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Abstract

Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of
modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control
and an experimental group are compared, and subgroups can be characterized by differential expression for only a
subgroup-specific set of genes or proteins. Finding such genes and corresponding patient subgroups can help in
understanding pathological pathways, diagnosis and defining drug targets. The size of the subgroup and the type of
differential expression determine the optimal strategy for subgroup identification. To date, commonly used software
packages hardly provide statistical tests and methods for the detection of such subgroups. Different univariate methods for
subgroup detection are characterized and compared, both on simulated and on real data. We present an advanced design
for simulation studies: Data is simulated under different distributional assumptions for the expression of the subgroup, and
performance results are compared against theoretical upper bounds. For each distribution, different degrees of deviation
from the majority of observations are considered for the subgroup. We evaluate classical approaches as well as various new
suggestions in the context of omics data, including outlier sum, PADGE, and kurtosis. We also propose the new FisherSum
score. ROC curve analysis and AUC values are used to quantify the ability of the methods to distinguish between genes or
proteins with and without certain subgroup patterns. In general, FisherSum for small subgroups and t-test for large
subgroups achieve best results. We apply each method to a case-control study on Parkinson’s disease and underline the
biological benefit of the new method.
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Introduction

Subgroup detection is a common goal in many analyses of

modern omics data. For gene and protein expression data, the

most frequent research task is the comparison of a control group

and an experimental group, or of healthy and diseased subjects.

Parametric methods, e.g. based on Student’s t-test or moderated t-

test statistics, as well as non-parametric methods, e.g. based on

permutations as in the Wilcoxon test statistic, are commonly used.

However, in many cases the underlying assumption of these

methods, a homogenous experimental group, is not justified. This

is especially true for cancer biology where even a clearly defined

cancer type can be associated with a subgroup structure due to

inherent biological heterogeneity. It has been shown that for

several cancer types certain oncogenes can cause heterogeneous

expression patterns, e.g. in breast cancer [1], lung cancer [2], and

prostate cancer [3]. In such cases the disease group might be

decomposed into subgroups that can be characterized by

differential expression for different sets of genes or proteins.

For some cancer types, such patient subgroups are known to

some extent and can be explained by different molecular subtypes

of the cancer, or by clinical variables like tumor grade or stage.

Moreover, the underlying aim for the ongoing development of

subgroup detection methods is the identification of yet unknown

subgroups that are of clinical relevance, for example since group

membership correlates with progression or therapy response.
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Results from subgroup detection analysis might be highly relevant

to personalized medicine, e.g. for the development of new drug

targets. Therefore, a large amount of data is collected and

searched for variables with a distinct expression pattern: Prefer-

ably, only the (yet unknown but) relevant patient subgroup shows

e.g. higher expression levels in particular variables, whereas the

expression between healthy controls and other diseased patients

does not differ. Thus, instead of identifying biomarkers that are

able to distinguish all observations in the experimental group from

controls, often the focus is on the detection of single features, i.e.

genes or proteins, that characterize disease stages or disease

subtypes. In this case, subgroup detection approaches are based on

univariate methods.

In many software packages for the analysis of omics data only

basic measures and tests for differential expression are available,

typically including Student’s t-test. This is the optimal test for the

detection of location differences between two groups of samples if

all observations per group are realizations of random variables

with the same normal distribution. However, depending on the

aim of the study exactly those variables that do not meet the

assumption of identical distributions are the most interesting ones.

For that reason, many univariate methods for subgroup

detection have been proposed in the literature, especially in the

context of omics data analysis. Depending on the interest of the

researcher these methods can be used as stand-alone methods for

univariate analyses or for dimensionality reduction before the

application of multivariate methods [4]. introduced COPA, a

method for cancer outlier profile analysis, which is shown to be more

powerful than the t-test, in case of a small number of up-regulated

values. An important aspect of COPA is the search for pairs of

genes with mutually exclusive outlier samples. For the above

mentioned reasons, we focus on univariate methods and do not

consider COPA in our work [5]. proposed a two-step procedure

called profile analysis using clustering and kurtosis (PACK), which

consists of a preselection step to identify variables of interest and

the subsequent computation of the kurtosis to characterize the

subgroup pattern and rank the variables according to their

importance [6]. proposed the outlier sum (OS), in which first

location and variance are determined with robust measures and

then values of extreme observations are summed up to an overall

score [7]. presents a refinement, the outlier robust t-statistic (ORT), in

which location and variability are estimated only from observa-

tions of the control group [8]. presented the percentile analysis for

differential gene expression (PADGE), a strategy that makes use of

existing statistical tests (e.g. t-test, Wilcoxon test) and applies them

iteratively to subsets of extreme observations, where the size of the

subset is decreasing. Existing subgroups will cause a characteristic

increase in the fold change when plotted against percentiles.

In previously published simulation studies, subgroup size is

varied and for the subgroup of interest, a fixed distribution is

considered, mostly a normal distribution with shift 2 [9].

compared the performance of OS and Student’s t-test and were

the first to consider a more general, non-parametric shift

alternative. However, a comprehensive comparison of all these

approaches is still missing. The goal of this paper is to perform a

profound comparison of basic tests commonly used in omics

facilities with such tests that are specifically developed for outlier or

subgroup detection. We provide guidance in which situation which

method is best or at least competitive. We also include a new test

strategy that is based on the simple idea of Fisher’s exact test.

In addition to univariate statistical tests for differential analysis,

many software solutions provide multivariate procedures such as

principle component analysis (PCA) or hierarchical clustering.

