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Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepa-
tocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. In this study, we
found that HBV inhibited the chemotherapy drug etoposide-induced apoptosis of hepatoma cells. Further analysis revealed that
HBV mRNAs possess a microRNA 15a/16 (miR-15a/16)-complementary site (HBV nucleotides [nt] 1362 to 1383) that acts as a
sponge to bind and sequester endogenous miR-15a/16. Consequently, Bcl-2, known as the target of miR-15a/16, was upregulated
in HBV-infected cells. The data from HBV-transgenic mice further confirmed that HBV transcripts cause the reduction of miR-
15a/16 and increase of Bcl-2. More importantly, we examined the levels of HBV transcripts and miR-15a/16 in HBV-infected
HCC from patients and found that the amount of HBV mRNA and the level of miR-15a/16 were negatively correlated. Consis-
tently, the level of Bcl-2 mRNA was upregulated in HBV-infected patients. In conclusion, we identified a novel HBV mRNA–
miR-15a/16 –Bcl-2 regulatory pathway that is involved in inhibiting etoposide-induced apoptosis of hepatoma cells, which may
contribute to facilitating chronic HBV infection and hepatoma development.

There are approximately 350 million chronic hepatitis B virus
(HBV) carriers worldwide, and chronic HBV infection is the

major etiological factor in hepatocellular carcinoma (HCC) (1, 2).
The relative risk for the development of HCC in chronic hepatitis
B (CHB) patients is estimated to be 25 to 37 times higher than that
in those without infection (1, 3, 4).

HBV is an enveloped, partially double-stranded DNA virus
with a genome size of 3.2 kb. The HBV genome contains four
overlapping open reading frames (ORFs). The RNA transcripts
are polyadenylated and capped and are named the pre-C/C or
pregenomic RNA (pgRNA) and the pre-S, S, and X mRNAs. These
mRNAs encode several viral proteins, including the polymerase,
core, HBe, pre-S1, S2, S, and X proteins (5). HBV has been re-
ported to play an important role in regulating apoptosis. For ex-
ample, HBV core protein inhibits TRAIL-induced apoptosis of
hepatocytes by blocking DR5 expression (6). HBx can bind to the
C terminus of p53 and inhibit p53-mediated cellular processes,
including transcriptional transactivation and apoptosis (7). But
the HBx protein was also found to sensitize cells to apoptotic
killing by tumor necrosis factor alpha (8) and to inhibit Fas-me-
diated apoptosis associated with upregulation of the SAPK/JNK
pathway in Chang cells (9).

MicroRNAs (miRNAs) are single-stranded noncoding RNAs
which negatively regulate gene expression at the posttranscrip-
tional level, primarily through base pairing to the 3=-untranslated
region (UTR) of target mRNA (10). Growing evidence indicates
that microRNAs control basic cell functions, ranging from prolif-
eration to apoptosis, by direct targeting (11, 12). For instance,
miR-101 exerts a proapoptotic function by targeting Mcl-1 (13),
and miR-29c inhibits cell proliferation and induces apoptosis by
targeting TNFAIP3 (14).

miR-15a and miR-16-1 are transcribed as a cluster (miR-15a/16)
that resides in the 13q14 chromosomal region (15). miR-15a/16 can
downregulate Bcl-2 expression, and correspondingly, miR-15a/16 is
often deleted or downregulated in tumor cells (16). Bcl-2 is an im-

portant target of the miR-15a/16 cluster and is known to act as an
antiapoptotic protein by inhibiting caspase activity by preventing the
release of cytochrome c from the mitochondria and/or binding to the
apoptosis-activating factor (Apaf-1) (17–20).

