Thyroid hormones and tendon: current views and future perspectives. Concise review

Francesco Oliva¹ Anna C. Berardi² Silvia Misiti³ Nicola Maffulli⁴

- ¹ Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata" School of Medicine, Rome, Italy
- ² Department of Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
- ³ Department of Experimental Medicine, Endocrinology, Sapienza University of Rome, Rome, Italy
- ⁴ Department of Physical and Rehabilitation Medicine, University of Salerno School of Medicine and Surgery, Salerno, Italy; Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Mile End Hospital, London, UK

Corresponding author:

Francesco Oliva Department of Orthopaedics and Traumatology University of Rome "Tor Vergata" School of Medicine Viale Oxford, 81 00133 Rome, Italy E-mail: olivafrancesco@hotmail.com

Summary

Thyroid hormones (THs) T3 and T4, play an essential role in the development and metabolism of many tissues and organs, and have profound metabolic effects in adult life. THs action is mediated mainly by the thyroid hormone receptor (TRs) which seem to be ubiquitous. To-date thyroid-associated disease are not thought to be related in tendinopathies and tendons tears. Recent study demonstrated the presence of TRs in tendons and their possible role in the proliferation and apoptosis of human tenocyte isolated from tendon. We review new discovery that revisit our current thinking on the tendon biology focusing on thyroid hormones (THs) T3 and T4, and their possible role on human tenocyte.

KEY WORDS: thyroid hormones, T3, T4, tenocytes, rotator cuff tendons, tendon tears.

Introduction

Thyroid hormones (THs), T3 and T4, play an essential

role in the development and metabolism of many tissues and organs, and exert profound metabolic effects in adult life, including changes in oxygen consumption, protein, carbohydrate, lipid, and vitamin metabolism¹. The effects of THs are mediated mainly through T3, which regulates gene expression by binding to the TH receptors (TR)- α and - β . TRs belong to a large superfamily of nuclear hormone receptors which includes steroid hormones, retinoic acid, Vitamin D and peroxisomal proliferator receptors (PPARs)². These receptors also bind to enhancer elements in the promoters of target genes, and can regulate both positive and negative transcription. Recent evidence has characterized some of the molecular mechanisms by which THs regulate transcription, as co-repressors and co-activators have been identified, and their effects on histone acetylation examined³. THs also manifest rapid effects that do not require transcription. These can occur via TRs or other cellular proteins, and typically occur outside the nucleus⁴.

Tendinopathies and tendons tears are not thought to be related to thyroid diseases, but to our knowledge no studies have evaluated in a systematic fashion this association. In any case, thyroid hormone receptors (TRs) seem to be ubiquitous⁵.

The relationship between thyroid disorders and shoulder pain has been suspected since the late 1920s⁶, but it has not been systematically investigated⁷⁻¹¹. More recently, however, such association has been more formally hypothesized¹², and some orthopedic surgeons theorize that thyroid diseases should be linked to idiopathic tendinopathies^{13,14}.

Thyroxine is important for both collagen synthesis and matrix metabolism². Hypothyroidism causes accumulation of glycosaminoglycans (GAGs) in the extracellular matrix, which may, in turn, predispose to tendon calcification¹⁵. GAGs are involved in the pathogenesis of carpal tunnel syndrome during hypothyroidism¹⁵. Elevation of (GAGs), IL6 and TNF has also been reported in exophtalmos in hyperthyroidism¹⁶⁻¹⁸.

Tendinopathy can be the presenting complaint in hypothyroidism, and symptomatic relief can be obtained by appropriate management of the primary thyroid deficiency¹⁹, while calcific tendinopathy has been associated with thyroid dysfunctions²⁰.

Thyroid hormones receptors and tenocyte

To date, the presence and effects of THs *in vivo* and *in vitro* on tenocytes have not been previously investigated. A recent study (Oliva et al. 2013) demonstrated by Western Blot analysis that thyroid hormone α/β nuclear receptor isoforms are express at high levels in healthy and pathological rotator cuff tendons, with no apparent difference in THs expression between tendon from normal subjects and patients with thyroid disease. Furthermore, the expression levels in the tendon from the patients with thyroid disease appear not to be influenced by treatment of the pathological condition²¹. Avala et al. identified in 1991 by immunocytochemical techniques the expression of T3 within the cell nucleus and between the heteroeuchromatin transition zone in chicks²². The authors were able to show that all the chicks that underwent tenotomy showed a decrease in the number of T3 receptors of collagen-forming fibroblasts as the tendons healed, and their capacity to synthetize collagen diminished. Furthermore, the relationship between thyroid disorders and collagen has been long described²³. In particular, hyperthyroidism is accompanied by increased rates of catabolism of both soluble and insoluble collagen, and hypothyroidism is accompanied by decreased rates of catabolism of collagen.

