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Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic
virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-� addition for different steps of
HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-�) efficiently impairs HTLV-1 and HTLV-2 de novo
infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that
cell-free infection is insensitive to IFN-�, demonstrating that the cytokine does not affect the early stages of the viral cycle. In
contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-� treatment in T cells, primary lymphocytes, or 293T
cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-� acts during the late stages of infection.
We show that IFN-� does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small inter-
fering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by inter-
feron, plays a major role in IFN-�-induced HTLV-1/2 inhibition. These results indicate that IFN-� has a strong repressive effect
on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.

Human T-lymphotropic virus type 1 (HTLV-1) infects 5 to 10
million people worldwide (1). In 2 to 5% of infected individ-

uals, HTLV-1 causes either adult T-cell leukemia/lymphoma
(ATLL) or a neurodegenerative disorder called HTLV-1-associ-
ated myelopathy/tropical spastic paraparesis (HAM/TSP) (2–5).
Interestingly, despite a high percentage of similarity in its genomic
organization with HTLV-1, HTLV-2 has been associated with
lymphocytosis and with rare cases of HAM/TSP (6), but not with
leukemia (7–9), and the molecular determinants that would ex-
plain those differences are the subject of numerous investigations
(for a recent review, see reference 10).

Innate immunity plays a critical role in the host response to a
microbial infection. The interferon (IFN) family includes three
classes, i.e., type I (IFN-I, including alpha interferon [IFN-�] and
IFN-�), type II (IFN-�), and IFN-� molecules. IFN-I is rapidly
induced following viral infections (11). Binding of IFN-Is to their
receptors (IFNAR1/IFNAR2) initiates the Janus kinases-signal
transducers and activators of transcription (JAK-STAT) intracel-
lular signaling pathway, leading to transcription activation of
IFN-stimulated genes (ISGs) that are responsible for the antiviral,
antiproliferative, and immunoregulatory responses (12).

ISGs target different steps of the viral life cycle (13, 14). As an
example, simian tripartite interaction motif 5� (TRIM-5�) tar-
gets incoming human immunodeficiency virus type 1 (HIV-1)
particles; apolipoprotein B mRNA-editing catalytic polypeptide-
like 3G (APOBEC3G) edits the HIV-1 genome during reverse
transcription (RT) in the absence of Vif; 2=-5= oligoadenylate syn-
thetase and RNase L are responsible for mRNA degradation in
cases of dengue virus, chikungunya virus, or hepatitis C virus
(HCV) infection; double-stranded RNA (ds-RNA)-activated ser-
ine/threonine protein kinase (PKR) prevents viral mRNA transla-
tion in cells infected with hepatitis B virus, HCV, or HIV; and

tetherin prevents HIV-1 particle release in cells infected with
HIV-1 that does not encode the Vpu viral protein.

A study demonstrated that ultracentrifuged HTLV-1 particles
induce IFN-I secretion after their incubation with plasmacytoid
dendritic cells (15). In addition, an inverse correlation was de-
scribed between the HTLV-1 proviral load (PVL) (i.e., the number
of integrated copies of HTLV-1 expressed as a proportion of pe-
ripheral blood mononuclear cells [PBMCs]) and endogenous
IFN-� secretion in ATLL patients (16), providing a rationale for
IFN-� therapy in HTLV-1-infected individuals. Indeed, thera-
peutic treatments using IFN-� and IFN-�, alone or in combina-
tion with other molecules, such as azidothymidine (AZT), have
been performed in ATLL patients (17–22) or TSP/HAM patients
(23–28). The most remarkable effects were observed in chronic
and smoldering ATLL patients treated with IFN-AZT combined
chemotherapy, where sustained and complete remission was
reached and maintained after 14 years of observation in some
patients (29). The same therapeutic combination also improved
the survival time of acute ATLL patients, who eventually relapsed
(29).

However, IFN-� effects on the HTLV-1 cycle in vitro are con-
troversial. It was shown that HTLV-1 gag mRNA decreased when
HTLV-1-immortalized (interleukin 2 [IL-2]-dependent) T cells
were cocultured with human 293T or murine NIH 3T3 nonlym-
phoid stromal cells (30). This effect was abolished when a poly-
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clonal neutralizing antibody against IFN-� (but not against
IFN-�) was added, indicating that IFN-� produced by stromal
cells could inhibit virus production. Consistent with those data,
HTLV-1 expression was restored when HTLV-1-infected cells
were separated from IFN-producing stromal cells. Finally, using a
murine model, the authors concluded that the decrease in
HTLV-1 expression in vivo was linked to the IRF-7-dependent
pathway (30). In contrast, other reports showed that IFN-� treat-
ment of HTLV-1-transformed cells does not lead to any signifi-
cant reduction in virus expression (31–33), suggesting that the
infected cells, which chronically produce viral proteins and do not
require IL-2 for their growth, are insensitive to IFN-I.