It has been reported that highly abundant viral transcripts can
downregulate cellular microRNAs, which is very important for
efficient virus replication. For instance, murine cytomegalovirus
(MCMV) m169 transcript-mediated degradation of miR-27a/b is
important for MCMV replication (21), and HBV mRNAs can
sequester endogenous miR-122 to facilitate HBV replication (22).
It has also been reported that the HBx protein can downregulate
the expression of the miR-16 family in hepatoma cells (23). Based
on the observations that miR-15a/16 is decreased in HBV-infected
cells (24) and that HBV inhibits apoptosis of hepatoma cells, the
objective of this study was to explore the mechanism of how HBV
downregulates miR-15a/16 and affects the apoptosis of hepatoma
cells. Our results demonstrate that HBV mRNAs possess a miR-
15a/16-complementary site that acts as a sponge to bind and se-
quester endogenous miR-15a/16. Consistently, Bcl-2, the target of
miR-15a/16, was increased significantly in HBV-transfected cells.
Furthermore, we found that the miR-15a/16 cluster was down-
regulated, while Bcl-2 was upregulated, in HBV-infected HCC
from patients. Our results reveal a novel mechanism by which
HBV inhibits apoptosis through decreasing miR-15a/16 by its
own transcripts during chronic HBV infection.
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MATERIALS AND METHODS
Patients and human specimens. HCC liver tissues from 40 patients
were collected at the 302 Hospital of PLA, Beijing, China. The patients
were hospitalized during June 2012 to July 2013. The clinical charac-
teristics of enrolled subjects are listed in Table 1. Written informed
consent was provided by all study participants. Patient samples were
assigned arbitrary identifications based on the order of enrollment in
our study. The study protocol was approved by the ethics committee of
the 302 Hospital of PLA.

Mice. HBV-transgenic BALB/c mice (female, 6 to 8 weeks old) were
purchased from the Transgenic Engineering Lab, Infectious Disease Cen-
ter (Guangzhou, China). They were generated with a viral DNA construct,
pHBV1.3, containing 1.3 copies of the HBV genome (D genotype). All
transgenic mice were positive for serum HBV surface antigen (HBsAg),
virus DNA, and HBV core proteins (HBcAg) in hepatocytes in the liver
(25). Animals received humane care, and the study of mice was permitted
by the Research Ethics Committee of the Institute of Microbiology.

Plasmid constructs. The HBV genome (nucleotides [nt] 1300 to
1500) was amplified by PCR using the following primers: sense, 5=-CGG
AATTCGCAACCGGTCTGGAGCGAAACTT-3=; and antisense, 5=-GCT
CTAGACGAAGAAGGGGACGATAGAGGCC-3=. The PCR product was
cloned into the dual-luciferase reporter pmirGLO vector (Promega) at the
EcoRI and XbaI sites, and the resultant clone was named UTR-HBV-wt.
UTR-HBV-mut, with mutations in the seed region of the miR-15a/16-
binding site in the HBV genome, was generated by site-directed mutagen-
esis. A full-length HBV genome mutant (pHBV1.3-mut) with mutations
in the miR-15a/16-binding site was also generated by site-directed mu-
tagenesis.

Reagents and antibodies. Chemically synthesized miR-15a and
miR-16 inhibitors (CACAAACCAUUAUGUGCUGCUA and CGCCAA
UAUUUACGUGCUGCUA), miR-15a and miR-16 mimics (GUGUUUG
GUAAUACACGACGAU and GCGGUUAUAAAUGCACGACGAU),
and nonspecific controls were purchased from RiboBio Co., Ltd. (Guang-
zhou, China). The following reagents and antibodies were obtained as
indicated: rabbit anti-human poly(ADP-ribose) polymerase 1 (anti-
PARP1) antibody was from Cell Signaling, rabbit anti-human caspase 9
antibody was from Cell Signaling, mouse anti-human Bcl-2 antibody was
from Santa Cruz Biotechnology, rabbit anti-human actin antibody was
from Santa Cruz Biotechnology, and horseradish peroxidase-conjugated
secondary antibodies were from Jackson Laboratory.

Cell culture and transfection. The human hepatoma cell lines HepG2
and HepG2.2.15 and the human normal liver cell line L-02 were obtained
from the ATCC (Manassas, VA). Transfections were performed using
Lipofectamine 2000 reagent (Invitrogen). Cells in 6-well plates were
transfected with 50 nM miR-15a/16 inhibitor or miR-15a/16 mimic or the
indicated amounts of plasmids.

RNA extraction and real-time PCR. Total RNA was extracted from
cells or frozen tissues by using TRIzol reagent (Invitrogen) according to the
manufacturer’s instructions. Real-time PCR for Bcl-2 was performed using
SYBR green premix reagent (Toyobo, Japan). �-Actin was used as an internal
control. Real-time PCR analysis of miR-15a/16 was also performed using
SYBR green premix reagent, with U6 as the internal control. Relative expres-
sion was quantified using the comparative threshold cycle (CT) method.