Tenocytes are specialized fibroblasts which ensure to the homeostasis of the ECM (extracellular matrix) components of tendons, through a wide variety of complex mechanisms. Fibroblasts from different tissue sources, subjected to mechanical stress, show phenotypic and gene expression differences²⁴. Skin fibroblasts and tenocytes derive from the mesoderm and have similar characteristics in terms of cell morphology and extracellular matrix components. Indeed, recently attempts to manage tendons disorders have used engineered skin fibroblasts for porcine flexor digital superficial tendon defects²⁵, human patellar tendinopathy and epycondilitis^{26,27}.

Several line of evidence indicate that THs regulate several cellular functions. One such function is proliferation. Oliva et al. examined the action of T3 and T4, in an in vitro assay, on cell proliferation by timecourse and in a dose dependent manner in primary tenocytes from the tendon biopsy of 5 normal patients who underwent surgical reconstruction of rotator cuff tears. The data from this study show that both T3 and T4 act on cell growth in dose dependent manner. At 72 h of hormone treatment at concentration of 10^{-7} M, we obtained the highest increase (19%) for T3 and T4 (10%) compared with primary tenocytes grown without thyroid hormones. The action of thyroid hormones on cell growth has been demonstrated both in vitro and in vivo28. THs regulate cellular metabolic activity, including cell proliferation, apoptosis, and differentiation. Their pleiotropic nature has become more evident by studying amphibian metamorphosis: at cellular level, this entire process is caused by a combination of apoptosis and cell proliferation strictly controlled by THs. Further studies by performing annexin V experiments to investigate the possible action of T3 and T4 on apoptosis on primary tenocytes from healthy rotator cuff tendons show that THs counteracted apoptosis in this primary cells after 48 serum deprivation. Tissue hypoxia and apoptosis have been demonstrated in tears of the rotator cuff²⁹⁻³⁰. Apoptosis should be considered one of the final mechanisms within the picture of the failed healing response typical of tendinopathy. THs seem to have a protective actions against apoptosis induced by serum deprivation³¹.

That study has nevertheless several limitations: they did not perform immunohistochemistry to demonstrate the presence of T3 and T4 receptors isoforms *in vivo*; we need to understand whether, with other methods to induce tenocytes apoptosis, THs still exert a favourable action; to our knowledge, furthermore, this is the first report where it is clearly demonstrate that the receptors isoforms for T3 and T4 are present on rotator cuff tendons.

Future perspectives

The relationship between thyroid hormones and tendons diseases appears clinically relevant. The presence of high levels of TR isoforms, their protective action during tenocyte apoptosis, and the capability to enhance tenocyte proliferation in vitro in healthy tendons reinforces the idea of a physiological action of THs in the homeostasis of tendons, but does not allow to clarify the role of THs in the pathogenesis of the rotator cuff tears. There is increasing recognition of the prevalence of autoimmune thyroid diseases in patients with connective tissue disorder, highlighting a common mechanism for this disease pathogenesis^{23,32,33}. Much research remains to be performed to clarify the exact role of THs in tendon tissues and their implications in tendons ruptures, tendinopathies and tendon healing. If this association is confirmed, assessment and management of patients with tendon conditions may have to be revisited.

References

- Brent GA. Tissue-specific actions of thyroid hormone: insights from animal models Reviews in Endocrine & Metabolic Disorders 2000; 1:27-33.
- Yen PM. Physiological and molecular basis of thyroid hormone action. Physiological Reviews 2001; 81:1097-1142.
- Sheue-yann Cheng S. Multiple Mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endoc Metab Disord 2000; 1:9-18.
- Oetting A. New insights into thyroid hormone action. Best Practice and Research Clinical Endocrinology and Metabolism 2007; 21:193-208.
- Flamant F, Samarut J. Thyroid hormone receptor: lessons from knock-out and knock-in mice. Trends Endoc and Metab 2003; 14:85-90.
- Duncan WS. The relationship of hyperthyroidism to joint conditions. J Amer Med Ass 1928; 91, 1779.
- Wright V, Haq AMMM. Periarthritis of the shoulder. Aetiological considerations with particular reference to personality factors. Ann Rheum Dis 1976; 35, 213.
- Iversen K, Sindbjerg-Hansen V, Snorrason E. Periarthrosis humero scapularis ved morbus Basedowii Nord Med 1946; 30, 741.
- 9. Meulengracht E, Schwarts M. Course and prognosis of humeroscapular periarthritis. Nord Med 1951; 46, 1629.

