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The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simu-
lations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into
the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free
energies are typically calculated in nanoscale computational boxes simulated under periodic bound-
ary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is
distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic
boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size
effects, which affect primarily the charging component of the insertion free energy, are dependent on
the box size, and can be large when the ligand bears a net charge, especially if the protein is charged
as well. This article investigates finite-size effects on calculated charging free energies using as a test
case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast
cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges
−5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the
cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of
finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two cor-
rection schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both
schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann
(PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations
under both non-periodic and periodic boundary conditions, the latter at the box size considered in the
MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given
system, its dependence on the box size being analytical. The latter scheme also provides insight
into the physical origin of the finite-size effects. These two schemes also encompass a correction
for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either
scheme essentially eliminates the size dependence of the corrected charging free energies (maximal
deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a
general solution to the problem of finite-size effects in free-energy calculations involving charged
solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular associ-
ation, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and
solvent-solvent partitioning. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826261]

I. INTRODUCTION

The accurate calculation of binding affinities is a ma-
jor challenge in computational (bio)chemistry. Focusing on
classical explicit-solvent calculations based on, e.g., molecu-
lar dynamics (MD) simulations, the most common approach
for evaluating the binding free energy of a ligand to a re-
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ceptor, e.g., a protein, relies on the application of a thermo-
dynamic cycle. In this approach, the ligand is alchemically
transformed from a species exempt of interactions with its en-
vironment into the fully interacting species, i.e., inserted into
the system, both in the solvated protein and free in solution.1–5

The binding free energy is then equal to the difference be-
tween these two insertion free energies, up to a standard-
state correction1, 2, 4 taking into account the possible appli-
cation of binding restraints.1, 2, 4–8 The ligand insertion free
energies typically encompass two components: a non-polar
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component, equal to the reversible work of installing the
ligand-environment van der Waals interactions in the absence
of ligand charges, and a charging component, equal to the re-
versible work of subsequently installing the intra-ligand and
ligand-environment electrostatic interactions. The accuracy of
these free-energy calculations is limited by errors in force-
fields,9–11 sampling,12–14 and methodology (e.g., Jacobian and
metric-tensor effects,15 contribution of constraints,16 Hamil-
tonian lag,17, 18 or singularities19). Beyond these, finite-size
effects20–24 represent another major source of errors in these
types of calculations. They arise from a discrepancy between
the actual simulation and the ideal bulk situations in terms
of system size, spatial boundary conditions, and treatment of
the non-bonded interactions. Due to the long range and large
magnitude of electrostatic interactions, these errors are nearly
exclusively electrostatic in nature, affect primarily the charg-
ing component of the ligand insertion process, and are most
significant for systems where the ligand bears a net charge,
especially when the protein is also charged.

Considering a classical pairwise-additive force field, the
ideal bulk (infinite-dilution) situation would be achieved by
considering a system of macroscopic size simulated under
non-periodic boundary conditions, e.g., a spherical droplet,
and in which the electrostatic interactions are defined by
the exact application of Coulomb’s law. Due to computa-
tional limitations, however, simulations typically involve a
nanoscale system simulated under periodic boundary condi-
tions, e.g., a periodically replicated cubic computational box,
and in which the electrostatic interactions are defined by a pe-
riodic lattice-sum,25 e.g., Ewald summation26 or related mesh
methods.27–30 As a result, charging free energies calculated
based on MD simulations deviate from their target values by
an amount that depends on the size of the computational box,
on the protein and ligand charge distributions, on the possible
presence of counter-ions, and on the nature of the solvent.21–24

At present, finite-size effects on charging free ener-
gies are best understood in the context of the solvation of
monoatomic ions.20, 22, 23, 31–34 In this case, a numerical cor-
rection scheme23 and a corresponding approximate analyt-
ical version31 are available. The numerical version of this
scheme has also been recently extended to the case of small
polyatomic ions35 and to the insertion of such ions into a
simple model receptor, namely, a functionalized C60 bucky-
ball in water.36 However, considering the most general case
of a complex polyatomic charged ligand inserted into a
charged protein in solution, none of the schemes available
at present36–43 are sufficiently general, accurate, and practical
(see discussion in Sec. V C).

For general protein-ligand systems, the finite-size error
on the ligand charging free energy arises from four physical
effects:

1. Periodicity-induced net-charge interactions. When us-
ing lattice-sum electrostatics under periodic boundary
conditions, spurious interactions are introduced between
the protein-ligand complex in the reference compu-
tational box, its periodic replicas, and the homoge-
neous neutralizing background charge density filling
the infinite periodic system.20, 21, 23–25, 31 Such interac-

tions would be absent in the ideal situation of Coulom-
bic electrostatics under non-periodic boundary condi-
tions and, therefore, represent an artifact. Considering
the leading net-charge component of these interactions,
the corresponding error in the charging free energy is
solvent-independent, inversely proportional to the box-
edge length (which determines the distance between pe-
riodic replicas as well as the magnitude of the back-
ground charge), and proportional to the difference in
squared net-charge between the ligand-uncharged and
the ligand-charged states of the system.20

2. Periodicity-induced net-charge undersolvation. When
using lattice-sum electrostatics under periodic bound-
ary conditions, the solvent in the periodic replicas
of the computational box is perturbed by the peri-
odic copies of the protein-ligand complex and thus
essentially unavailable for the solvation of the com-
plex in the reference computational box, leading to
undersolvation.20, 21, 23, 24, 31 Such a perturbation would
be absent in the ideal situation of a macroscopic sys-
tem with Coulombic electrostatics under non-periodic
boundary conditions and, therefore, represents an arti-
fact. Considering the leading net-charge component of
this undersolvation effect, the corresponding error in the
charging free energy is proportional to one minus the
inverse of the solvent dielectric permittivity (which de-
termines the magnitude of the solvent polarization re-
sponse), inversely proportional to the box-edge length
(which determines the distance between the reference
complex and its periodic replicas), and proportional to
the difference in squared net-charge between the ligand-
uncharged and the ligand-charged states of the system.20

3. Discrete solvent effects. When using lattice-sum elec-
trostatics under periodic boundary conditions, the av-
erage of the electric potential over the computational
box is set to zero. In the ideal situation of a macro-
scopic system with Coulombic electrostatics under non-
periodic boundary conditions, the electric potential is set
to zero at infinity. As a result, for a pure-solvent sys-
tem in the orientational-disorder limit (an idealized situ-
ation corresponding to the absence of intermolecular ori-
entational correlations between the solvent molecules),
the two representations differ by an offset potential.
The sign and magnitude of this offset depends on the
quadrupole-moment trace of the solvent model, which
determines the integral of the Coulomb potential gen-
erated by the atomic partial charges of an isotropically
tumbling solvent molecule.22, 31 This offset potential rep-
resents an artifact induced by the periodic representa-
tion. The corresponding error in the charging free en-
ergy is proportional to the solvent equilibrium density,
to the quadrupole-moment trace of the solvent model, to
the fraction of the computational box occupied by the
solvent, and to the net charge of the ligand.