IFN-� treatment of 293T cells transfected with an HTLV-1
molecular clone inhibited virus assembly and release (34). Subse-
quent reports showed that ectopically overexpressed tetherin
(which can be induced by IFN) prevents the release of HTLV-1
virus-like particles (expressing only gag/pol) or HTLV-1 particles
from 293T-transfected cells (35, 36). Importantly, those reports
also showed that tetherin decreases only cell-free transmission of
HTLV-1 and does not impact cell-cell transmission, which is the
main route of HTLV-1 transmission (35, 37, 38). The experi-
ments, however, did not address whether other steps of HTLV-1
infection were sensitive to IFN-I.

The effects of exogenous IFN-I addition on the HTLV-1 cycle
are therefore debated (for recent reviews, see references 39 and 40)
and have never been investigated for HTLV-2. In addition, most
reports have been performed using transfected epithelial cells,
which do not represent target cells in vivo and do not allow the
study of the early steps of infection. Here, we used different infec-
tion settings to show that IFN-�-treated T cells are refractory to
primary HTLV infection and that IFN-� targets the late stages of
the viral cycle. We demonstrate that IFN-� inhibits viral protein
expression through PKR activation, leading to a decrease of viral
protein synthesis.

MATERIALS AND METHODS
Cell culture. 293T and 293T-LTR-GFP (41) cells were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum (Gibco, Life Technologies) and 100 �g/ml penicillin-strep-
tomycin (Gibco, Life Technologies). Jurkat, Jurkat-LTR-luc (42), and
HTLV-1-infected (C91-PL and C8166) and HTLV-2-infected (C19) T cell
lines and peripheral blood lymphocytes (PBLs) were maintained in RPMI
1640 medium supplemented with 10% fetal bovine serum (Gibco, Life
Technologies) and 100 �g/ml penicillin-streptomycin (Gibco, Life Tech-
nologies). PBLs were purified from the blood of healthy donors and were
stimulated with phytohemagglutinin (PHA) (1 �g/ml; Sigma) and IL-2
(150 U/ml; Miltenyi Biotec) for 3 days. All cell lines were grown at 37°C in
5% CO2. 293T-LTR-GFP and Jurkat-LTR-luc cells are stably transfected
with a plasmid encoding green florescent protein (GFP) or luciferase
(luc), respectively, under the control of the HTLV-1 long terminal repeat
(LTR) promoter.

Plasmids. The HTLV-1 proviral DNA clone (pACH) was previously
described (43). The HTLV-2 proviral DNA clone (pH6neo) and the
SV2Neo plasmids (44, 45) were provided by P. Green. The pCMVHT1-M
(46) and the pCRU5-HT1GFPLuc (35) plasmids were provided by D.
Derse. The pSG5M-Tax1, pSG5M-Tax2, and HTLV-1– or HTLV-2–
LTR–luciferase plasmids were previously described (47).

RNA extraction and real-time RT-PCR. RNA was extracted using the
RNA easy extract kit (Qiagen) according to the manufacturer’s instruc-
tions and resuspended in 30 �l of water. Before reverse transcription, 500
ng of RNA was treated with 10 U of RNase-free DNase I (Qiagen) for 20
min at 27°C and then for 15 min at 60°C. Reverse transcription was then

performed using the iScript cDNA synthesis kit (Bio-Rad) following the
manufacturer’s instructions. Quantitative PCR (qPCR) was performed
using FastStart Universal SYBR green Master (Roche) on a StepOnePlus
thermocycler (Applied Biosystems). Samples were incubated for 10 min at
95°C; then, 40 cycles were performed (10 s at 95°C and 30 s at 60°C), and
melting-curve analysis was performed between 60°C and 95°C. cDNA
samples were amplified with Mx1 primers (5=-AGCCACTGGACTGACG
ACTTG-3= [forward] and 5=-AAATCACCACGGCTAACGGATAAG-3=
[reverse]). GAPDH (glyceraldehyde-3-phosphate dehydrogenase) prim-
ers (5=-AGCCACATCGCTCAGACAC-3= [forward] and 5=-GCCCAATA
CGACCAAATCC-3= [reverse]) were used for normalization (48).

Cell-to-cell infection. Jurkat cells (106) or PBLs (5 � 105) were trans-
fected with 5 �g of HTLV-1– or HTLV-2–LTR–luciferase plasmids using
the Neon Transfection System (Invitrogen) following the manufacturer’s
instructions. The cells were then treated with various amounts (0 to 5,000
U/ml) of IFN-�2a (Tebu-Bio) for 24 h prior to coculture with HTLV-1-
infected (C91-PL) or HTLV-2-infected (C19) cells (3:1 ratio). Prior to
coculture, C91-PL or C19 cells were irradiated (77 Gy) from a 137Cs source
(CIS BIO international; IBL 637) at 1.28 Gy/min. After 24 h of coculture,
reporter activities were assayed using the luciferase reporter assay system
(Promega). Luciferase activity was normalized by protein concentration
as determined by the Bradford method (Bio-Rad).

(i) AZT treatment. Jurkat cells or PBLs were treated with 50 �M AZT
(Sigma) 24 h and 3 h before coculture with HTLV-infected and irradiated
cells.