Dual-luciferase reporter activity assay. HepG2 cells were cotrans-
fected with a dual-luciferase reporter for HBV (UTR-HBV-wt or UTR-

HBV-mut) and miR-15a or miR-16 for 24 h. The cell lysates were har-
vested for dual-luciferase assay according to the manufacturer’s
instructions. Three independent experiments were performed.

Immunoblotting. Protein samples were subjected to SDS-PAGE and
blotted with the rabbit anti-human PARP, caspase 9, or �-actin or mouse
anti-human Bcl-2 antibody. After being washed with phosphate-buffered sa-
line plus Tween 20 (PBST) three times, a horseradish peroxidase-conjugated
secondary antibody was added for 1 h. Protein bands were visualized using
Enlight Western blotting reagents (Engreen Biosystems, China).

Detection of HBsAg by ELISA. HepG2 cells were transfected with
pHBV1.3 or pHBV1.3-mut. The supernatants were collected at the indi-
cated time points and subjected to enzyme-linked immunosorbent assay
(ELISA) using a diagnostic kit for the hepatitis B virus surface antigen
(Shanghai Kehua Bio-Engineering, China).

Southern blot analysis. HepG2 cells were transfected with pHBV1.3
or pHBV1.3-mut for 48 h. The DNAs extracted from cells were subjected
to Southern blot analysis using alkaline phosphatase (AP)-labeled HBV
DNA as the probe (Amersham AlkPhos direct labeling and detection sys-
tem; GE Healthcare).

Caspase activity assay. HepG2 cells were plated in 96-well plates,
treated as indicated, and then subjected to caspase activity assay with
Caspase-Glo3/7 reagents (Promega). The luminescence of each sample
was measured in a plate-reading luminometer.

Statistical analysis. Differences between groups were determined us-
ing Student’s t test. P values of �0.05 were considered significant. The
degree of association between variables was determined by Spearman’s
nonparametric correlation.

RESULTS
HBV inhibits the apoptosis of hepatoma cells induced by the
chemotherapy drug etoposide. It has been reported that HBV has
both proapoptotic and antiapoptotic effects in different experi-
mental systems, but its contradictory functions have not yet been
elucidated fully. In this study, we treated HepG2 and HepG2.2.15
cells, which are HBV-transgenic cells, with etoposide as indicated,
and we examined the PARP-1 and caspase 9 cleavages by immu-
noblotting. As shown in Fig. 1A and B, PARP-1 and caspase 9
cleavages occurred dramatically in HepG2 but not HepG2.2.15
cells. These data indicated that HepG2.2.15 cells were resistant to
apoptosis induced by etoposide. In order to determine if viral
replication affected the HepG2.2.15 cells resisting apoptosis, we
treated the cells with lamivudine and performed a similar experi-
ment. The data showed that lamivudine treatment did not change
the pattern of PARP-1 cleavage in HepG2.2.15 cells (Fig. 1C).

It has been reported that some microRNAs, including miR-
15a/16, are differentially expressed in HepG2.2.15 compared with
HepG2 cells by microarray analysis. The level of miR-15a/16 is
about 10-fold lower in HepG2.2.15 cells than in HepG2 cells (24).
Since miR-15a/16 has been reported to target Bcl-2, which is an
important antiapoptotic protein, we wonder whether there is any
correlation between miR-15a/16 and apoptosis of HepG2 cells. In
order to address this question, HepG2.2.15 cells were transfected
with a miR-15a mimic and then treated with etoposide. As shown
in Fig. 1D, HepG2.2.15 cells transfected with the miR-15a mimic
showed 4-fold more PARP-1 and caspase 9 cleavages than control
cells treated with etoposide. We then transfected L-02 cells with
the HBV replication plasmid pHBV1.3 and performed similar ex-
periments. The data showed that PARP-1 cleavages were signifi-
cantly lower in pHBV1.3-transfected cells than in control cells
treated with etoposide (Fig. 1E). We also transfected HepG2 cells
with the HBV replication plasmid pHBV1.3, with or without the
miR-15a mimic, and performed experiments similar to those de-

TABLE 1 Clinical characteristics of studied HCC subjects

Parameter Value

No. of cases 40
Age (yr) (mean [range]) 56 (27–71)
No. of males/no. of females 22/18
Alanine aminotransferase level (U/liter) (mean [range]) 69 (11–187)
HBV load (no. of DNA copies/ml serum) 0–2.88 � 107
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scribed above. The data showed that both PARP-1 and caspase 9
cleavages were 2-fold lower in pHBV1.3-transfected cells than in
control cells treated with etoposide, while the miR-15a mimic
could recover the PARP-1 and caspase 9 cleavages when it was
cotransfected with pHBV1.3 (Fig. 1F). This suggested that HBV
and miR-15a have opposite effects on apoptosis of hepatoma cells
induced by etoposide.