4. Residual integrated potential effects. The three above ef-
fects would be sufficient to account for the error in the
charging free energy if the protein and ligand were both
point charges without solvent-excluded volume and lo-
cated at the same position in space. However, when these
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species involve polyatomic charge distributions encom-
passed within distinct solvent-excluding envelopes, it is
necessary to consider an additional contribution to the
offset potential between the periodic and non-periodic
representations. This additional source of finite-size er-
ror can actually be defined by the difference between the
above reference situation of naked point charges at the
same position and the real situation of polyatomic charge
distributions within distinct cavities. The induced offset
potential will be determined by the difference in the cor-
responding potential integrals over the entire space un-
der non-periodic boundary conditions, a difference that
is called here a residual integrated potential (RIP). The
resulting error in the charging free energy is inversely
proportional to the box volume (which converts a RIP
into a corresponding average potential) and to the dif-
ference of net-charge-RIP product between the ligand-
uncharged and the ligand-charged states of the system.

When neutralizing counter-ions are included during the
MD simulations, possibly along with an excess of neutral salt,
their main influence is to effectively neutralize the protein and
to provide additional dielectric screening. However, the corre-
sponding finite-size errors remain qualitatively the same and,
if the ligand is charged, can still be of large magnitude.

These effects have been highlighted in previous
work,20, 22, 23, 31 and analytical expressions are available to cor-
rect for errors due to periodicity-induced net-charge interac-
tions, periodicity-induced net-charge undersolvation, and dis-
crete solvent effects. An analytical correction is also available
for residual integrated potential effects when the protein and
ligand can be represented by point charges at the center of
a single spherical cavity.20 However, this is far too severe an
approximation for most protein-ligand binding applications.
Thus, at present, there is no general scheme to correct lig-
and charging free energies for finite-size errors in realistic
situations (see discussion of previously proposed schemes in
Sec. V C).

Whereas the importance of finite-size effects is widely
recognized in the context of ionic solvation,20, 22, 23, 31–35, 44–46

it is often overlooked in the context of binding free energy cal-
culations. A commonly formulated assumption is that these
effects largely cancel out between the two alchemical legs of
the thermodynamic cycle, involving the charging of the ligand
within the solvated protein-ligand complex and free in solu-
tion, respectively. However, this assumption is seldom justi-
fied and can lead to very large and protocol-dependent errors
in the calculated binding free energies when the ligand bears a
net charge, especially when the protein is charged as well. Be-
cause finite-size errors in the calculated free energies depend
on the box size, error cancellation will be poor when the sim-
ulations of the protein-ligand complex and of the free ligand
are conducted in computational boxes of different sizes, as is
typically the case. However, even if identical box sizes are se-
lected, error cancellation is only expected to occur for terms
that depend solely on the ligand charge and not on its environ-
ment, i.e., on the presence or absence of the protein as well as
on the nature of the solvent and the fraction of the box it oc-
cupies. In practice, none of the four error components listed

above satisfy this condition and the cancellation is likely to
remain poor even for relatively large box sizes. The same ap-
plies to MD simulations including neutralizing counter-ions.
There, although the periodicity-induced net-charge interac-
tion and net-charge undersolvation components will become
environment independent, the discrete solvent and residual in-
tegrated potential components will still fail to cancel out.

Although the present article focuses on the impact and
correction of finite-size errors in protein-ligand binding free
energy calculations involving charged species (e.g., for drug
design), these errors affect all main types of free-energy cal-
culations relevant to (bio)chemical problems, also including
biomolecular association in general (e.g., protein-protein
or protein-nucleic acid binding), residue mutation (e.g., for
protein engineering), pKa and redox potential estimation,
substrate transformation (enzymatic mechanism studies),
solvation (e.g., for solubility studies and force-field param-
eterization), and solvent partitioning (e.g., for bioavailability
studies) calculations.

The aim of the present study is to investigate the nature
and magnitude of electrostatic finite-size effects on the
binding free energies of charged species calculated based
on explicit-solvent MD simulations employing lattice-sum
methods, and to devise an appropriate correction scheme for
eliminating these effects. The binding of the ligand 2-amino-
5-methylthiazole (net charge +1 e) to an engineered protein
cavity binding site of yeast cytochrome c peroxidase (CCP
W191G “Gateless”47, 48) in water is taken here as a test case
(Figure 1). Considering differently protonated isoforms of
the protein (net charges −5, 0, +3, or +9 e), MD simulations
are carried out in the absence of counter-ions considering
cubic boxes of edge lengths covering at least the range
7.42–11.02 nm. For the protein net charges of −5 and +9 e,
additional simulations are also performed in the presence of a

FIG. 1. Protein-ligand test system. Stereo view of the charged ligand 2-
amino-5-methylthiazole (stick representation) bound to the engineered bind-
ing site of yeast cytochrome c peroxidase (CCP W191G “Gateless”47). The
atomic sites used in the system with protein net charge +9 e for introducing
an additional quasi-isotropic quadrupole moment (system net9quad) are also
shown, namely, a central point charge of magnitude −80 e (red sphere) and
36 peripheral sites of total charge +80 e within a distance range of 0.81–
0.85 nm (blue spheres). Note that the ligand binding mode is the one used in
the present simulations, originally chosen based on the experimental binding
mode of the same ligand to a related mutant protein,89 and does not exactly
correspond to the experimentally inferred binding mode for the CCP W191G
“Gateless” mutant.48
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neutralizing atmosphere of sodium and chloride ions corre-
sponding to a molal salt concentration of about 0.1 mol kg−1.
For the protein net charge of +9 e, an artificial protein charge
distribution is also considered that includes an additional
quasi-isotropic quadrupole moment, which is expected to
have nearly no impact on the protein-ligand and protein-
solvent interactions, but a strong influence on the magnitude
of finite-size effects via the residual integrated potential
term.22

Because this study focuses on finite-size effects, possi-
ble additional complications related to insufficient conforma-
tional sampling are avoided by performing the MD simula-
tions with fixed solute atom positions. Furthermore, the charg-
ing free energy of the ligand is evaluated using only the two
end-state MD simulations, involving the fully uncharged and
the fully charged ligand, respectively, by invoking a linear-
response approximation.49, 50 Using fixed solute atom posi-
tions justifies the linear response approximation, because the
response of the environment to the ligand charging is solely
due to the solvent (and, possibly, counter-ion) relaxation. Fi-
nally, the investigation of finite-size effects is restricted to the
ligand charging process in the different environments. No at-
tempt is made to evaluate actual binding free energies, which
would require the calculation of corresponding non-polar con-
tributions and the application of a standard-state correction,
but lead to rather unrealistic numbers given the above rigid-
solute approach.