(ii) Serum treatment. Jurkat cells were incubated 3 h before coculture
in the presence of sera (1:1,000) obtained either from an HTLV-negative
blood donor or from a HAM/TSP patient.

Cell-free infection. 293T cells (6 � 106) were seeded onto 100-mm
dishes. Twenty-four hours later, the cells were transfected with 2 �g of the
pCMVHT1-M packaging plasmid and 6 �g of the pCRU5-HT1GFPLuc
reporter plasmid using the Polyfect reagent (Qiagen) following the man-
ufacturer’s instructions. Forty-eight hours posttransfection, supernatants
were collected and filtered through a 0.45-�m filter. Five hundred micro-
liters of filtered supernatant in the presence of Polybrene (8 �g/ml) was
added to 106 Jurkat cells that had been treated or not with 1,000 U/ml of
IFN-�2a for 24 h. Luciferase activity was measured 48 h postinfection
(luciferase assay system; Promega). Luciferase activity was normalized by
protein concentration as determined by the Bradford method (Bio-Rad).

Transfections with Tax-encoding plasmids. 293T cells (3 � 105)
were seeded onto 6-well plates. The following day, 2 �g of a plasmid
encoding Tax1 or Tax2 and 250 ng of a plasmid carrying the firefly lucif-
erase gene under the control of the viral HTLV LTR (HTLV-1–LTR–luc or
HTLV-2–luc) were transfected (PolyFect; Qiagen). The transfections were
carried out in the presence of a Renilla luciferase vector (phRG-TK; 10 ng)
in order to normalize for the transfection efficiency. The cells were then
treated with increasing amounts (0 to 1,000 U/ml) of IFN-�. Luciferase
activity was assayed 24 h posttransfection using the Dual-Luciferase Re-
porter Assay System (Promega).

Jurkat-LTR-luciferase cells (106) were transfected with 5 �g of a plas-
mid encoding Tax1 or Tax2 using the Neon Transfection System (Invit-
rogen) following the manufacturer’s instructions. Cells were treated or
not with 500 U/ml IFN-�2a. Twenty-four hours later, reporter activities
were assayed using the luciferase reporter assay system (Promega). Lucif-
erase activity was normalized by protein concentration as determined by
the Bradford method (Bio-Rad).

Transfections with HTLV molecular clones. Jurkat cells (106) or
PBLs (5 105) were transfected with 2.5 �g of pACH (HTLV-1), pH6neo
(HTLV-2), or SV2Neo (control) and 2.5 �g of the HTLV-1– or HTLV-2–
LTR–luciferase plasmid using the Neon Transfection System (Invitro-
gen). Cells were treated or not with 1,000 U/ml of IFN-�2a. Forty-eight
hours later, reporter activities were assayed using the luciferase reporter
assay system (Promega). Luciferase activity was normalized by protein
concentration as determined by the Bradford method (Bio-Rad).

293T cells (3 � 106) were seeded onto 100-mm dishes. The following
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day, 8 �g of pACH (HTLV-1), pH6neo (HTLV-2), or SV2Neo (back-
bone) plasmids was transfected with PolyFect reagent (Qiagen) following
the manufacturer’s instructions. The cells were immediately incubated in
the presence of IFN-�2a (0 to 1,000 U/ml) for 48 h.

Fluorescence microscopy. 293T-LTR-GFP cells were seeded at a con-
centration of 3 � 105 cells per well onto 6-well plates. The following day,
2 �g of pACH (HTLV-1), pH6neo (HTLV-2), or SV2Neo backbone plas-
mids was transfected with PolyFect reagent (Qiagen). Two days after
transfection, transfected 293T-LTR-GFP cells treated with 0 to 1,000
U/ml of IFN-� were analyzed with an AMG Evos fl Digital Inverted Flu-
orescence Microscope to visualize GFP fluorescence.

PKR inhibition. (i) C16 treatment. Jurkat cells were transfected with
pACH (HTLV-1), pH6neo (HTLV-2), or SV2Neo (backbone) and with
the HTLV-1– or HTLV-2–LTR–luciferase plasmid as described above.
One hour posttransfection, the cells were incubated in the presence of 50
nM imidazolo-oxindole C16 compound (PKR inhibitor; Sigma) resus-
pended in dimethyl sulfoxide (DMSO) or in the presence of DMSO alone
(control). Two hours later, cells were treated or not with 1,000 U/ml of
IFN-�2a. Forty-eight hours later, reporter activities were assayed using
the luciferase reporter assay system (Promega). Luciferase activity was
normalized by protein concentration as determined by the Bradford
method (Bio-Rad).

(ii) PKR siRNA transfection. 293T cells were seeded at a concentra-
tion of 3 � 105 cells per well onto 6-well plates. The following day, 20 nM
PKR small interfering RNA (siRNA) (On-Targetplus Smart pool
EIF2AK2; Fermentas) or control siRNA (On-Targetplus Nontargeting
Pool; Fermentas) were transfected (HiPerfect reagent; Qiagen) following
the manufacturer’s instructions. Twelve hours posttransfection, 1.2 �g of
pACH or PH6neo plasmid or a plasmid encoding GFP, together with 20
nM siRNA, was transfected (Attracten; Qiagen) following the manufac-
turer’s instructions. Cells were then treated or not with 100 U/ml of IFN-
�2a for 48 h.