HBV causes a reduction of miR-15a/16 in HepG2 cells. In
order to understand how HBV inhibits miR-15a/16-related apop-
tosis of HepG2 cells, we first asked whether HBV affected miR-
15a/16 expression. We examined the levels of miR-15a/16 in
HepG2 and HepG2.2.15 cells by real-time PCR. The data showed
that miR-15a/16 expression was decreased 60 to 70% in
HepG2.2.15 cells compared to that in HepG2 cells (Fig. 2A). We
also detected the expression level of Bcl-2, which is known to be
one of the targets of miR-15a/16 in HepG2 and HepG2.2.15 cells.
The results showed that both Bcl-2 mRNA and protein levels were

significantly higher in HepG2.2.15 cells than in HepG2 cells (Fig.
2B and C). Next, we transfected pHBV1.3 into HepG2 cells and
analyzed the miR-15a/16 expression. As shown in Fig. 2D, the
level of miR-15a/16 in HepG2 cells transfected with pHBV1.3 was
significantly reduced compared with that in control HepG2 cells
(P � 0.01). In addition, we treated the HepG2 cells transfected
with pHBV1.3 with lamivudine to inhibit HBV replication and
examined the effect of HBV on miR-15a/16 and Bcl-2. The data
indicated that cells transfected with pHBV1.3 could still reduce
miR-15a/16 and upregulate Bcl-2 in lamivudine-treated cells (Fig.
2D and E). Furthermore, we performed a similar experiment in
L-02 cells. Consistently, Bcl-2 mRNA and protein levels in L-02
cells transfected with pHBV1.3 were significantly elevated com-
pared with those in control cells (Fig. 2F and G). Taking the data
together, we propose that HBV transcripts can sponge miR-
15a/16 and upregulate Bcl-2 expression.

HBV causes a reduction of the miR-15a/16 cluster in vivo. To
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HepG2.2.15 cells were transfected with miR-15a mimic or a randomized oligonucleotide as a control for 24 h and were then treated with etoposide (0.08 �M) for
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PARP-1 and caspase 9 antibodies.
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further confirm that HBV can reduce the levels of miR-15a/16 in
vivo, we examined the miR-15a/16 expression in HBV-transgenic
BALB/c mice by real-time PCR. The data showed that the levels of
miR-15a/16 in HBV-transgenic BALB/c mouse liver tissues were
lower than those in control mice (P � 0.01) (Fig. 3A). Corre-
spondingly, the expression of Bcl-2 mRNA (Fig. 3B) and protein

(Fig. 3C) in liver tissues from HBV-transgenic mice was 2 (mRNA
level)- and 3 (protein level)-fold higher than that in control mice
(P � 0.05).

We next examined the correlation between miR-15a/16 expres-
sion and HBV transcripts in liver tissues from HCC patients. As
shown in Fig. 3D and E, there was a negative correlation between
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miR-15a/16 and HBV mRNA levels. We further examined the levels
of Bcl-2 mRNA and HBV transcripts in liver tissues from the HCC
patients by real-time PCR. The data indicated that there was a positive
correlation between HBV mRNAs and Bcl-2 mRNA in tissues of
HCC patients (Fig. 3F). We also compared the Bcl-2 expression levels
in HCC with and without HBV infection. The results showed that
HBV-positive HCC tissues displayed more expression of Bcl-2 pro-
tein than HBV-negative HCC tissues (Fig. 3G).