The large impact of finite-size errors on the calculated
ligand charging free energies is clearly demonstrated, and
two alternative correction schemes for eliminating these er-
rors are proposed and compared. The first approach, which
is referred to as the numerical correction scheme, relies on
comparing the results of continuum-electrostatics Poisson-
Boltzmann (PB) calculations performed under either non-
periodic or periodic boundary conditions, the latter using the
same box size as in the simulation, and considering both the
ligand-uncharged and the ligand-charged states of the system.
After inclusion of an additional discrete solvent correction
term, this leads to the desired correction for finite-size ef-
fects. The second approach, which is referred to as the an-
alytical correction scheme, attempts to disentangle the four
components of finite-size errors. In this scheme, analytical
expressions are formulated for the periodicity-induced net-
charge interaction, periodicity-induced net-charge undersol-
vation, and discrete solvent correction terms. The residual in-
tegrated potential term is approximate and quasi-analytical
in the sense that it is an analytical function of the box-edge
length, although it involves three parameters that must be ob-
tained numerically. The latter three parameters are residual
integrated potentials, and their evaluation relies on PB cal-
culations performed under non-periodic boundary conditions,
which can easily be performed using free or commercial PB
solvers such as UHBD,51, 52 DelPhi,53 or APBS.54

II. THEORY

A. Binding free energies based on MD simulations
using lattice-sum electrostatics

Calculations of protein-ligand binding free energies
based on classical explicit-solvent MD simulations typically

rely on a thermodynamic cycle where the ligand is alchem-
ically inserted into the system, both in the solvated protein
and free in solution.1–5 The binding free energy is then equal
to the difference between the free-energy changes associated
with two insertion processes. If the insertion free energies of
the free and bound ligand are noted �Gfree and �Gbound, re-
spectively, the binding free energy �Gbinding is defined by

�Gbinding = �Gbound − �Gf ree, (1)

a similar equation holding for the corresponding standard
quantities �Go

binding, �Go
bound, and �Go

free after application
of a standard-state correction1, 2, 4 taking into account the
possible application of binding restraints.1, 2, 4–8 Note that the
two terms in the right-hand side of Eq. (1) are defined within
a common constant, which depends on the nature of the in-
tramolecular interactions in the decoupled state of the ligand,
i.e., prior to insertion. In the present work, the decoupled state
of the ligand is defined by normal intramolecular covalent
and van der Waals interactions along with the absence of
any intramolecular electrostatic interactions (atomic partial
charges set to zero). In this case, the insertion process in
each of the two environments can be decomposed into two
consecutive subprocesses, involving: (i) the formation of the
ligand-environment van der Waals interactions, including
repulsion and dispersion components (non-polar insertion
process); (ii) the establishment of the intramolecular and
ligand-environment electrostatic interactions (charging
process). Based on this decomposition, Eq. (1) can be
rewritten

�Gbinding = �Gvdw,bound − �Gvdw,f ree

+�Gchg,bound − �Gchg,f ree. (2)

The four quantities are calculated independently (see, how-
ever, Ref. 55 for a combined procedure), most commonly
using alchemical free-energy schemes such as thermody-
namic integration56 (TI), free-energy perturbation57 (FEP),
the Bennett acceptance ratio58 (BAR), or the multistate Ben-
nett acceptance ratio59 (MBAR). As discussed in Sec. I, these
calculations are affected by finite-size errors, predominantly
via the charging terms of Eq. (2). While finite-size effects
may in principle also affect the nonpolar insertion terms, the
corresponding error is essentially negligible given reasonably
large but still computationally affordable system sizes.32, 34

The nature and magnitude of the finite-size errors in the
charging free energies depend on the type of electrostatic
interaction scheme applied in the MD simulations, and the
present discussion is restricted to one of the most commonly
employed schemes, namely, lattice-sum electrostatics.

To compensate for finite-size effects, a correction
��Gchg,COR must be applied to the charging free energy
�Gchg of the ligand in a given environment (free or bound).
For the ease of notation, the subscript “chg” will be omitted in
the following, i.e., �G will automatically refer to the charging
free energy of the ligand and ��G to a finite-size correction
contribution to this charging free energy, both quantities be-
ing specific to a given environment and a given box size. For
simplicity, it will also be assumed here that the computational
box is a cube of edge length L. One thus looks for a correction
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term ��GCOR such that

�GMD,NBC = �GMD,PBC(L) + ��GMD,COR(L), (3)

where �GMD,PBC is the raw charging free energy calculated
from the MD simulations under periodic boundary conditions
(PBC) and �GMD,NBC is the corresponding charging free en-
ergy corrected for finite-size effects, i.e., corresponding to the
same explicit-solvent force-field model, but in the ideal situ-
ation of a macroscopic system with Coulombic electrostatics
under non-periodic boundary conditions (NBC).