Immunoblot analyses. Cells were washed with PBS, lysed (50 nM
Tris-HCl, pH 7.4, 150 nM NaCl, 5 mM EDTA, 0.5% Nonidet-P-40, 0.2
mM Na3VO4, 50 mM NaF, 1 mM dithiothreitol, 1 mM phenylmethylsul-
fonyl fluoride) in the presence of protease inhibitors (Complete; Roche
Applied Science) and incubated on ice. Cell debris was pelleted by centrif-
ugation, and the protein concentration was determined by the Bradford
method (Bio-Rad). Sixty micrograms of the proteins was loaded onto 4 to
12% NuPAGE gels (Novex; Invitrogen), subjected to electrophoresis at
150 V, and transferred onto a polyvinylidene difluoride (PVDF) mem-
brane (Immobilon-P; Millipore). The membranes were blocked in a 5%
milk-PBS-0.05% Tween 20 solution and then incubated overnight with
the primary antibody, anti-PKR 71/10; dilution, 1:500) (49), anti-phos-
pho-PKR (Epitomics 1120-1; dilution, 1:2000), anti-Tax-1-specific (Tab
172; dilution, 1:4,000), anti-Tax-2 (GP3738; dilution, 1:4,000) (50), anti-
HTLV-1/2 p24 (Zeptometrix 75/4.21.11; 2.5 �g/ml; dilution. 1:400), or
anti-�-actin clone AC74 (Sigma; dilution, 1:40,000). The next day, the
membranes were washed and incubated either with anti-rabbit or with
anti-mouse horseradish peroxidase-conjugated secondary antibodies and
developed using an ECL Plus reagent kit (GE Healthcare).

RESULTS
IFN-� prevents HTLV infection and/or expression only in de
novo-exposed T cells. Chronically infected and transformed
HTLV T-cell lines have previously been reported to be insensitive
to IFN-� antiviral properties (31–33). However, IFN-� effects on
de novo T-cell HTLV infection have not been investigated. We
therefore used a coculture setting that allowed us to investigate
HTLV-1/2 de novo infection in T cells in the presence or absence of
type I interferon. First, we assessed Mx1 gene (a known interfer-
on-inducible gene) expression in Jurkat cells following IFN-I
treatment. A 700-fold increase in Mx1 mRNA was observed upon
IFN-I addition (Fig. 1), demonstrating that IFN-� signaling is

intact and promotes ISG expression in those cells. Jurkat target
cells were then treated with IFN-� and then cocultured with gam-
ma-irradiated C91-PL or C19 cells, used here as donor cells. In
order to monitor de novo infection, target cells were transfected
with an HTLV-1– or HTLV-2–LTR–luc reporter plasmid prior to
coculture. In this system, LTR-dependent luciferase activity in
target cells parallels viral expression driven from the LTR. Since
Tax protein is necessary for LTR activation, levels of LTR-depen-
dent luciferase activity indicate that viral entry, reverse transcrip-
tion, proviral integration, de novo viral transcription, and post-
transcriptional production of viral proteins have been completed,
allowing at least the production of Tax (Fig. 1B).

Target cells cocultured either with C91-PL (Fig. 1C) or with
C19 (Fig. 1D) donor cells showed a dose-dependent decrease in
luciferase activity when treated with increasing amounts of IFN-�,
indicating an IFN-�-induced decrease in viral expression. In or-
der to determine whether donor cells could secrete Tax that would
then activate the LTR-driven transcription in target cells indepen-
dently of de novo infection, a similar experiment was performed
with C8166 cells that synthesize Tax in larger amounts than
C91-PL cells (data not shown) but do not produce any viral par-
ticles (51). In this case, luciferase activity was similar to back-
ground levels in the absence or presence of IFN-� (Fig. 1C and D,
lanes 2 and 3). Similarly, background levels of luciferase activity
were also measured when target cells were cocultured with non-
infected Jurkat cells (Fig. 1C and D, lane 1).

To rule out the possibility that the luciferase signal is linked to
passive diffusion of the Tax protein following membrane fusion,
Jurkat target cells were also incubated with serum obtained from a
healthy donor or from an HTLV-1 HAM/TSP patient (Fig. 1E) or
with AZT, an inhibitor of reverse transcriptase (52) (Fig. 1F and
G). AZT or HAM/TSP serum treatment led to a significant de-
crease in luciferase activity, whereas serum from healthy blood
donors did not (Fig. 1E, F, and G). A similar experiment was also
performed using PBLs obtained from healthy blood donors as
target cells (Fig. 1H and I). The PBLs were transfected with an
HTLV-luc reporter plasmid and treated with IFN-� or with AZT
prior to coculture with HTLV-1 or HTLV-2 chronically infected
cells. Both AZT and IFN-� induced a decrease in the luciferase
activity (Fig. 1F and I). Altogether, these results demonstrate that
luciferase signal is linked to de novo Tax synthesis and not to Tax
transfer from HTLV-1/2-infected cells into target cells.