These methods are useful for visualization of the structure of the

data and to detect global differences between groups of samples,

and we highly recommend their use to obtain a first impression of

the data. They facilitate the examination if the most relevant

groups (such as healthy vs. diseased or treated vs. untreated)

separate well or if problems with the sample material or

preprocessing steps are likely. Thus, systematic errors that result

from batch or lab biases may become apparent. Obviously, in case

the PCA reveals any subgroups of samples in the disease group,

these should be analyzed further. But unfortunately, in many

applications, there are no subgroups that stand out in resulting

biplots. This is due to the fact that small subgroups often have only

a small impact on the overall variation in the data, especially if the

subgroup only differs regarding a small proportion of the variables

in the data set or if the difference in expression levels is small. This

has been shown before, e.g. by [10], who have illustrated by means

of real and simulated data, that this type of subgroup does not

necessarily separate from the remainder of observations in

ordinary biplots. Again, basic methods like PCA are not

appropriate for the detection of small subgroups in single variables

of larger data sets. Precisely since each variable is assessed

independently at first, univariate approaches permit a different

view on the data in comparison to common multivariate methods.

We present an innovative design for simulation studies in the

context of subgroup detection. We focus on variables where

observations in the reference group (controls or healthy subjects)

and the majority of the disease group follow the same distribution

and the remaining observations form exactly one subgroup within

the disease group and show differential values. Note that the

assumption of a single subgroup per variable does not imply that

the disease group in general incorporates only one subgroup. In

fact, it is quite possible that there are several subgroups that reflect

e.g. different subtypes of the disease. More details on this issue can

be found in the discussion. In our simulation, different assumptions

about the differential subgroup size and the corresponding

distribution are made. We investigate different types of location

and scale shifts of the expression in the subgroup. In contrast to

previous publications, we do not vary total sample size and the size

of the subgroup alone, but also the type of the subgroup

distribution as well as the degree of deviation of the subgroup.

This means that different methods are compared over a wide

range of alternatives in contrast to the common comparison at one

or two alternatives, which may or may not reflect the general

performance of the methods. Furthermore, the consideration of a

case-control design allows for the consideration of variables that

show non-disease-specific subgroups, which is an important factor

when it comes to real data application. However, this has been

ignored for the most part up to now. Another advantage of our

approach is that we can calculate an upper bound for the

performance, since in the controlled scenario of the simulation

study the true distributions and therefore the theoretically optimal

likelihood ratio is available. We also apply the considered tests to

real proteomics data from a case-control study on Parkinson’s

disease and show that the new FisherSum method generates new

biological insights.

The remainder of this work is organized as follows. The section

Methods introduces all measures and tests that are taken into

consideration for our simulation study, including the new method.

We then describe the overall design of the Simulation study for

subgroup detection, list the different parameter settings that were used

with different distributional assumptions, elucidate our advanced

study design, and explain the quality criterion we chose to

compare the different methods. Afterwards, we present the Results

of the simulation study and of the real data analysis. We close with

a Discussion and an outlook.

Measures for the Detection of Patient Subgroups
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Methods

Tests and Scores in comparison
In this section, we introduce all methods for subgroup detection

that are compared in the simulation study. Mostly up-regulation is

regarded as the preferred direction for biomarkers. Thus we

consider, w.l.o.g., the one-sided case of up-regulated subgroups,

with corresponding adaptations in tests and scores where possible,

e.g. the one-sided instead of the two-sided t-test. If desired, the

methods are also easily applicable to bidirectional regulations.

As standard method, we include Student’s t-test, a good choice

for global shifts. In the next section, we first introduce four

methods for subgroup detection that were developed in the context

of omics data, namely OS [6], ORT [7], PADGE [8] and kurtosis

as central part of PACK [5]. Corresponding R code can be found

in File S1. Additionally, we include Bartlett’s test for homosce-

dasticity as possible alternative. All these methods are univariate

and corresponding scores and p-values respectively are computed

separately for each variable in the data set, independently from

observations in other variables.

We then introduce a new score called FisherSum that combines

ideas from the Minimum M score introduced by [11] and the outlier

sum. Finally, we describe the calculation of an upper theoretical

bound on the performance of the tests.

Previously presented methods for subgroup detection
The test statistic OS sums up expression values that are

regarded as outliers according to a robust definition. First step is

the robust standardization of the expression values per gene by

dividing the median-centered values by the MAD (median

absolute deviation). Values from the disease group D that exceed

a threshold cOS , which is the sum of the 75 percent quantile q75

and the interquartile range IQR per gene, are defined as outliers

and added up to the OS, i.e.

OS~
X

x[D,xwcOS

x, cOS~q75zIQR:

Large values of OS can result from a single outlier much greater

than cOS or from an outlier subgroup above the threshold.

The outlier definition that is used for ORT is presented as an

improved version of OS. The authors argue that in the calculation

of OS, both centering and scaling factors per gene are derived

from all observations, i.e. from both groups, which leads to

overestimation of variance and location in case of present

subgroups. In contrast to OS, the threshold for outlier definition

cORT is derived based on the observations in the control group

only. Let x~(x1, . . . ,xnC
,xnCz1, . . . ,xnCznD

)’ denote the observed

expression values for a single variable. The median of the controls

C, C~(x1, . . . ,xnC
), is denoted by medC , and medD is defined

analogously for the disease group D, D~(xnCz1, . . . ,xnD
). qC

75 and

IQRC denote the 75 percent quantile and the interquartile range,

respectively, of the expression values in C. The set U of outlier

disease samples contains the observations in D that exceed the

threshold cORT~qC
75zIQRC . Then the test statistic can be written

as

t�~

P
U

xi{medC

medianfDxi{medC Dxi[C ,Dxi{medDDxi[Dg
:

The authors showed that ORT outperforms OS in several

situations.