In the present study, the raw charging free en-
ergy �GMD,PBC is calculated via a simple linear-response
approach,49, 50 which approximates the exact TI expression

�GMD,PBC(L) =
∫ 1

0
dλ

〈
∂U (λ′)

∂λ′

〉
λ

, (4)

where λ is a common scaling factor applied to all atomic par-
tial charges of the ligand, taking the total ligand charge Q(λ)
from Q(0) = 0 to the full ligand charge Q(1) = QL, U(λ′) is
the potential energy of the system in a given instantaneous
configuration as evaluated for a charge-state λ′ of the ligand,
and 〈. . . 〉λ denotes ensemble (trajectory) averaging over con-
figurations generated based on the potential energy U(λ). In
the linear-response approximation, the integrand of Eq. (4) is
assumed to depend linearly on λ, resulting in

�GMD,PBC(L)≈
∫ 1

0
dλ

[
(1−λ)

〈
∂U (λ′)

∂λ′

〉
0

+λ

〈
∂U (λ′)

∂λ′

〉
1

]

= 1

2

[〈
∂U (λ′)

∂λ′

〉
0

+
〈
∂U (λ′)

∂λ′

〉
1

]
. (5)

The linear-response approximation is justified in the present
context by the fact that the MD simulations involve fixed so-
lute atom positions. Since the ligand atoms in particular are
fixed in space, the right-hand side of Eq. (5) may be further
simplified into

�GMD,PBC(L) ≈ 1

2
[〈�U 〉o + 〈�U 〉1], (6)

where �U = U(1) − U(0). This follows from the observation
that for a given system configuration, U encompasses a lin-
ear (ligand-environment) and a quadratic (intramolecular lig-
and and through-periodicity ligand-ligand) dependence on λ.
Writing U(λ) = Aλ2 + Bλ + C, Eq. (6) follows directly from
Eq. (5) provided that A is configuration independent, which is
the case when the ligand is rigid.

Finally, it is important to be precise on how the lattice-
sum energy is defined in the MD simulations, because the
form of ��GMD,COR in Eq. (3) will depend on this defini-
tion. Here, it is assumed that the lattice-sum (LS) energy of a
system of N charges {qi} at locations {ri} within a cubic com-
putational box of edge L is given by the expression25, 44, 60–64

ULS = 1

4πεo

⎡
⎣ N∑

i=1

N∑
j>i

qiqjψLS(r ij ) + 1

2
ψo

LS

N∑
i=1

q2
i

⎤
⎦ ,

(7)

where εo is the permittivity of vacuum, rij = rj − ri, �LS is the
LS influence function (electric potential generated by a unit
point charge at the origin multiplied by 4πεo) and �o

LS the
corresponding Wigner self-term constant (difference between
�LS and r−1 in the limit of infinitesimal distances). The in-
fluence function and associated self-term are defined by the
equations

∇2ψLS = −4π
∑
n∈Z3

[δ(r + Ln) − L−3],

(8)
〈∇ψLS〉 = 0, 〈ψLS〉 = 0, and ψo

LS = L−1ξLS,

where δ is the three-dimensional Dirac delta function and
ξLS ≈ −2.837297 is the cubic LS (Wigner) integration
constant,25, 44, 65, 66 accounting for minus the integral over a
unit periodic cube of the LS influence function shifted to the
Coulombic limit at infinitesimal distances. Note that Eq. (7)
includes a pairwise term and a self-term, but no net-charge
term of the form

ULS,NET = − 1

4πεo

1

2
ψo

LS

(
N∑

i=1

qi

)2

. (9)

The inclusion of such a term has been suggested as physically
meaningful,67, 68 but is not implemented in standard MD sim-
ulation programs at present, or in the calculations performed
here. Tinfoil boundary conditions25 were applied as well (no
surface term in Eq. (7)) and the calculated free energies are
all intrinsic33 (no contribution associated to the crossing of
an air-liquid interface). In practice, LS calculations are typi-
cally performed using Ewald summation,26 particle-particle-
particle-mesh27 (P3M), (smooth) particle-mesh-Ewald28, 29

(PME, SPME), or fast-multipole-Ewald30 (FME) methods.
The choice of a specific algorithm influences the numerical
evaluation but not the physics of the interaction.

B. Correction schemes for the raw charging
free energies

The goal of a correction scheme for finite-size effects
is to provide an estimate for the term ��GCOR in Eq. (3).
For a given ligand environment, i.e., protein-bound or free in
solution, this term will correct the raw charging free energy
�GMD,PBC calculated from the MD simulations into a cor-
rected charging free energy �GMD,NBC corresponding to the
situation of a macroscopic system with Coulombic electro-
statics under non-periodic boundary conditions. Two alterna-
tive correction schemes are proposed here, referred to as the
numerical and analytical schemes, their basic principle being
illustrated schematically in Figure 2. As explained at the end
of Sec. I, the terms numerical and analytical refer to the evalu-
ation of three of the four components of ��GCOR, the discrete
solvent correction term being the same in the two schemes.
In the numerical scheme, these three terms are not disentan-
gled and calculated via separate PB calculations at all relevant
box-edge lengths. In the analytical scheme, these terms are
disentangled and depend analytically on the box-edge length,
requiring a single set of PB calculations at a chosen reference
box size.
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,MD NBCGΔ ≈

+ −

+ −

, ( )MD PBCG LΔ

( )ANAG L≈ ΔΔ

( )DSCG LΔΔ

( )NUMG LΔΔ

,PB NBCGΔ , ( )PB PBCG LΔ

, , ( )MD ODL PBCG LΔ, , 0PB ODL PBCGΔ =

FIG. 2. The working principle of the correction schemes to correct a binding
free energy calculated using molecular dynamics (MD) to a value exempt of
finite-size artifacts is illustrated conceptually. Top row: a raw charging free
energy �GMD ,PBC calculated based on explicit-solvent MD simulations un-
der periodic boundary conditions (PBC) considering a cubic computational
box of edge length L and using lattice-sum electrostatics (actual simula-
tion situation) is to be corrected into a corresponding size-independent value
�GMD ,NBC corresponding to explicit solvation under non-periodic boundary
conditions (NBC) in the macroscopic regime and using Coulombic electro-
statics (ideal bulk situation). The brown sphere represents the solute and the
water molecules the explicit solvent. The wavy dashed line symbolizes the
boundary of a macroscopic system under NBC and the straight solid lines
symbolize the boundaries between periodic replicas of the computational box
under PBC. The correction involves two terms. Middle row: the first term ac-
counts for the corresponding change of boundary conditions (PBC → NBC)
based on a continuum-electrostatics Poisson-Boltzmann (PB) model. It can
be evaluated using a numerical (Sec. II C) or an analytical (Sec. II D) scheme,
resulting in corresponding estimates ��GNUM or ��GANA given by Eqs.
(12) and (14). The green shade represents the dielectric continuum account-
ing for the solvent in PB. Bottom row: the second term ��GDSC is a discrete
solvent correction that accounts for the change of solvent description upon
changing the model resolution (PB → MD) in the orientational disorder limit
(ODL) for the solvent (i.e., in the absence of intermolecular orientational cor-
relation between the solvent molecules). It can be evaluated analytically for a
solvent model with a single van der Waals interaction site (Sec. II E), accord-
ing to Eq. (30). In the implicit-solvent PB model, a solvent in the ODL is non-
solvating. In the explicit-solvent MD model, the average electric potential
within the solvent molecules (e.g., negative for a water model with a negative
central charge and positive peripheral charges; shown in blue) is offset by a
constant potential (e.g., positive for water; shown in pink) so as to satisfy the
constraint of vanishing average potential over the box. This offset potential is
responsible for an artifactual contribution −��GDSC to �GMD ,PBC (e.g., for
water in the ODL, apparent solvation of negatively charged solutes and anti-
solvation of positively charged solutes). The correction schemes (Sec. II B)
are defined by Eqs. (10) and (11) for the numerical and analytical variants.