Finally, to rule out an indirect effect of IFN-� on C91-PL or
C19 donor cells during coculture, IFN-�-pretreated target cells
were washed before coculture with HTLV donor cells. The same
dose-dependent decrease in luciferase activity was observed, con-
firming that IFN-� acts on target cells and not on donor cells (data
not shown).

Altogether, these results demonstrate that productive infection
of target cells is necessary for LTR activation and show that IFN-�
pretreatment results in decreased viral expression in T cells ex-
posed de novo to HTLVs.

IFN-� does not affect the first steps of the HTLV viral cycle.
We next aimed to determine which steps of the viral cycle are
targeted by IFN-�. To investigate the first steps of the HTLV viral
cycle, i.e., viral entry and reverse transcription, we used a modified
HTLV-1 genome in which a reporter cassette allowing expression
of the luciferase gene was inserted downstream of a cytomegalovi-
rus (CMV) promoter. This construct allows possible effects of
IFN-� on integration, LTR-driven transcription, and/or posttran-
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FIG 1 IFN-� treatment prevents HTLV-1 and HTLV-2 replication in T cells. (A) Jurkat cells were treated with 1,000 U/ml of IFN-� for 24 h, and Mx1 expression
was determined by qRT-PCR. The values were normalized to GAPDH expression and compared to Mx1 expression in untreated cells, which was set to 1. The data
are presented as the means and standard deviations (SD) from 3 independent experiments. The asterisks indicate statistically significant differences between
treated and untreated cells (paired Student t test; **, P � 0.01). (B) Jurkat cells or PBLs were transfected with 5 �g of a plasmid carrying the luciferase gene under
the control of the HTLV-1–LTR or HTLV-2–LTR and treated with IFN-� (0 to 5,000 U/ml) for 24 h. (C to I) Cells were then cocultured with irradiated HTLV-1
(C91-PL) (C, E, F, and H) or HTLV-2 (C19) (D, G, and I) or noninfected Jurkat or C8166 (Tax-expressing) T cells for 24 h. Tax expression was indirectly analyzed
by a luciferase assay. Luciferase activity was normalized by protein concentration as determined by the Bradford method and calculated as the fold change
compared to untreated cells arbitrarily set to 100%. (E) Three hours before coculture with irradiated C91-PL cells, Jurkat cells were incubated in the presence of
serum (1:1,000) obtained either from a healthy blood donor or from a HAM/TSP patient. (F to I) Jurkat cells (F and G) or PBLs (H and I) were treated with AZT
(50 �M) before coculture with C91-PL or C19 irradiated cells. (E to G) The data are means and SD from 3 independent experiments. The asterisks indicate
statistically significant differences between treated and untreated cells (paired Student t test; *, P � 0.05; **, P � 0.01; ***, P � 0.001; NS, nonsignificant). (H and
I) The data are representative of two different experiments obtained with two different blood donors.
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scriptional viral protein synthesis to be overcome. Viral particles
pseudotyped with the HTLV-1 envelope were produced in
293T cells. Jurkat target cells were then pretreated with IFN-�
or left untreated for 24 h before incubation with pseudotyped
viruses. Expression of the transduced luciferase gene was then
assessed. IFN-� treatment did not significantly alter luciferase
activity in target cells (Fig. 2), indicating that neither entry nor
reverse transcription is affected. Altogether, these results sug-
gest that IFN-� inhibits a post-reverse transcription step of the
HTLV viral cycle.

IFN-� treatment transcriptionally and/or posttranscrip-
tionally inhibits HTLV expression. Since early steps of the HTLV
cycle are not sensitive to IFN-�, we took advantage of the available
HTLV-1 and HTLV-2 molecular clones. These plasmids allow the
study of the viral steps that follow entry and reverse transcription.
Target cells were transfected with the HTLV-1 (pACH) or
HTLV-2 (pH6Neo) molecular clone and treated with increasing
amounts of IFN-� (Fig. 3). Transfections were first performed in
293T target cells stably harboring an LTR-controlled GFP reporter
gene whose expression parallels viral LTR-driven transcription.
As additional and independent read-outs for viral expression, we
also monitored formation of syncytia, indicative of Env expres-
sion, and intracellular p24gag expression. IFN-� treatment de-
creased the number of GFP-positive cells (Fig. 3A), indicating that
IFN-� inhibited HTLV-1/2 LTR-driven transcription, either di-
rectly by altering Tax-mediated viral transcription or indirectly by
decreasing Tax levels at posttranscriptional steps. IFN-� treat-
ment also decreased the number of syncytia (Fig. 3A) and induced
a dose-dependent decrease in intracellular p24gag protein levels
(Fig. 3B and C), indicating that expression of both HTLV-1 and
HTLV-2 Env and Gag proteins was altered. Consistent with those
results, p19 levels in the supernatant also decreased (data not
shown).

