26). NF-kB signaling and the release of
proinflammatory cytokines as results of tetherin cross-linking
represent a possible positive-feedback mechanism contributing to
the maintenance of elevated levels of tetherin expression during
chronic infection (17, 18, 29). Ongoing upregulation of tetherin
may also help to explain the selective pressure for nef-deleted SIV
to acquire resistance to tetherin over months of persistent virus
replication in animals (27, 28).

Based on the ability of tetherin to suppress IFN-a production
by pDCs through interactions with ILT7 (19), it has been sug-
gested that tetherin downmodulation in HIV- or SIV-infected
cells may enhance immune activation by interfering with the
dampening of the interferon response. However, given the general
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upregulation of tetherin observed on all lymphocyte subsets (and
presumably other cell types) in response to SIV infection, the
physiological relevance of tetherin downregulation as a contrib-
uting factor to immune activation is unclear. It seems unlikely that
the disruption of tetherin-ILT7 interactions as a result of tetherin
downmodulation in virus-infected cells, which represent only a
fraction of the total lymphocyte population, would overcome neg-
ative signals to pDCs coming from ILT7 interactions with tetherin
on the vast majority of uninfected cells.

In summary, we took advantage of the ability to control the
timing of SIV infection in experimentally inoculated rhesus ma-
caques to generate a high-resolution data set on the kinetics of
tetherin upregulation with respect to virus replication and the
type I interferon response. Similar longitudinal analyses in HIV-
infected patients are not possible, particularly during acute infec-
tion, as the precise time of HIV-1 acquisition is rarely known and
sample collection is much more limited. Our results reveal that
tetherin is rapidly upregulated on multiple lymphocyte subsets,
including the CD4" CCR5 ™ T cell targets of virus infection, with a
peak of induction that coincides with peak IFN-a levels in plasma,
sharply declines coincident with peak viremia, and remains above
baseline levels throughout the chronic phase of infection. Thus,
tetherin is upregulated on the relevant targets of virus infection
with kinetics consistent with a role in the earliest stages of the
innate immune response to immunodeficiency virus infection.
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