The principle of the numerical correction scheme follows
from an idea previously developed in Refs. 20–24, 31, 32, 34,
35, 69–75, and probably originating from Ref. 46 (see Figure
1 therein). Due to computational limitations, only the quantity
�GMD,PBC can be calculated in the context of explicit-solvent
MD simulations, the quantity �GMD,NBC being inaccessible.
However, in the context of continuum-electrostatics PB cal-
culations, both of the corresponding quantities �GPB,NBC and
�GPB,PBC can be evaluated numerically, the latter consider-
ing a box of the given edge length L, by selecting appropriate
boundary conditions. The difference ��GNUM = �GPB,NBC

− �GPB,PBC thus provides a continuum-electrostatics esti-
mate for the correction term required to eliminate three of
the four types of finite-size errors listed in Sec. I (points
1–4), namely, periodicity-induced net-charge interactions,

periodicity-induced net-charge undersolvation, and residual
integrated potential effects. The remaining contribution is
specific to the explicit-solvent MD approach, and must still
be included in the form of an additional discrete solvent cor-
rection (DSC) term ��GDSC. As a result, the form of Eq. (3)
defining the numerical (NUM) correction scheme reads

�GMD,NBC = �GMD,PBC(L) + ��GNUM (L)

+��GDSC(L). (10)

The procedures for evaluating ��GNUM and ��GDSC are
described in Secs. II C and II E, respectively. The numeri-
cal correction scheme is formally exact within the limits of
the continuum-electrostatics approximation and the numeri-
cal precision of the PB calculations.

The principle of the analytical correction scheme is
to provide an approximate estimate ��GANA for the term
��GNUM, based on explicit expressions for the three types of
finite-size errors encompassed in this correction term. Here
also, a DSC term must be added explicitly. As a result, the
form of Eq. (3) defining the analytical (ANA) correction
scheme reads

�GMD,NBC = �GMD,PBC(L) + ��GANA(L)

+��GDSC(L). (11)

The procedures for evaluating ��GANA and ��GDSC are de-
scribed in Secs. II D and II E, respectively, where ��GANA

(unlike ��GNUM) is written explicitly as a sum of contribu-
tions corresponding to distinct physical effects (see Eq. (14)
below). Although this scheme is analytical, it still relies on
three parameters that must be evaluated numerically on the
basis of PB calculations, so that the term quasi-analytical
might be more appropriate. This scheme is technically an
approximation, but its accuracy is excellent in practice (see
Sec. IV E) and its application is simpler, so that it is the
scheme recommended by the authors. The relative merits of
the two schemes are further discussed in Sec. V.

Owning to their typically negligible magnitudes, the two
proposed schemes omit two correction terms considered in
previous work. These are the terms labeled C2 and D in
Refs. 31, 32, 34, and 35 concerning monoatomic ion sol-
vation and accounting, respectively, for the existence of an
interfacial potential at the solute-solvent boundary and for
a possibly inaccurate permittivity of the solvent model em-
ployed. On the other hand, the term B therein corresponds
to ��GANA (in the special case of a monoatomic spherical
solute) and the term C1 to ��GDSC, while the term A is irrel-
evant for lattice-sum methods. Relative to the work of Ref. 36
on the binding of simple ions to model receptors, the contribu-
tion �Apol + �Adir therein corresponds to ��GNUM, �Apsum

corresponds to ��GDSC, and �Aexc, although relevant,67, 68

is omitted here as not pertaining directly to finite-size
effects.
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C. Numerical correction scheme for finite-size effects

The numerical (NUM) correction scheme relies on the
application of Eq. (10), where ��GNUM is given by

��GNUM (L) = �GPB,NBC − �GPB,PBC(L). (12)

The first term, �GPB,NBC, is obtained by numerical evaluation
of the charging free energy of the ligand in a given environ-
ment, i.e., protein-bound or free in solution, based on a PB
calculation performed under NBC. The result of such a cal-
culation is in principle independent of the size of the com-
putational domain considered, provided that this domain is
sufficiently large for the long-distance surface boundary con-
dition employed in the calculation to represent an adequate
approximation. A distance of about 1 nm between the solute
surface and the box wall is typically sufficient. The second
term, �GPB,PBC, is obtained by a corresponding evaluation of
the charging free energy of the ligand in the same environment
based on a PB calculation performed under PBC, considering
a box of the same edge length L as used in the MD simulation.

The physical parameters of these PB calculations are the
box-edge length L (PBC only), the relative dielectric permit-
tivity εI of the solute interior, the relative dielectric permit-
tivity εS of the solvent, the inverse Debye screening length κ

and Stern layer thickness Rκ of the counter-ion atmosphere
(if counter-ions are present), and the solute-solvent inter-
face definition (e.g., van der Waals, solvent-accessible contact
surface, or solvent-accessible probe-centered surface). For a
given ligand environment and given a specific choice for these
parameters, the PB charging free energy of the ligand under
either NBC or PBC is evaluated as

�GPB = {�GHET [P + L] − �GHOM [P + L]}
− {�GHET [P] − �GHOM [P]}
+ {UDIR[P + L] − UDIR[P ]}. (13)

Here, �GHOM[A] and �GHET[A] represent electrostatic free
energies calculated using the PB solver considering charges of
set A (L: ligand charges; P + L: protein and ligand charges),
either in a homogeneous (HOM; interior and exterior permit-
tivities set to εI, inverse Debye screening length set to zero)
or a heterogeneous (HET; interior permittivity set to εI, exte-
rior permittivity set to εS, and inverse Debye screening length
set to κ) dielectric environment, while �UDIR[A] represents
a direct (vacuum) electrostatic energy calculated by summa-
tion (Coulomb sum for NBC, lattice sum for PBC) consider-
ing the charges of set A and a homogeneous permittivity εI.
For the ligand free in solution, the protein set (P) is omitted.
Additional details on these PB calculations are provided in
Sec. III B.