To confirm these results in T cell lines, Jurkat cells (Fig. 3D and
E) or primary PBLs (Fig. 3F and G) were transfected with the
HTLV-1 (pACH) or HTLV-2 (pH6Neo) molecular clone, to-
gether with the HTLV-1–LTR–luc (Fig. 3D and F) or HTLV-2–
LTR–luc (Fig. 3E and G) reporter plasmid. Cells were then treated

or not with IFN-� before luciferase assays were performed. As in
293T cells, a significant decrease in luciferase activity was observed
in the presence of IFN-�.

Altogether, these results indicate that IFN-� treatment leads to
decreased viral expression at a transcriptional or posttranscrip-
tional stage.

IFN-� does not alter Tax-mediated transcription from the
viral LTR. To assess whether IFN-� directly affects HTLV tran-
scription, 293T cells were transfected with an HTLV-1– or HTLV-
2–LTR–luc reporter construct, together with a CMV-dependent
Tax expression plasmid, in the presence of increasing doses of
IFN-� (Fig. 4A). Similar experiments were performed using Jur-
kat cells stably transfected with an HTLV-1 LTR construct (Fig.
4D), which can be activated either by HTLV-1 or by HTLV-2 Tax
proteins (50). The CMV-dependent Tax expression plasmid en-
sures high levels of Tax. Hence, in these experimental settings,
IFN-� should not affect Tax production. Interestingly, IFN-�
treatment had no effect on Tax1-mediated (Fig. 4B and E) or
Tax2-mediated (Fig. 4C and F) transcription, demonstrating that
it did not prevent recruitment of the RNA Pol II machinery onto
the LTR by Tax and suggesting that it affects posttranscriptional
stages of viral expression.

IFN-� treatment inhibits posttranscriptional viral expres-
sion through PKR activation. The PKR gene is an ISG that has
been shown to inhibit viral mRNA translation from other viruses.
We therefore sought to determine whether the inhibitory effects of
IFN-� on HTLV-1/2 expression were linked to PKR activation.
293T cells were transfected with the HTLV-1 (pACH) or HTLV-2
(pH6Neo) molecular clone and treated with increasing amounts
of IFN-� (Fig. 5). As seen in Fig. 3, Western blot analyses on cell
lysates showed a decrease in intracellular p24gag and Tax levels
upon IFN-� treatment (Fig. 5A and B). Interestingly, IFN-� treat-
ment also led to a dose-dependent increase in both total PKR and
activated PKR (phospho-PKR [P-PKR]) levels in HTLV-trans-
fected cells, as well as in mock-transfected cells (Fig. 5A and B,
compare lanes 1 to 4 to lanes 5 to 8). Thus, the IFN-�-induced
decrease in viral expression correlates with the induction and ac-
tivation of PKR.

To further test whether PKR is involved in inhibition of HTLV
expression, PKR was silenced by siRNA before transfection of the
HTLV-1 or HTLV-2 molecular clone and IFN-� treatment (Fig.
5C and D). In cells transfected with irrelevant siRNA, IFN-� led to
decreased intracellular p24gag levels (Fig. 5C and D, lanes 1 to 2),
concomitant with increased PKR and P-PKR levels. In contrast,
cells transfected with PKR-specific siRNA displayed higher levels
of p24gag protein in the absence of IFN-� treatment and remained
insensitive to IFN-� treatment (Fig. 5C and D, compare lane 3 to
lane 1 and lane 4 to lane 2). As a control, a plasmid encoding GFP
was transfected. As expected, GFP expression was not affected by
IFN-� either in the presence of control siRNA or when PKR-
specific siRNA was transfected (Fig. 5E).

Jurkat cells were also transfected with the HTLV-1 (pACH) or
HTLV-2 (pH6Neo) molecular clone and the HTLV-1– or HTLV-
2–LTR–luc reporter plasmid (Fig. 5F and G). The Jurkat cells were
then treated or not with IFN-� in the presence of C16, a specific
PKR-inhibiting compound (53). A similar experiment was also
performed using primary PBLs (Fig. 5H). Consistent with exper-
iments performed with PKR siRNA, C16 compound prevented
IFN-� from inhibiting luciferase activity both in Jurkat cells and
in primary lymphocytes (Fig. 5F, G, and H).

FIG 2 IFN-� treatment does not inhibit the early steps of the HTLV-1 viral
cycle. Pseudotyped viral particles were produced after transfection of 6 � 106

293T cells with 2 �g of the pCMVHT1-M packaging plasmid and with 6 �g of
a single-cycle reporter construct pCRU5-HT1GFPluc plasmid. Jurkat cells
(106) were treated (1,000 U/ml IFN-�) or not for 24 h before infection with
viral particles. Infection was assessed 48 h later with a luciferase assay. Lucif-
erase activity values were normalized by protein concentration as determined
by the Bradford method and calculated as the fold change compared to un-
treated cells arbitrarily set to 100%. The data are presented as the mean and SD
from 3 independent experiments. NS, no statistically significant difference
between treated and untreated cells (paired Student t test).
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These results demonstrate that PKR is a major effector of
IFN-� inhibitory properties and indicate that IFN-� most likely
inhibits HTLV expression through PKR-mediated inhibition of
viral translation.