PADGE is a more complicated method that conducts statistical

tests on a set of subsets of two groups. First, the user chooses a

series ct,t~1, . . . ,T , e.g. 80, 85 and 90 percent, which are used to

define subsets in the controls C and diseased patients D,

respectively, as follows:

Ct~ observations in C that exceed the ct quantile in Cf g,

Dt analogously. The chosen statistical test, e.g. Student’s t-test or

Wilcoxon’s rank-sum test, is derived on each of the T resulting

pairs of subsets, and the corresponding p-values are corrected for

multiple percentiles afterwards. Additionally, the expression ratios

rt between the subsets are calculated. Assuming that the control

group is homogeneous and the disease group contains an up-

regulated subgroup, the difference in location will become more

apparent with increasing quantiles. The authors propose a

summary score for candidate ranking that considers the corrected

p-values pt as well as the (relative) expression ratio between the

(subgroups of) samples:

S~ max
t

{
rt

r0

:log pt

� �
,

where r0 is the expression ratio between the groups when all

observations are included. Thus, the term rt=r0 describes the

relative variability of overexpression in the disease group. As the

exact computational steps are not described down to the last detail

in the corresponding publication, we use a PADGE-like score in

our simulation study.

PACK allows the researcher to look for variables where the

sample falls into major subdivisions as well as variables that show

small outlier groups. The purpose of PACK’s clustering step is the

preselection of variables that are most likely to show heteroge-

neous expression. We skip the initial step and directly compute the

kurtosis for each variable by using the R package e1071 [12]. This

simpler one-step version is referred to as PAK in the manuscript.

We also included Bartlett’s test for homoscedasticity (from the R

package stats, [13]) in our study, because basically each variable

that shows significant changes in variation between the two groups

in comparison can be potentially interesting. The test assesses if

two groups have equal variance, under the assumption of

normality.

FisherSum: a new method based on the idea of Fisher’s
exact test

The software ProtoArray Prospector (Life Technologies, Carlsbad,

California, USA) provides a test statistic that is called Minimum M

statistic. It is a rank-based method that aims at finding unknown

subgroups of patients in two-group comparisons. Basically, the

proposed procedure is equivalent to a Minimum Fisher’s exact

test, where the minimum is determined from a set of p-values. In

turn, each observation is tested as possible cutpoint. Since we focus

our attention on smaller subgroups, we do not adopt the method

as it stands but instead use Fisher’s exact test in a similar manner.

Generally, Fisher’s exact test is used to analyze the statistical

dependence of two binary variables. We investigate the depen-

dence between the group membership (disease group D or controls

C) and the size of the observed values, i.e. whether the individual

values exceed a particular cutoff cut. This corresponds to a

contingency table as shown in Table 1.

Here, n11 denotes the number of observations in D with

expression values above the cutoff cut. For our purpose, a

reasonable cutoff is a quantile of the values in the disease group

Measures for the Detection of Patient Subgroups
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per variable. In the following, dc denotes the c percent quantile of

D, i.e. 10 percent of the values in D are larger than d90. Under the

null hypothesis that there is no difference between the groups, dc

should be similar to cc, the corresponding c percent quantile of the

controls, and one would expect that about 100{c percent of the

values in C and in D, respectively, exceed dc. On the contrary, in

case of a real e.g. 10 percent subgroup in D with increased values,

no (or at least few) values in the control group should exceed the

cutpoint d90.

For each variable in the data set, we choose the corresponding

quantile d90 as cutpoint cut. Our experience is that this cutoff

yields good results on both real and simulated data compared to

other quantiles. It does not attach too much importance to single

outliers or very small groups of up-regulated observations, that are

more likely to be false positives or hard to validate, and at the same

time it works also well for subgroups larger than 10 percent. In the

latter case, only the most extreme observations are taken into

account, which corresponds to a smaller subgroup with larger

deviation from the remainder of the group. Therefore, variables

that show a global difference between the two groups will also yield

a higher FisherSum score depending on the amount of shift. In

principle, the p-values of the corresponding Fisher test (which we

call Fisher10, see File S1) serve the purpose to rank variables

according to the potential existence of up-regulated subgroups, but

deriving the Fisher tests for each variable of a high-throughput

data set leads to large numbers of ties regarding the p-values, due

to the discrete character of the test statistic. Besides, it can yield a

number of false positive results. Thus, instead of directly using the

p-values, we propose a scoring method following the idea of OS.

Basically, after centering the observations with the median of the

controls, we sum up the values that correspond to n11, i.e. the

values in D above the cutpoint, and subtract the sum of

observations corresponding to n12. In more detail, both sums are

adjusted using weights wD and wC such that our test statistic

FisherSum can be written as

FS~wD

X
x[D,xwcut

x{wC

X
x[C,xwcut

x:

The subtraction represents a penalty for variables that show up-

regulated subgroups in both control and disease group. We refer to

this pattern as non-disease-specific subgroups. A natural choice for

wD and wC is 1=nD and 1=nC , respectively, which becomes

important in case of unbalanced designs or for the comparison of

scores across studies with different sample sizes. If only a single

study with balanced design is of interest, one can simply choose

wD~wC~1. In general, the weights can also be used to adjust the

magnitude of the penalty for a non-disease-specific pattern if

desired by the researcher.

Depending on the study design, one might want to provide p-

values in addition to the actual value of the FisherSum FS to

control the type I error. As for methods like OS and ORT where

the distribution of the test statistic is not expressible in closed form,

p-values can be obtained by estimating the distribution of FS

under the null situation. For an explorative analysis and to

generate hypotheses for future studies, it might be sufficient to rank

the variables according to decreasing FS values, as it was

analogously proposed for PACK [5].

We are well aware that Fisher’s exact test assumes fixed margins

instead of fixed entries in certain cells. In our simulation we

compared these two methods, computing the quantile dc from the

disease group only, which results in stochastic margins with fixed

cell values as well as the computation of the (100zc)=2 quantile

from the pooled data. The first approach outperformed the

theoretically more accurate second version in the simulation (data

not shown) and was chosen as the new Fisher type algorithm. Due

to our focus on up-regulated subgroups in D, we apply a slight

modification where we set negative values to zero.

Simulation Study for Subgroup Detection

A commonly assumed distribution for expression values is the

normal distribution N(m,s2) which is meant to represent the noise

in real data. Usually, in simulation studies the values of a subgroup

are then drawn from N(mzd,s2),dw0, most often with d~2.