Correctly connecting the MD and PB calculations re-
quires two important considerations. First, although the ap-
propriate physical value for the effective dielectric permittiv-
ity of a protein interior is matter of debate,76–80 the value to
be used for the correction of MD simulation results relying
on a non-polarizable force field is simply εI = 1. All the PB
calculations reported in this article were carried out using this
value. Second, although the PB model is able to account for
the presence of an overall neutral counter-ion atmosphere by

means of the parameter κ of the linearized PB equation, it will
lead to incorrect results for ��GNUM when counter-ions are
included during the MD simulations to neutralize the protein
charge, possibly along with an excess of neutral salt. In this
case, the best approximate solution for the application of the
numerical correction scheme is to explicitly introduce a neu-
tralizing charge density at the surface of the protein prior to
performing the PB calculations, possibly along with the use of
a non-zero κ value. All the PB calculations reported in this ar-
ticle concerning the numerical correction scheme for systems
with counter-ions were carried out using this approach, albeit
with a zero κ value. However, tests with non-zero κ values (re-
ported in Tables S2 and S4 of the supplementary material154)
showed a negligible influence of this parameter on the results.
The details concerning the generation of the neutralizing sur-
face charge density are provided in Sec. III B. It is impor-
tant to stress that the neutralizing charge density at the protein
surface is only included in the PB calculations to model the
neutralizing counter-ion atmosphere present in the MD sim-
ulations including explicit counter-ions, and is located at the
protein surface because the counter-ion density will be high-
est in this region. When no explicit counter-ions are included
in the MD simulation, the system is implicitly neutralized by a
homogeneous neutralizing background charge density, in the
MD as well as in the PB calculations. Note that even when ex-
plicit counter-ions (MD) and neutralizing surface charge den-
sity (PB) are included, they only neutralize the net protein
charge, the ligand charge still being neutralized by a homoge-
nous background charge.

D. Analytical correction scheme for finite-size effects

The analytical (ANA) correction scheme relies on the ap-
plication of Eq. (11), where ��GANA is an approximation to
��GNUM given by

��GANA(L) = ��GNET (L) + ��GUSV (L)

+��GRIP (L) + ��GEMP (L). (14)

The first three terms in the right-hand side of this equation
are required to eliminate three of the four types of finite-
size errors listed in Sec. I (points 1–4), namely, periodicity-
induced net-charge interactions (NET), periodicity-induced
net-charge undersolvation (USV), and residual integrated po-
tential effects (RIP). The fourth term is empirical (EMP). It
is introduced to ensure that Eq. (14) reproduces the exact an-
alytical result in the special case of a single point charge at
the center of a spherical cavity,20 and can be viewed as a
small adjustment to the undersolvation term ��GUSV. The
procedures for evaluating ��GNET, ��GUSV, ��GRIP, and
��GEMP are described in turn in Secs. II D 1–II D 4.

In the equations provided below, note that: the Avogardo
constant (NA = 6.02214179 × 1023 mol−1) is never included
explicitly, being considered as a mere unit conversion
factor; in the units most convenient for the present article,
the commonly occurring prefactor (4πεo)−1 evaluates to
138.93545585 kJ nm e−2 mol−1, where εo is the permittivity
of vacuum and e the elementary charge (e = +1.602176487
× 10−19 C); the static relative dielectric permittivity εI
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of solute interiors is never written explicitly but auto-
matically set to 1, as discussed in Sec. II C. A number
of quantities are also conveniently already defined here:
the net charge of the protein is noted QP; the net charge
of the ligand is noted QL; the edge length of the cubic
computational box is noted L; the static relative dielec-
tric permittivity of the solvent is noted εS; the cubic
Coulomb integration constant44, 66, 81–83 is ξCB = π/2
− 3 ln(2 + √

3) ≈ −2.380077; the cubic lattice-sum
(Wigner) integration constant25, 44, 65, 66 is ξLS ≈ −2.837297.
For the ligand free in solution, the protein charge QP should
to be set to zero.

The remarks made at the end of Sec. II C concerning the
application of the numerical correction scheme to MD sim-
ulations involving neutralizing counter-ions also apply to the
analytical scheme. In this case, one may as well introduce a
neutralizing charge density at the surface of the protein prior
to performing the PB calculations. However, an even sim-
pler approximate solution is to apply the analytical scheme
with a protein charge QP artificially set to zero, accounting
for an effective surface neutralization of the protein by the
counter-ions. All the PB calculations reported in this article
concerning the analytical correction scheme for systems with
counter-ions were carried out using the latter approach. Note
that unlike the numerical scheme, the analytical scheme is
at present unable to account for the presence of an overall
neutral counter-ion atmosphere by means of the parameter κ

of the linearized PB equation. As a result, all the PB calcula-
tions reported in this article concerning the analytical correc-
tion scheme for systems with counter-ions were carried out
using a zero κ value. However, tests with non-zero κ values
in the context of the numerical scheme (reported in Tables S2
and S4 of the supplementary material154) showed a negligible
influence of this parameter on the results.

1. Correction for periodicity-induced
net-charge interactions

The first term in the right-hand side of Eq. (14),
��GNET, corrects for periodicity-induced net charge interac-
tions (NET). These spurious interactions involve the protein-
ligand complex in the reference computational box, its peri-
odic replicas, and the homogeneous neutralizing background
charge density filling the infinite periodic system,20, 21, 23–25, 31

and are a consequence of the use of periodic boundary con-
ditions in the MD simulations. For lattice-sum electrostatics
and considering the leading net-charge component of these
interactions, the corresponding correction term reads20

��GNET (L) = − ξLS

8πεo

[
(QP + QL)2 − Q2

P

] 1

L
. (15)

This term is solvent-independent, positive when QP and QL

are of the same sign, i.e., when the charging of the ligand
increases the magnitude of the net system charge, and van-
ishes slowly in the limit L → ∞. For the ligand free in solu-
tion, or when the MD simulation of the protein-ligand com-
plex is carried out in the presence of neutralizing counter-
ions, QP should to be set to zero in Eq. (15). In the case of
polyatomic charge distributions, the term ��GNET only ac-

counts for the leading net-charge component of the through-
periodicity and charge-background interactions, higher order
contributions being accounted for by the residual integrated
potential term ��GRIP (Sec. II D 3).