DISCUSSION

Interferon type I response allows cells to be protected against vi-
ruses. A recent report demonstrated that different viruses are tar-
geted by specific sets of ISGs (54). The role of IFN-I in HTLV-1
pathogenesis, however, is controversial. The well-described cyto-
static and antiviral properties of IFN-I first provided a strong ra-
tionale for treating HTLV-1-infected patients. A high PVL is one
of the best predictors of HAM/TSP and ATLL, though HTLV per-
sists and PVL is elevated in HAM/TSP patients in spite of an im-
portant cellular immune response against HTLV-1 antigens (55).
A number of studies convincingly demonstrated that exogenous

IFN-�, alone or in combination with other molecules, is particu-
larly efficient for treating leukemic, smoldering, and chronic
ATLL patients and significantly improves their survival, although
the precise mechanism of action is still debated. It might involve
an effect both on infected transformed cells that are poorly sensi-
tive to IFN-I but respond to AZT if they have an intact p53 path-
way and on noninfected cells present in the microenvironment
that should become refractory to infection due to IFN-I (39, 56,
57). In contrast, IFN-� leads only to a minimal decrease in
HTLV-1 PVL in HAM/TSP patients (27), suggesting that it cannot
allow clearance of HTLV-1-infected cells, but rather, only tran-
siently suppresses viral expression. This effect might be explained
by partial or inefficient IFN-� antiviral activity on HAM/TSP pa-
tients’ infected cells in vivo. Indeed, a recent transcriptomic study
in which cells isolated from HAM/TSP patients were compared to
those obtained from asymptomatic carriers or healthy controls

FIG 3 IFN-� treatment inhibits HTLV-1 and HTLV-2 protein expression. (A) 293T-LTR-GFP cells (3 � 105) were transfected with 2 �g of the HTLV-1 (pACH)
or HTLV-2 (pH6neo) molecular clone and treated for 48 h with IFN-� (0 to 1,000 U/ml). The cells were then analyzed using an AMG Evos fl Digital Inverted
Fluorescence Microscope. Scale bars, 400 �m. (B and C) Western blot analyses (anti-gag p24 or anti-actin) were performed on 60 �g of proteins from whole-cell
extracts obtained from cells transfected with the HTLV-1 (pACH) (B) or HTLV-2 (pH6neo) (C) molecular clone and treated with different doses of IFN-�. (D
to G) Jurkat cells (106) (D and E) or PBLs (5 � 105) (F and G) were transfected with 2.5 �g of the HTLV-1 (pACH) (D and F) or HTLV-2 (pH6neo) (E and G)
molecular clone, together with 2.5 �g of the HTLV-1 or HTLV-2 LTR reporter plasmid, and treated for 48 h with IFN-� (0 to 1,000 U/ml). Luciferase activity
values were normalized by protein concentration as determined by the Bradford method and calculated as the fold change compared to untreated cells arbitrarily
set to 100%. The data are presented as the means and SD from 3 independent experiments. The asterisks indicate statistically significant differences between
treated and untreated cells (paired Student t test; *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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suggested that a subset of IFN-inducible genes specifically con-
tributes to HAM/TSP development rather than to the control of
infection (58). Therefore, in HAM/TSP patients, some ISGs may
promote inflammatory responses rather than immune responses
able to control infected cells. Altogether, these results highlight the
fact that the quality of IFN-� action varies according to the clinical
status of HTLV-1-infected individuals.

Deciphering the cellular and molecular bases of IFN-� treat-
ment efficacy in ATLL compared to HAM/TSP is important. A
previous report demonstrated that AZT/IFN-� treatment does
not have a direct cytotoxic effect in vitro on ex vivo ATLL cells (32).
Using experimental settings that allowed us to study individual
steps of the viral cycle in T cells, we report here that IFN-� treat-
ment of uninfected T cells markedly inhibits HTLV-1/2 infection,

FIG 4 IFN-� does not prevent Tax-mediated viral transcription. (A to C) 293T cells (3 � 105) were transfected with 250 ng of HTLV-1–LTR–luc or HTLV-2–luc
plasmids, 10 ng of a plasmid encoding Renilla luciferase, and 2 �g of a plasmid encoding HTLV-1 Tax (Tax1) (B), a plasmid encoding HTLV-2 Tax (Tax2) (C),
a backbone vector. The cells were then treated with increasing amounts of IFN-� (0 to 1,000 U/ml), and 24 h after transfection, luciferase activity was measured
and normalized. (D to F) Jurkat-LTR-luciferase cells (106) were transfected with 5 �g of Tax1 or Tax2 plasmids and treated for 24 h with 500 U/ml of IFN-�.
Luciferase activity was measured and normalized by protein concentration using the Bradford method. Values were calculated as the fold change compared to
untreated cells arbitrarily set to 100%. (B, C, E, and F) The data are presented as the means and SD from 2 independent experiments. NS, no significant difference
between treated and untreated cells (paired Student t test).
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as was also previously shown for HIV-1 (59). However, unlike
HIV-1, this effect is not linked to a preintegration defect. In fact,
we demonstrate that IFN-� affects both HTLV-1/2 protein ex-
pression and viral production. Consistent with a previous obser-
vation (34), we also observed a strong decrease in p19gag produc-
tion in culture supernatant following IFN-� treatment (data not