While we generally agree with the assumption of normality for the

majority of observations, we recommend to reconsider the

assumptions regarding the dysregulated subgroup. We are

convinced that in the biological context, a shift in means usually

goes along with an increased variance, which makes truly existing

subgroups even harder to detect. To our knowledge, we are the

first to evaluate the effect of simultaneously increased mean and

variance in the patient subgroup together with the yet ignored

non-disease-specific patterns. Note that this simultaneous increase

of mean and variance is due to biological reasons and relates to the

values corresponding to the patient subgroup in comparison to the

other observations. This biological effect appears for variables

regardless of their location, i.e. for variables with high as well as

with lower values. The increased variance would also apply to

subgroups that are down-regulated in comparison to the

remainder of the observations. It is not to be confused with the

general effect of variances depending on the mean, which should

be taken care of by appropriate data normalization: a log-like scale

instead of the original scale, e.g. log-intensities in gene expression

analysis or in fluorescence-based techniques like protein micro-

arrays. Without proper normalization and transformation, larger

values tend to have larger variances due to technical reasons. For

variables with values in the lower to medium range the effects may

be negligible. On the other hand, for variables with large absolute

values and a truly present patient subgroup there is more variation

to the values themselves and the resulting computed scores.

In summary, the aims and special features of our study are as

follows. We assess the effect of different types of distributions for

the observations in a patient subgroup. For each distribution type,

a range of parameters is considered, which corresponds to an

increasing difference between the subgroup and the remainder of

the observations. This permits a comprehensive comparison of the

different methods. Additionally, our extended definition of the null

situation allows the assessment of the robustness of each method

against false positive results, where both control and disease group

show up-regulated subgroups. This indicates a non-disease-specific

subgroup, that might be due to unknown confounders or to single

values that are extreme by chance, and that is not considered

relevant for the characterization of disease subgroups.

Table 1. Contingency table to assess the dependence
between the group membership and the size of the observed
values.

D C

.cut n11 n12 n1.

#cut n21 n22 n2.

nD nC

doi:10.1371/journal.pone.0079380.t001

Measures for the Detection of Patient Subgroups
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Design of the simulation study
Before going into details of the simulation, we first establish

some notation. Consider a two group comparison between a

control group C and a disease group D, both of sample size n. Let

D contain a patient subgroup of size nSG~q:n with q[ 0,1½ �, and

w.l.o.g. assume qn[N. In clinical practice, the focus often is on

smaller subgroups with qv0:3. However, for statistical consider-

ations and for the sake of completeness, we also include large

values of q up to q~1, which corresponds to the whole disease

group. Let ds denote the underlying distribution for the patient

subgroup in scenario s, s~I, II, III, and let z denote the degree of

deviation from the remainder of observations which follow the

standard normal distribution N(0,1). Then the distribution Ds in

the complete disease group D is modelled as follows as in equation

(1) with the subgroup distribution ds as listed in Table 2.

Ds~(1{q):N(0,1)zq:ds ð1Þ

Distribution DI reflects the assumption that is made most

commonly in publications to date. DII is an example for the

combination of simultaneously increased mean and variance,

where U ½0,b� denotes the uniform distribution on the interval

½0,b�. We have chosen a one-parameter alternative hypothesis, due

to comparability with the other cases. Even though this

distribution is not a typical choice, the resulting distributional

patterns look much more like real data distributions in comparison

to DI . Regardless of the actual distribution ds of the subgroup

(qv1), the variance in the disease group is increased compared to

the variance in the control group. Moreover, it seems quite

reasonable from a biological point of view, that levels of e.g.

disease related proteins have a wider distribution in D. In contrast

to scenarios I and II, there is no shift in the expected means

between the groups in scenario III, and the dysregulation is two-

sided. We include this different scenario to point out that there are

even more possibly interesting alternatives. It is interesting to see

how methods mainly optimized for scenario I perform in scenario

III. For fixed sample and subgroup sizes, each of the scenarios can

be parameterized by a single parameter which will be referred to

as z. Depending on the scenario, z equals d, b, or s, respectively.

To our knowledge, we are the first to consider different

distributional assumptions as well as varying subgroup and sample

sizes. Previous publications mostly varied the proportion of the

subgroup for a fixed shift in means. Our simulation study includes

all combinations of sample sizes n~20,30,50,70,100 per group

and subgroup proportions q~0:1,0:2,0:3,0:5,0:75,1. Results not

shown in this paper can be found in File S1. Depending on the

omics technique, sample sizes are sometimes very low (below 10).

Even so, whenever the aim of a study is the characterization of

unknown subgroups, the data sets should contain significantly

larger numbers of samples in order to achieve reliable and

meaningful results. Hence, our study only includes sample sizes

starting from n~20.

In our setting, we want to distinguish variables that show the

desired up-regulation only in a subgroup of the disease group D
from variables with a so-called null situation. Let f0 and f1 denote

the density of a variable without and with subgroup, respectively.

Variables with disease-specific subgroup pattern (H1) have

densities f0 and f1 in control and disease group, respectively,

whereas the other variables have the same densities in C and D. In

case of no subgroups at all, f0 holds true for C and D and if

subgroups are present in both groups, all observations follow f1

(according to scenario I, II, or III). These two null situations are

called H0a and H0b, respectively. By expanding the definition of

the null situation, we are able to assess the robustness of the

different methods against non-disease-specific patterns (H0b).

Results of simulation study and real data analysis will demonstrate

this advantage of our study design over the commonly used

simpler version. For reasons of comparability with previous

studies, we conduct our comparison study both with the simple

null situation H0a only and with the combination of the two null

distributions H0a and H0b. Let pH0a
[½0,1� be the proportion of

variables from H0a among the null situations. For our simulations

we chose pH0a
~1=2 in order to evaluate the impact of the new null

situation on the different methods. Per parameter setting we

simulated 1000 variables in total and obtain and obtain a data

matrix that contains variables from H0a, H0b and H1 with different

frequencies which are given in Table 3.