HBV mRNAs with a binding site complementary to miR-
15a/16 sequester endogenous miR-15a/16. It has been reported
that microRNAs can be regulated by direct sponging (26). To
address whether HBV downregulates miR-15a/16 through direct
sponging, we first searched for putative miR-15a/16-binding sites
in the HBV genomic sequence by using TargetScan at the miRBase
website (http:www.mirbase.org). A putative miR-15a/16-comple-
mentary region (spanning nucleotides 1368 to 1383 of the HBV
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genome; GenBank accession no. EU562217) was found in HBV
mRNAs, including pre-C/C (pgRNA), pre-S, and the S 3=-UTR
(Fig. 4A). This predicted miR-15a/16-binding site is highly con-
served among different HBV genotypes (Fig. 4B). We generated a
3=-UTR luciferase reporter for wild-type HBV (UTR-HBV-wt) or
its mutant (UTR-HBV-mut), in which mutations in the miR-15a/
16-binding site were made as indicated in Fig. 4A. HepG2 cells
were transfected with the above-described 3=-UTR luciferase re-
porters and miR-15a/16 mimics. The cell lysates were harvested
for luciferase assay. The data showed that miR-15a/16 mimics can

reduce the reporter activity of UTR-HBV-wt but not UTR-HBV-
mut (Fig. 4C).

To further determine whether HBV UTR-HBV-wt could act as
a “sponge” to absorb miR-15a/16, we transfected HepG2 cells with
UTR-HBV-wt and its mutant, UTR-HBV-mut, and then analyzed
the miR-15a/16 expression by real-time PCR. The results showed
that miR-15a/16 expression was dramatically reduced in HepG2
cells transfected with UTR-HBV-wt compared to that in control
cells and the cells transfected with UTR-HBV-mut (Fig. 4D).

Next, in order to test whether full-length HBV has the same
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effect on miR-15a/16 as UTR-HBV-wt, we made the same muta-
tions in full-length HBV (pHBV1.3-mut) as those shown in Fig.
4A. HepG2 cells were transfected with pHBV1.3 or pHBV1.3-
mut, and the levels of HBV transcripts were comparable in
pHBV1.3- and pHBV1.3-mut-transfected cells (Fig. 4E). The data
from ELISA and Southern blotting also indicated that HBV sur-
face antigen in supernatants and HBV DNA in pHBV1.3- or

pHBV1.3-mut-transfected cells were present at similar levels (Fig.
4F and G). We then examined the miR-15a/16 levels by real-time
PCR. As shown in Fig. 4H, miR-15a/16 levels were decreased in
pHBV1.3-transfected cells, but not in pHBV1.3-mut-transfected
cells, compared with that in control cells. In addition, we per-
formed a similar experiment with cells transfected with different
amounts of pHBV1.3 and examined the HBV mRNA and miR-
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15a/16 levels by real-time PCR. The data showed that miR-15a/16
decreased more dramatically as the HBV mRNAs increased, indi-
cating that HBV caused the reduction of miR-15a/16 in a dose-
dependent manner (Fig. 4I). All these results suggested that HBV
was able to sequester endogenous miR-15a/16 by direct binding.

Reduction of miR-15a/16 by HBV leads to increased expres-
sion of its Bcl-2 target. It was reported that Bcl-2 is the target of
miR-15a/16. We also showed that a miR-15a/16 inhibitor trans-
fected into HepG2 cells caused an obvious decrease of miR-15a/16
(Fig. 5A), a 2-fold increase of Bcl-2 mRNA (Fig. 5B), and a 3.2-fold
increase of Bcl-2 protein (Fig. 5C). As we found that HBV mRNAs
can sponge miR-15a/16, we therefore asked whether HBV can
increase the expression of Bcl-2. To address this question, we
transfected HepG2 cells with either UTR-HBV-wt or UTR-HBV-
mut and examined the expression of Bcl-2. The data showed that
both Bcl-2 mRNA and protein were about 2-fold higher in UTR-
HBV-wt-transfected cells than in control and UTR-HBV-mut-
transfected cells (Fig. 5D and E). The Bcl-2 mRNA was increased
in pHBV1.3-transfected cells in a dose-dependent manner (Fig.
5F). We then transfected HepG2 cells with pHBV1.3 or its mutant,
pHBV1.3-mut, and examined the Bcl-2 expression. The data
showed that Bcl-2 mRNA and Bcl-2 protein were increased in
pHBV1.3-transfected cells but not in pHBV1.3-mut-transfected
cells (Fig. 5G and H). We further detected the caspase 3/7 activity
of HepG2 cells transfected with pHBV1.3 and pHBV1.3-mut and
treated with etoposide. As shown in Fig. 5I, caspase 3/7 activity
was decreased in pHBV1.3- but not pHBV1.3-mut-transfected
cells compared with that in control cells.