Note that ��GNET is exactly equal to the contribution
that would be introduced into the charging free energy by the
net-charge term ULS,NET of Eq. (9). This net-charge term is not
implemented in standard MD simulation programs at present,
but there may be good reasons for doing so.67, 68 If this term is
included in the lattice-sum energy during the MD simulations,
��GNET must be omitted from the correction scheme.

2. Correction for periodicity-induced undersolvation

The second term in the right-hand side of Eq. (14),
��GUSV, corrects for periodicity-induced net-charge under-
solvation (USV). This undersolvation arises because the sol-
vent in the periodic replicas of the reference computational
box is perturbed by the periodic copies of the protein-ligand
complex, and thus essentially unavailable for the solvation of
the complex in the reference computational box.20, 21, 23, 24, 31

This effect is a consequence of the use of periodic boundary
conditions in the MD simulations, and can be viewed as re-
sulting from the finite effective concentration of the charged
solute in the periodic system. For lattice-sum electrostatics
and considering the leading net-charge component of this ef-
fect, the corresponding correction term reads20

��GUSV (L) = ξLS

8πεo

(
1 − 1

εS

) [
(QP + QL)2 − Q2

P

] 1

L
.

(16)
This term, which is equal to ��GNET in Eq. (15) multiplied
by −(1 − εS

−1), is solvent-dependent, negative when QP and
QL are of the same sign, i.e., when the charging of the ligand
increases the magnitude of the net system charge, and van-
ishes slowly in the limit L → ∞. It decreases in magnitude
with decreasing polarity of the solvent, being maximal for a
conducting solvent with εS → ∞ and zero for a non-polar
solvent with εS = 1. For the ligand free in solution, or when
the MD simulation of the protein-ligand complex is carried
out in the presence of neutralizing counter-ions, QP should to
be set to zero in Eq. (16). In the case of polyatomic charge
distributions within finite-sized cavities, the term ��GUSV

only accounts for the leading net-charge component of the
undersolvation effect, higher order contributions being ac-
counted for by the residual integrated potential term ��GRIP

(Sec. II D 3) and the empirical correction term ��GEMP

(Sec. II D 4).
The sum of the terms ��GNET and ��GUSV is equal

to ��GNET multiplied by εS
−1. For polar solvents such as

water and for the computational boxes typically employed in
protein MD simulations employing lattice-sum methods, this
sum is relatively small compared to, e.g., the contribution of
missing solvation shells around a finite droplet of the same
volume under non-periodic boundary conditions. This gives
the misleading impression that lattice-sum simulations of
charged systems present more limited finite-size effects com-
pared to corresponding droplet simulations. In fact, a proper
comparison should involve a lattice-sum energy including
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the net-charge term67, 68 ULS,NET of Eq. (9). In this case, the
correction term ��GNET would be omitted, leading to the
sole correction term ��GUSV. The latter term is large, compa-
rable in magnitude to, e.g., the contribution of missing solva-
tion shells around a non-periodic droplet of the same volume,
and presents a dependence on εS that appropriately reflects
the contribution of missing solvation shells.

3. Correction for residual integrated potential effects

The third term in the right-hand side of Eq. (14),
��GRIP, corrects for the effect of the residual integrated po-
tential (RIP). The net-charge self-interaction and undersolva-
tion terms ��GNET and ��GUSV would be sufficient to cor-
rect for the error in the charging free energy if the protein and
ligand were both point charges without solvent-excluded vol-
ume and located at the same position in space (omitting the
infinite direct Coulomb interaction, which is identical under
non-periodic and periodic boundary conditions and thus does
not affect the associated periodicity-induced perturbation).
However, when the two species involve polyatomic charge
distributions encompassed within distinct solvent-excluding
envelopes, an additional finite-size effect must be considered.
This effect originates from the different boundary conditions
applied for the electric potential in calculations (PB or MD)
performed under non-periodic and periodic boundary condi-
tions. When using periodic boundary conditions, the aver-
age electric potential over the computational box is set to
zero, a consequence of omitting the zero-vector term from
the reciprocal-lattice summation. Under non-periodic bound-
ary conditions, the corresponding constraint is that of a van-
ishing value at infinity, imposed in practice in the PB calcula-
tion by enforcing an appropriate long-distance potential value
at the surface of the computational domain. In the reference
situation (naked point-charges at the same position), this ef-
fect of this discrepancy is encompassed within ��GNET and
��GUSV. In the real situation (charge distributions within dis-
tinct cavities), this discrepancy induces an additional offset
potential between the two representations that must be com-
pensated for in the charging free energy by a correction term
��GRIP.

The evaluation of ��GRIP requires the calculation of the
difference between the spatial integrals of the electric poten-
tial under non-periodic boundary conditions corresponding to
the situation of a charge distribution in a cavity within the sol-
vent (real situation) versus a naked point charge of the same
total magnitude in the solvent (reference situation). The re-
sulting difference in integrated potential is termed here a RIP.
Given the residual integrated potentials IP and IL correspond-
ing to the protein and ligand charge distributions, respectively,
within the protein-ligand cavity in solution, the correction
term ��GRIP to the charging free energy of the ligand reads

��GRIP (L) = [(IP + IL)(QP + QL) − IP QP ]
1

L3
. (17)

This equation is justified as follows. In the uncharged state of
the ligand, the change from non-periodic to periodic bound-
ary conditions induces a residual (real minus reference situa-
tions) offset potential −L−3IP to enforce the constraint of van-

ishing average potential over the computational box, which
is probed by a total system charge QP. In the charged state
of the ligand, this change induces a residual potential offset
−L−3(IP + IL), which is probed by a total system charge
(QL + QP). These considerations concerning the nature of
the perturbation immediately lead to the correction term of
Eq. (17). For the ligand free in solution, IP and QP should
to be set to zero in this equation, and IL should be evaluated
considering the free ligand cavity (no protein). When the MD
simulation of the protein-ligand complex is carried out in the
presence of neutralizing counter-ions, QP should to be set to
zero in Eq. (17), IP and IL being calculated in the same way
as in the absence of counter-ions.