We compare the different methods by means of a quality

criterion that is defined analogously to the AUC (area under the

receiver operating characteristics curve). In the clinical context,

the AUC is mostly used to assess the performance of a binary

classifier. For example, a binary response such as healthy vs.

diseased is predicted using a continuous variables like gene

expression values or clinical parameters. In our study, the presence

of the required distributional pattern for each variable is

interpreted as binary response which is predicted with p-values

or scores, respectively. In particular, we generate a data set of size

1000|2n for every parameter combination according to the

described pattern. This represents 1000 variables with 2n
observations each (n for C and n for D), where the first 500 are

drawn from a null situation and the last 500 from the respective

alternative. The response vector truth thus has the form

truth~(H0, . . . ,H0,H1, . . . ,H1)’. Then, the AUC is derived for

each method separately by predicting this truth with the

corresponding vector of p-values and scores, respectively. Sensi-

tivity corresponds to the probability of correctly identifying a

variable with a present subgroup only in D, whereas specificity

means that variables with identical distributions for both groups C
and D are classified correctly. We utilize the R package pROC

[14].

Note that the application of AUC does not require the

specification of a threshold based on which the single variables

are classified as H0 and H1, respectively. The choice of this cutoff

Table 2. Different subgroup distributions considered in the
simulation studies.

s z ds Increase in

I d.0 N(d,1) mean

II b.0 N(0,1)+U[0,b] mean and variance

III s.1 N(0,s2) variance

doi:10.1371/journal.pone.0079380.t002

Table 3. Structure of the simulated data matrix.

C D # Variables Distributional Pattern

H0a f0 f0 250 no subgroups at all

H0b f1 f1 250 subgroups in C and D

H1 f0 f1 500 subgroup only in D

doi:10.1371/journal.pone.0079380.t003
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depends on the study aim, where the focus may be either on

specificity or on sensitivity, in other words on minimizing type I

and type II error, respectively. Depending on the subsequent steps

of the analysis one might want to start with a larger set of

potentially interesting variables. To provide generally applicable

results, we chose the AUC as quality criterion, as it allows the

simultaneous assessment of sensitivity and specificity of each test

method. The AUC scale has been used before, see e.g. [15]. Most

of previous work on subgroup detection methods used true positive

vs. false positive plots to illustrate results and compare different

methods with respect to type I error. This is a convenient

presentation only if the number of considered alternatives is small.

As our focus is on the performance of the methods across a large

range of alternatives (e.g. depending on the degree z of deviation

from the null hypothesis), this kind of presentation is less

appropriate than a comparison on the AUC scale.

Assessing upper bounds for performance using the
likelihood ratio

In our simulations, we are not only able to compare different

tests and scores regarding their performance, but we can also

calculate the theoretically best performance achieved by the

likelihood ratio (LR). It can reveal for which scenario or parameter

range an improvement of the current methods would be most

worthwhile. The LR is derived as ratio of L1, the likelihood based

on the desired distributional pattern, and L0, the likelihood

assuming a null situation. According to the notation introduced

above, LR can be derived as

LR~L1=L0~
PC f0

:PD f1

pH0a
PC f0 PD f0z(1{pH0a

)PC f1 PD f1

~
1

pH0a
PD

f0

f1
z(1{pH0a

)PC
f1

f0

Note that LR must outperform the other methods in all our

simulations, but it is not applicable to real data in this exact manner,

since true subgroup size and subgroup distribution are not known for

real data scenarios. However, in the simulation study the densities f0

and f1 are defined by equation (1) and with all parameters fixed, the

densities of the mixed distributions can be simulated easily. The

parameter pH0a
, that characterizes the composition of the null

situation, is chosen by the researcher as well. Altogether, the derivation

of LR is straight forward in the simulation study.

Results

We first present the results of an extensive simulation study.

Then, a real data analysis is provided for proteomics measure-

ments from a study on Parkinson’s disease. This study shows that

interesting patient subgroups and corresponding variables can be

detected with the appropriate tests.

Simulation study
We illustrate the results of the simulation study in two steps.

First, we consider a specific combination of sample size n and

subgroup proportion q under various distributional assumptions,

see Figure 1. We discuss the case of a 10 percent subgroup in a 70

versus 70 comparison, corresponding to the real data set that is

analyzed afterwards. Our focus is on the advanced simulation

design that incorporates two patterns for the null situation.

Second, we describe the influence of variations in the parameters n
and q, when the scenario is fixed (see File S1, section 1.1 for

composite and section 1.2 for the simple null situation).

The following results correspond to the simulation design with

the composite null situation and pH0a
~0:5. In Figure 1, each

scenario is summarized by a single plot that depicts the AUC of

the different methods depending on the degree z of deviation of

the subgroup’s distribution from N(0,1). Thus, for each point z the

methods could be compared in more detail regarding false positive

and false negative rates by comparing the corresponding ROC

curves (see also Figure 2). Again, we focus on the dependency of

AUC values from z, to which to date little attention has been paid.

As can be seen from Figure 1, our new method FisherSum

outperforms the other methods considerably in the case of up-

regulated subgroups (scenarios I and II). The next best methods

are t-test and Bartlett’s test, where the former one attains higher

AUC values for smaller deviations while the latter one performs

second best for larger values of z. Note that AUC values for

methods that do not check for outlier observations in the control

Figure 1. Comparison of different methods by means of AUC values. Deviation z from N(0,1) is given on x-axis, AUC value for distinguishing
variables with and without the desired subgroup pattern on y-axis, according to simulation scenario I (mean increase, panel A), scenario II (mean and
variance increase, panel B) and scenario III (variance increase, panel B), with group sizes nC~nD~70 and true subgroup proportion q~0:1. Plots
correspond to pH0a

~0:5, see text for more details. Colors of lines correspond to upper theoretical bound (black, LR) and seven tests and scores (other
colors, see legend).
doi:10.1371/journal.pone.0079380.g001
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group, namely OS and ORT, do not necessarily converge to 1.