shown). Kinpara et al. also reported that IFN-� secretion by mu-
rine cells resulted in decreased p19gag in culture supernatant from
IL-2-dependent (immortalized) HTLV-1-infected cells derived
from different ATLL patients (30). Ilinskaya et al. recently dem-
onstrated that the tetherin gene, a known ISG, strongly reduces
cell-free infectivity of HTLV-1, but not cell-cell transmission (35).

FIG 5 The IFN-� inhibitory effect is mediated through PKR activation. (A and B) 293T cells (3 � 106) were transfected with 8 �g of the HTLV-1 (pACH) (A)
or HTLV-2 (pH6neo) (B) molecular clone or with a control plasmid (SV2Neo) and treated with increasing amounts of IFN-� (0 to 1,000 U/ml) for 48 h. Western
blot analyses using anti-gag p24, anti-Tax1, anti-Tax2, anti-PKR, anti-P-PKR, and anti-actin were performed on 60 �g of proteins from whole-cell extracts
obtained from transfected cells. (C, D, and E) 293T cells (3 � 105) were transfected with 20 nM siRNA directed against PKR (siPKR) or with 20 nM control siRNA.
Twelve hours later, the cells were transfected with 20 nM the same siRNA, together with 1.2 �g of HTLV-1 (pACH) (C), HTLV-2 (pH6neo) (D), or a plasmid
encoding GFP (E) and incubated or not with 100 U/ml of IFN-�. (F to H) Jurkat cells (106) (F and G) or primary lymphocytes (105) (H) were transfected with
2.5 �g of the pACH (F) or pH6neo (G and H) molecular clone, together with 2.5 �g of the HTLV-1 or HTLV-2 LTR reporter plasmid, and treated for 48 h with
IFN-� (0 to 1,000 U/ml) in the presence or absence of a PKR inhibitor (C16; 100 nM). Luciferase activity values were normalized by protein concentration as
determined by the Bradford method and calculated as the fold change compared to untreated cells set to 100%. The data are presented as the means and SD from
2 or 3 independent experiments. The asterisks indicate statistically significant differences between treated and untreated cells (paired Student t test; *, P � 0.05;
**, P � 0.01).
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The fact that most transmission in our experimental system oc-
curred through cell-cell contact (data not shown), therefore, ex-
cludes the possibility that tetherin plays a significant role in the
IFN-� effects observed here and suggests that the decrease in viral
production in the culture supernatant should have little effect on
viral spread.

We demonstrated that IFN-� treatment promotes PKR phos-
phorylation. PKR is a kinase that is expressed in all tissues at a
basal level and is induced by IFN-I (13). Active PKR is known to
affect phosphorylation of eukaryotic initiation factor 2 (eIF2),
which then suppresses mRNA translation (13). It would therefore
be interesting to define whether HTLV-1/2 protein synthesis is
affected through eIF2 phosphorylation, unlike a number of other
viruses that evade this phenomenon (60, 61, 62).

Altogether, our experiments demonstrate that HTLV-1 and
HTLV-2 are exquisitely sensitive to IFN-�. How can these data be
reconciled with other studies demonstrating that HTLV-1-trans-
formed or HTLV-1 Tax-expressing cells are insensitive to IFN-�
and that Tax-1 blunts IFN signaling (63–67)? We hypothesize that
Tax expression renders HTLV-infected cells poorly sensitive to
IFN-�. Because incoming viral particles do not contain Tax, they
do not alter IFN-� signaling in de novo-infected cells. Therefore,
addition of the cytokine to target cells prior to infection activates
transcription of ISGs (such as the PKR gene), which then impair
completion of the HTLV cycle. If this model is correct, immedi-
ately treating ex vivo HTLV-1 patient cells (which do not originally
express Tax) (68) with IFN-� should prevent viral expression,
while the cells should become insensitive to the treatment a few
hours after they are put into culture. Consistent with this hy-
pothesis, Kinpara et al. reported that treating PBMCs obtained
from a chronic ATLL patient with recombinant IFN-I strongly
suppressed HTLV-1 p19 in the cell culture supernatant (30).
AZT was previously shown to inhibit telomerase activity in
HTLV-1-infected cells and to induce senescence (56). Since
Tax expression is required for cell growth, this might also
partly explain why treating infected cells that do not express or
barely express Tax (the ATLL situation) with IFN-�/AZT al-
lows their clearance.

In conclusion, the results presented here show that IFN-� in-
hibits HTLV infection in T lymphocytes exposed de novo to
HTLV-1 or HTLV-2. Hence, IFN-� likely contributes to limiting
viral spread to uninfected cells in asymptomatic carriers.
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