Taking the data together, we made the conclusion that HBV
can directly sponge miR-15a/16 and consequently upregulate the
expression of Bcl-2 and then eventually inhibit the downstream
cascade of apoptosis in hepatoma cells.

DISCUSSION

Liver cancer is the third leading cause of cancer mortality world-
wide, with an annual death toll of 700,000 (27). More and more
evidence indicates that chronic HBV infection is related to the
occurrence and development of hepatoma (28). In the present
study, we investigated the mechanism of how HBV inhibits eto-
poside-induced apoptosis of hepatoma cells and revealed that
miR-15a/16 is involved in HBV-mediated inhibition of apoptosis.
We found a negative correlation between HBV transcripts and
miR-15a/16 in HBV-infected samples from HCC patients. Our
further investigation showed that HBV mRNAs contain a binding
site for miR-15a/16 and act as a sponge to bind and sequester
endogenous miR-15a/16. Consequently, as the target of miR-15a/
16, Bcl-2 mRNA was increased in HBV-infected cells, suggesting
that HBV inhibits apoptosis of hepatoma cells by increasing ex-
pression of the antiapoptotic protein Bcl-2. Therefore, we pro-
posed that the reduction of miR-15a/16 may contribute to chronic
HBV infection, and perhaps the risk of development of HCC.

The major point of our work is to demonstrate that HBV in-
hibits apoptosis of hepatoma cells by sponging miR-15a/16. Di-
rect HBV-mediated downregulation of miR-15a/16 was reported
recently (29). In this study, we identified a novel region in HBV (nt
1362 to 1383) which can sponge miR-15a/16. This finding sug-
gested that HBV possesses multiple ways to regulate the level of
miR-15a/16. It has been reported that MCMV can produce highly
abundant transcripts to downregulate cellular miR-27 for its effi-
cient replication (21). Based on the evidence that miR-15a/16 is

directly sponged by HBV mRNAs, we propose that HBV may
downregulate miR-15a/16 to favor its replication and persistent
infection. To support this hypothesis, we provided direct evidence
to show that there is a negative correlation between HBV and
miR-15a/16 and a positive correlation between HBV transcripts
and Bcl-2 mRNA in HBV-infected patients. It has been reported
that Bcl-2 is upregulated in liver tissues of HCC patients and that
a Bcl-2 inhibitor can induce apoptosis in hepatocellular carci-
noma cells (30). However, the detailed mechanism of Bcl-2 being
regulated in hepatocytes has not been elucidated yet. Our results
may explain the mechanism of upregulation of Bcl-2 expression in
HBV-infected cells by HBV mRNAs sponging miR-15a/16.

Etoposide was selected as an apoptosis inducer for hepatoma
cells in this study because a previous study showed that the Bcl-2
protein can inhibit etoposide-induced apoptosis (31). Since apop-
tosis plays an important role in the progress of liver diseases
through various extrinsic or intrinsic pathways, with activation of
caspases and the possible involvement of mitochondrial alteration
(32), many efforts have been made to understand the role of HBV,
mainly HBx, in the regulation of apoptosis. To date, the reported
effects of HBx on apoptosis are controversial. The discrepancy of
the role of HBx in apoptosis may be due to the different cell lines
and experimental systems used in the studies. Nevertheless, the
majority of these studies demonstrated that HBx can inhibit cell
apoptosis (9, 33–35). In this report, we provide evidence that HBV
mRNAs can inhibit hepatoma cell apoptosis by upregulating Bcl-2
protein expression.

In conclusion, our study provides a novel insight into the
mechanism of HBV-mediated antiapoptosis of hepatoma cells by
upregulating Bcl-2 expression through sponging miR-15a/16.
Our data suggest that downregulation of miR-15a/16 during HBV
infection causes increased expression of its targets, which gives a
hint that another novel target(s) of miR-15a/16 may play impor-
tant roles in chronic HBV infection or HCC development. Given
the HBV mRNA–miR-15a/16 –Bcl-2 regulatory pathway, our data
may expand the knowledge of how HBV is involved in inhibiting
apoptosis and provide a rational explanation for how HBV con-
tributes to facilitating hepatoma cell survival and CHB progres-
sion.
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