Overall, the performance of all methods is quite similar between

scenario I and II and the order of the tests is basically the same.

The essential difference of scenario III compared to scenarios I

and II is that the deregulation is bidirectional and does not cause a

shift in the theoretical mean. Hence, AUC values from the t-test

are close to 0.5, and PADGE works only slightly better. From

Figure 1 we also see that the gap between the optimal LR and the

best method is much larger in this scenario, i.e. other tests are

required for this kind of subgroup pattern. Except for very small

deviations, Bartlett’s test for homoscedasticity performs best.

FisherSum is second best and distinctly better than the group of

OS, ORT and kurtosis. Basically, FisherSum considers variables in

scenario III as variables with an up-regulated subgroup of size

nq=2.

The most interesting numbers regarding the parameter

combination (n,q,pH0a
)~(70,0:1,0:5) are summarized in Table 4.

To receive an impression how the type I errors of the different

methods compare, we present a generic set of ROC curves for

each scenario and the combination (n,q,pH0a
)~(70,0:1,0:5) in

Figure 2. Each panel in Figure 2 corresponds to one single value of

z in one of the three panels in Figure 1. Since we want to

summarize the method comparison across a range of alternatives,

we prefer to present the results on the AUC scale.

For other combinations of group size n and subgroup

proportion q similar statements hold true. We summarize the

findings in the next paragraphs. Corresponding plots can be found

in File S1, section 1.1. For small to moderate subgroup sizes up to

about 20–30 percent the new method FisherSum outperforms the

existing methods in scenario I and II for all considered sample

sizes in the middle range of deviations. For large subgroups of at

least 50 percent, in scenarios I and II, the t-test performs best,

followed by FisherSum, ORT and PADGE which yield quite

similar results. For small deviations, these scores achieve values

distinctly above 0.5, whereas kurtosis, OS, and Bartlett’s test

perform worse.

In case of a composite null situation with pH0a
~0:5, simulation

results point out the major drawback of OS and ORT. For

moderate subgroup sizes around 20 percent, they seem to work

well for small deviations but then AUC values decrease, with an

asymptotic value of 0.75 (in general 0:5zpH0a
=2). Apart from the

fact that AUC values of kurtosis converge to 1 for small subgroups,

it appears that generally other methods should be favored.

We point out that the kurtosis allows for the detection of two

kinds of alternatives. On the one hand, large positive values

indicate the existence of smaller subgroups, which we are

interested in. On the other hand, if the size of the subgroup is

about 50 percent, then large negative values are observed. As we

analyze positive kurtosis as measure for subgroup detection,

simulation results with larger subgroups show that the corre-

sponding AUC values become much smaller than 0.5. Switching

the group assignment in the calculation of the ROC curve would

mirror the corresponding curves horizontally at AUC~0:5.

In scenario III, in contrast to scenarios I and II, Bartlett’s test

performs best for virtually each combination of sample size and

subgroup size. Only for smaller values of n, q, and s FisherSum

performs slightly better. Noteworthy, even the gap between the the

optimal LR and the Bartlett test for homoscedasticity is quite large.

Additionally, we conducted the whole simulation study again

with pH0a
~1, which corresponds to the commonly used design. In

absence of non-disease-specific subgroups, OS and ORT perform

Figure 2. Comparison of different methods by means of ROC curves. Three panels correspond to panels in Figure 1, i.e. scenarios I, II, III with
pH0a

~0:5 from left to right, see text for more details. The curves correspond to the following z values: (d,b,s)~(2,3,3). Colors of lines correspond to
upper theoretical bound (black, LR) and seven tests and scores (other colors, see legend).
doi:10.1371/journal.pone.0079380.g002

Table 4. Comparison of methods for subgroup detection
with respect to AUC values, for group size nC~nD~70 and
subgroup size q~0:1, pH0a

~0:5, corresponding to Figure 1.

Criterion AUC(LR)$0.95 AUC(Method) = 0.95

Scenario I II III I II III

LR (optimum) 0.96 0.95 0.96 2.0 3.63 2.93

FisherSum 0.89 0.87 0.72 2.6 5.28 .6

ORT 0.79 0.77 0.68 ‘ ‘ ‘

OS 0.70 0.72 0.66 ‘ ‘ ‘

t-test 0.79 0.77 0.49 4.2 9.24 ‘

PADGE 0.75 0.74 0.55 6.6 .10 ‘

Kurtosis 0.60 0.62 0.66 4.6 .10 .15

Bartlett 0.70 0.72 0.80 3.2 6.60 5.33

Left three columns contain AUC values when tests are compared at z value with
AUC~0:95 for LR. Right three columns correspond to z values with AUC~0:95

for each test. Best values plotted in bold per simulation scenario.
doi:10.1371/journal.pone.0079380.t004
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much better and AUC values converge to 1 as desired. While there

are some more differences concerning the other tests, the overall

results are similar when it comes to best performances.

Application to real data
In this section we assess the performance of the methods on a

real data set. Whereas the task in the simulation study is to

distinguish between the (composed) null situation and a single type

of alternative, there is a mixture of several alternative patterns in

the real data set, that may also include global shifts or single

outliers for example. As can already be seen from the simulations,

different methods detect different patterns well.

We analyze a subset of the data from the ParkCHIP project.

The data have been described before, see [16], and are available at

www.medizinisches-proteom-center.de/Ahrens_et_al. Samples

from 72 patients with Parkinson’s disease (PD) were compared

to 72 samples from age and gender-matched healthy controls. The

protein microarray used in this study provides about 9500

variables. As PD is known to be a heterogeneous disease (e.g.

[17]), we expect that the methods detect interesting variables.