- Oldham BE. Periarthritis of the shoulder associated with thyrotoxicosis. N.Z. Med. J. 1959; 29, 766.
- Coste F, Delbarre F, Braun S, Forette B, Panahi F. Algodystrophie reflexe et sclerodermie chez une hyperthyroldienne apres administration de radioiode. Bull Soc med Hop Paris 1967; 118: 451.
- 12. Anwar S, Gibofsky A. Musculoskeletal Manifestations of Thyroid Disease. Rheum Dis Clin N Am 2010; 36: 637-646.
- Oliva F, Giai Via A, Maffulli N. Calcific Tendinopathy of the Rotator Cuff Tendons Sports Med Arthrosc 2011; 19:237-243.
- Milgrom C, Novack V, Weil Y, Jaber S, Radeva-Petrova DR, Finestone A Risk factors for idiopathic frozen shoulder sr. Med Assoc J 2008; 10:361-364.
- Purnell DC, Daly DD, Lipscomb PR. Carpal-tunnel syndrome associated with myxedema. Arch Intern Med 1961; 108:751-756.
- Garrity JA, Bahn RS. Pathogenesis of graves ophthalmopathy: implications for prediction, prevention, and treatment. Am J Ophthalmol 2006; 142:147-153.
- Salvi M, Girasole G, Pedrazzoni M, et al. Increased serum concentrations of interleukin-6 (IL-6) and soluble IL-6 receptor in patients with Graves' disease. J Clin Endocrinol Metab 1996; 81:2976-2979.
- Diez JJ, Hernanz A, Medina S, Bayon C, Iglesias P. Serum concentrations of tumour necrosis factor-alpha (TNF-alpha) and soluble TNF-alpha receptor p 55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. Clin Endocrinol (Oxf) 2002; 57:515-521.
- Knopp WD, Bohm ME, McCoy JC. Hypothyroidism presenting as tendinitis. Phys Sportsmed. 1997; 25:47-55.
- Harvie P, Pollard TCB, Carr AJ. Calcific tendinitis: Natural history and association with endocrine disorders. J Shoulder Elbow Surg 2007; 16:169-173.
- Oliva F, Berardi AC, Misiti S, Verza Felzacappa C, Iacone A, Maffulli N. Thyroid Hormones Enhance Growth and Counteract Apoptosis in Human Tenocytes Isolated From Rotator Cuff Tendons. Cell Death Dis 2013 Jul 4; 4:e705.
- 22. Ayala J, Rodríguez M, Jiménez JM, Méndez A, Blanco A.

Occurrence and evolution of T3 fibroblast nuclei in healing tendons from growing chicks. Scand J Plast Reconstr Surg Hand Surg 1991; 25(3):217-220.

- Kivirikko KI, Laitinen O, Aer J, Halme J. Metabolism of collagen in experimental hyperthyroidism and hypothyroidism in the rat. Endocrinology 1967; 80(6):1051-1061.
- 24. Mackley JR, Ando J, Herzyk P, Winder SJ. Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin. Biochem J 2006; 396:307-316.
- 25. Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of Tendon Defect with Dermal Fibroblast Engineered Tendon in a Porcine Model. Tissue Engineering 2006; 12:775-788.
- Clarke AW, Alyas F, Morris T, Robertson CJ, Bell J, Connell DA. Skin-derived tenocyte-like cells for the treatment of patellar tendinopathy. Am J Sports Med 2011; 39:614-623.
- Connell D, Datir A, Alyas F, Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells. Br J Sports Med 2009; 43:293-298.
- Kim H, Choi YH, Park SJ, Lee SY, Kim SJ, Jou I, Kook KH. Antifibrotic effect of Pirfenidone on orbital fibroblasts of patients with thyroid-associated ophthalmopathy by decreasing TIMP-1 and collagen levels. Invest Ophthalmol Vis Sci 2010; 51:3061-3066.
- Benson RT, McDonnell SM, Knowles HJ. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. JBJS (Br) 2010; 92:448-453.
- Longo UG, Oliva F, Denaro V, Maffulli N. Oxygen species and overuse tendinopathy in athletes. Disab and Rehab 2008; 30:1563-1571.
- Verga Falzacappa C, Mangialardo C, Patriarca V, et al. Thyroid hormones induce cell proliferation and survival in ovarian granulosa cells COV434. J Cell Physhiol 2009; 221: 242-253.
- Boelaert K, Newby PR, Simmonds MJ, et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med 2010; 123:183.
- Oliva F, Zocchi L, Codispoti A, et al. Transglutaminases expression in human supraspinatus tendon ruptures and in mouse tendons. BBRC 2009; 379(4):887-891.