We applied all seven methods studied above to this data set and

inspected the empirical distributions of the top ranked variables

according to the obtained p-values and scores, respectively. File S1

contains the corresponding plots for the top 15 candidates for all

methods (File S1, section 1.3). In summary, only FisherSum,

Fisher10 and PADGE find a large number of variables with the

desired pattern, where only a subgroup of observations in the

disease group is up-regulated. FisherSum favors variables with

wider distributions, as was expected because FS only centers but

does not scale the observations. In contrast, among the top ranked

variables of Fisher10 and PADGE, there are also candidates with

small variation and only slight increases in the subgroup. Although

even slight increases may have a biological relevance, they are

often considered to be false positive results. Most candidates

chosen by OS and ORT show small non-disease-specific

subgroups. Kurtosis and Bartlett’s test primarily detect variables

with a single or very few outliers and thus are not suitable for our

task either.

Next, we focus on the results of FisherSum and compare it to

the t-test. In Figure 3 (panel A) we plot the (2log10) p-value of the

t-test against FS for each variable of the data set. The measures

show moderate correlation (Pearson correlation r~0:67), but

especially the extremes are quite different and FS reveals some

interesting additional variables. We picked three variables from

each of the following categories: largest FS, smallest p-value in t-
test, highly ranked in FS but poorly ranked in t-test, and vice

versa. The corresponding (log2)-intensity plots are shown in

Figure 3 (panel B).

Finally, we searched the literature for the top candidates found

by FisherSum, see Table 5. Our method finds candidates that have

been associated to Parkinson’s disease or neurodegenerative

diseases in general as well as yet unknown candidates. We

conclude that FisherSum is able to detect biologically relevant

subgroups. Note that the two top-ranked variables are both

assigned to the PALM2 gene with basically the same potential

subgroup identified. The same holds true for the PDPK1 gene,

with ranks 6 and 19 (not shown here). Hence presumably these

candidates are true positives.

Discussion

We compared various tests and measures for subgroup detection

on simulated and real data. We have shown that our FisherSum

method outperforms existing methods over a large range of sample

sizes if the subgroup size is small or moderate (up to about 25

percent). This limitation in subgroup size is in line with our initial

aim to detect smaller subgroups. We use the 90 percent quantile in

the disease group as cutpoint to construct a contingency table

(Table 1) as it is used for Fisher’s exact test. This corresponds to a

minimal subgroup size of interest equal to 10 percent and also

yields good results for moderately larger subgroup sizes.

It has been shown previously, that the best strategy for subgroup

detection may depend on the combination of sample and

subgroup size as well as on the true degree of deviation from the

null situation with no differential expression. To date, the

influence of the underlying distribution of the subgroup has been

ignored for the most part. By comparing the commonly assumed

distribution with two others scenarios, we point out that the true

underlying distribution does have an effect on the performance of

the methods that were included in our simulation study. However,

having a closer look at the results of scenarios I and II, we do not

notice a fundamental difference between the test performances. In

our opinion, the widely assumed subgroup distribution N(d,s2) is

too simple, because of the fairly good separation of the subgroup

from the remainder of the disease group for larger values of d. On

the other hand, the distribution for scenario II makes it quite hard

to detect the true subgroup, as it always overlaps with the other

observations. Due to the similar results for these two extreme

situations, we expect comparable conclusions for mixtures of these

scenarios. We included scenario III to demonstrate that the class of

subgroup problems is not limited to location shift problems. To

our knowledge, an increased variance in a patient subgroup has

not been discussed before. If non-specific subgroups are included

in the null situation, none of the compared methods shows good

performance for small subgroups when compared to LR. This

underlines that novel methods are required if new classes of

subgroup distributions are considered, because the commonly used

subgroup detection methods might fail.

The aim of our simulation study was to provide an overall

comparison of several methods for the detection of patient

subgroups. Therefore, we chose three different distributions for

the subgroup and within these scenarios we gradually increased

the degree of deviation from the null situation. Thus, we are able

to check for a uniformly best method or assess the performance of

competing methods across a certain range of alternatives rather

than focussing on a single parameter value. For example, in our

simulation, comparing the t-test and Bartlett’s test for homosce-

dasticity, the t-test performs better for small deviations from the

null situation, whereas Bartlett’s test is better for larger deviations

for certain combinations of sample and subgroup size. In short, the

two major advantages of our study design arise from the

consideration of a wide range of alternatives for several

distributions as well as from the incorporation of a new type of

null situation, where subgroups are present in both groups. Results

of simulation and real data analysis show that our new method is

less likely to yield false positive results in terms of these non-

disease-specific variables.

Since our data is drawn from normal distributions with variance

equal to one, the relevant values of the deviation (e.g. the required

z value to attain a certain AUC value, or the value z where one test

outperforms another one) might not be appropriate for real data.

In cases of doubt, we recommend to adapt this study with

variances that fit a specific application. Differences in the amount

of variance in the data may be due to different biological variances

or different technical variances that correspond to different omics

techniques. To generate data sets that are as close to real data as

possible, variances might be drawn from empirical distributions of
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variances from real data sets measured with the technique of

interest.

At this point, we did not include multivariate methods that are

commonly applied in the field of statistics. A univariate approach

is appropriate, if a study either aims explicitly at the detection of

univariate biomarker candidates or if dimensionality reduction is

required. Candidates of univariate analyses may be combined by

multivariate procedures like hierarchical clustering afterwards.

Note that due to the different selection criteria the results will differ

from clustering results using the common approach. For the

detection of small subgroups that are present in a small proportion

of the observed variables, specific approaches are required. An

important next step is to derive an appropriate method for the

combination of subgroup indicating variables.

As already stated in the beginning, the assumption of at most

one single subgroup per variable does not exclude the existence of

several subgroups in the disease group regarding the multivariate

dataset. The distributional pattern that we use in the simulation

study only requires that if the disease group is composed of more

than one subgroup, then the sets of effected variables are disjoint.

For methods presented previously in the literature as well as for

FisherSum, the subgroup structure may be assessed in more detail

by an additional subsequent analysis. Just a short remark on the

effect of multiple subgroups that are present in the same variable.

In this case one has to differentiate further according to the

direction of the regulation in the subgroups. If the subgroup

regulations show the same direction, e.g. up-regulation, the

variable is even easier to detect for the majority of the presented

methods. On the other hand, if a variable shows at least one up-

regulated and at the same time at least one down-regulated

subgroup, the performance of the different methods varies.

FisherSum for example is not affected in this case, while outlier

sum could perform worse due to increased variation in the

variable. In this context, an alternative interpretation of the third

scenario with increased variance in the subgroup is possible.

Consider the subgroup observations above and below the mean as

two different subgroups. One of them is up-regulated, the other

one down-regulated with the simplification that the degree of

deviation is equal for both subgroups. The actual size of each

subgroup would equal nq=2.

The presented methods are appropriate for explorative analyses

and for the generation of new hypotheses on potential patient

subgroups. Thus, the resulting candidate variables and the

respective marked patient subgroups require further biological

validation. Apart from correlations within the data sets one can try

to correlate the potentially subgroup indicating variables with

clinical variables such as survival times to check for their relevance.

The explicit determination of the potential patient subgroup is of

particular interest, but it is provided directly only for OS and

ORT. Obviously, for FisherSum, it is a natural choice to assign the

Figure 3. Comparison of FisherSum and t-test on real data. Panel A: Score of t-test (2log10 (p)) plotted against FisherSum, applied to ParkCHIP
data [16] using weights wC~wD~1. Each point represents a variable in the data set and the two corresponding measures. Highlighted are three
variables for each of the following categories: highest score for FisherSum, smallest p-value for t-test, highly ranked in FisherSum but not in t-test, and
vice versa. Panel B: log2-intensity plots corresponding to variables highlighted in panel A. Observations on the left-hand side of each plot represent
the control group, and the right-hand side corresponds to patients with Parkinson’s disease. To point out the differences in variation, we used the
same scale for all variables.
doi:10.1371/journal.pone.0079380.g003

Table 5. FisherSum’s top-ranked variables for ParkCHIP data
[16].

FisherSum t-test

Rank FS Description pt Rank Reference

1 25.7 PALM2 0.027 141 [18]

2 25.4 PALM2 0.010 42 [18]

3 24.9 MTHFR 0.037 217 [19]

4 24.9 GSK3A 0.001 2 —

5 24.9 PPP1R2P9 0.017 90 —

13 18.7 CALB2 0.083 636 [20]

For the above mentioned reasons, we chose wD~wC~1. In the literature, some
of them have already been associated with neurodegenerative diseases, in
general or in particular with PD. According to p-values of the t-test (no
adjustment for multiple testing), some of these candidates would have been
missed.
doi:10.1371/journal.pone.0079380.t005
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samples above the chosen cutoff to the potential subgroup. This

will work well, if the true subgroup size is about 10 percent.

Another way to identify subgroups based on the set of potentially

interesting variables is to conduct hierarchical clustering with the

top (e.g. 50) candidates of FisherSum. Assuming that a small

number of variables indicate the same subgroup, an existing

subgroup structure is expected to become apparent.

The presented results for our new method are promising as we

are able to detect disease-related variables in real data. One option

for future research is the introduction of scoring methods that

allow for the separate optimization of sensitivity and specificity,

respectively. There are several ways to adjust our method to the

specific characteristics of a data set, for example by choosing a

different quantile, by varying the weights wC and wD, by defining

thresholds for p-values of Fisher’s exact test, or by incorporating

the distance between the potential subgroup and the remainder of

the group. An important goal for the future is to evaluate different

approaches for the combination of subgroup indicating variables

in order to gain insight into the overall patient subgroup structure.

Supporting Information

File S1 Figure S1, In-depth comparison of different
methods’ AUC values for the composite null situation.
The study includes all combinations of sample sizes

n~20,30,50,70,100, subgroup proportions

q~0:1,0:2,0:3,0:5,0:75,1, and scenarios s~I ,II ,III with

pH0a
~0:5. AUC values are plotted against the deviation z.

Figure S2, In-depth comparison of different methods’
AUC values for the simple null situation. The study

includes all combinations of sample sizes n~20,30,50,70,100,

subgroup proportions q~0:1,0:2,0:3,0:5,0:75,1, and scenarios

s~I ,II ,III with pH0a
~1. AUC values are plotted against the

deviation z. Figure S3, (log2-)intensity plots of the top

candidates for ParkCHIP data. To compare the considered

methods, the respective top 15 candidates of each method are

shown in (log2-)intensity plots. We used controls and Parkinson

patients from the ParkCHIP project. Table S1, Overview
scenario I, composite null situation. Best tests for all

combinations of sample size n and subgroup proportions

q~0:1,0:2,0:3,0:5,0:75,1 in scenario I, pH0a
~0:5, neatly arranged

in a color-coded table. Table S2, Overview scenario II,
composite null situation. Best tests for all combinations of

sample size n and subgroup proportions q~0:1,0:2,0:3,0:5,0:75,1
in scenario II, pH0a

~0:5, neatly arranged in a color-coded table.

Table S3, Overview scenario III, composite null situa-
tion. Best tests for all combinations of sample size n and subgroup

proportions q~0:1,0:2,0:3,0:5,0:75,1 in scenario III, pH0a
~0:5,

neatly arranged in a color-coded table. Table S4, Overview
scenario I, simple null situation. Best tests for all

combinations of sample size n and subgroup proportions

q~0:1,0:2,0:3,0:5,0:75,1 in scenario I, pH0a
~1, neatly arranged

in a single table. Table S5, Overview scenario II, simple
null situation. Best tests for all combinations of sample size n

and subgroup proportions q~0:1,0:2,0:3,0:5,0:75,1 in scenario II,

pH0a
~1, neatly arranged in a single table. Table S6,Overview

scenario III, simple null situation. Best tests for all

combinations of sample size n and subgroup proportions

q~0:1,0:2,0:3,0:5,0:75,1 in scenario III, pH0a
~1, neatly arranged

in a single table.
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