The evaluation of the quantities IP and IL relies on the
observation that in both the reference and the real situations,
the electric potential has the same limiting dependence at
long distances from the solute cavity, i.e., in QPεS

−1r−1 for
IP and in QLεS

−1r−1 for IL. In other words, the potential dif-
ferences contributing to these integrals are short-ranged, only
being significant inside and in the close neighborhood of the
protein-ligand cavity. It is thus possible, as illustrated in Fig-
ure 3, to evaluate them numerically from PB calculations per-
formed under non-periodic boundary conditions considering
a heterogeneous (interior permittivity set to εI, exterior per-
mittivity set to εS, and inverse Debye screening length set to

Sε
1Iε =

Sε
1Iε =

Sε Sε

reference

real

LI PI

[ , ]HET L refB Q L

LQ

LQ
PQ

PQ

RIP

refL

NBC [ , ]HET P refB Q L

[L, ]HET refB L [P, ]HET refB L

FIG. 3. The calculation of the residual integrated potentials (RIPs) required
for application of the analytical correction scheme is illustrated conceptually.
Bottom row: real situation of charge distributions inside a cavity within the
solvent. Top row: reference situation of a naked point charge of the same
total magnitude in the solvent. Left column: calculation of the RIP IL corre-
sponding to the ligand charge distribution (total charge QL). Right column:
calculation of the RIP IP corresponding to the protein charge distribution (to-
tal charge QP). The RIPs are calculated as a difference between the electric
potential corresponding to the reference and real situations, integrated over
a cubic computational domain of edge Lref, according to Eq. (18). The po-
tentials themselves are calculated from Poisson-Boltzmann (PB) calculations
under non-periodic boundary conditions (NBC) considering a heterogeneous
(HET) dielectric environment (interior permittivity set to 1, exterior permit-
tivity set to εS) as defined by the protein-ligand cavity. For all calculations,
the naked point charge (reference situation) or the ligand (real situation) must
be centered within the computational domain. In the case of the free ligand
in solution, the protein calculation is omitted (IP = 0 and QP = 0) and the
ligand calculation involves the ligand cavity only. The evaluation of IL ,SLV in
Eq. (27) requires a calculation analogous to that represented in the left col-
umn, the only difference being the use of a homogeneous (HOM) permittivity
of 1 (for both the interior and the exterior) in the calculation.
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κ) dielectric environment based on the protein-ligand cavity
and a sufficiently large box-edge length Lref, as

IX = BHET [X, Lref ] − BHET [QX,Lref ], (18)

where

BHET [X, Lref ] =
∫

Lref

d3r φHET,X(r) (19)

and

BHET [QX,Lref ] =
∫

Lref

d3r φHET,QX
(r) =

∫
Lref

d3r
QX

4πεoεSr
.

(20)
Here, X = P or L denotes the protein or the ligand charge
distribution, QX a naked (i.e., no solvent-excluded volume)
point charge of the same magnitude, and φ the electric poten-
tial. The BHET integrals are taken over the entire cubic com-
putational domain (box) of edge Lref used in the PB calcula-
tion. Due to the short-range nature of the contributions to a
RIP, IX in Eq. (18) becomes essentially independent of Lref for
sufficiently large boxes. However, an important requirement
for the correct application of Eqs. (18)–(20) based on finite-
system calculations is that in all PB calculations involved, the
ligand has to be centered within the computational domain. In
this case, and restricting the application of the analytical cor-
rection scheme to situations where the inverse Debye screen-
ing length κ is zero, the two calculations concerning naked
point charges (Eq. (20) with X = P or L) can be omitted and
substituted by the analytical expression

BHET [QX,Lref ] = −ξCB

4πεoεS

QXL2
ref , (21)

where ξCB ≈ −2.380077 is the cubic Coulomb integra-
tion constant,44, 66, 81–83 representing minus the integral of the
Coulomb influence function (r−1) over a unit cube. All results
reported in this article concerning the analytical correction
scheme relied on Eqs. (18), (19), and (21) based on two PB
calculations (Eq. (19) with X = P or L) centered on the ligand
and using εI = 1. For systems with neutralizing counter-ions,
these PB calculations were performed with a zero κ value, as
required for the use of Eq. (21), and with QP = 0 in Eq. (17),
as discussed above. Additional details on these PB calcula-
tions are provided in Sec. III B. Note that unlike charging free
energies, the charge-RIP products involved in Eq. (17) are ex-
empt of any spurious contribution related to the self-energy of
the gridded charges in a PB calculation (mutual interaction of
the gridded fractional charges representing a point charge).

4. Additional empirical correction term

The fourth term in the right-hand side of Eq. (14),
��GEMP, is an empirical (EMP) addition, introduced to en-
sure that this equation produces the appropriate correction
term in the special case of a spherical cavity of radius R with
a point charge at its center. In this special case, an analyti-
cal solution is available for ��GANA from Ref. 20 (see Eq.
(41) therein, adapted here to the ligand charging situation and

reformulated as a correction term), namely,

��GANA,SPH (L)

= − 1

8πεo

[
(QP + QL)2 − Q2

P

]

×
{

1

εS

ξLS −
(

1− 1

εS

) [
4π

3

(
R

L

)2

− 16π2

45

(
R

L

)5
]}

1

L
.

(22)

In this special case, analytical expressions can also be for-
mulated for the residual integrated potentials IP and IL of
Eq. (18). For a spherical cavity of radius R encompassing a
point charge QX at its center (with X = P or L), the potential
φHET, X of Eq. (19) only differs from the potential φHET,QX

of
Eq. (20) inside the sphere, the difference being

φHET,SPH,X(r) − φHET,SPH,QX
(r)

= 1

4πεo

[
QX

r
− QX

R

(
1− 1

εS

)
− 1

εS

QX

r

]
for r < R.

(23)

The three terms between square brackets account for the elec-
tric potential caused by the central charge, the reaction-field
potential of the solvent, and the negative of the electric poten-
tial in the reference naked point charge situation, respectively.
Integrating over the sphere gives

ISPH,X = 1

8πεo

(
1 − 1

εS

)
QX

4π

3
R2. (24)

Inserting this analytical result into Eq. (17) and consider-
ing also Eqs. (15) and (16), one sees that the sum ��GNET

+ ��GUSV + ��GRIP is equivalent to ��GANA,SPH in
Eq. (22), except for the last term in L−6R5. For this reason,
��GANA in Eq. (14) has been adjusted to include a fourth
correction term ��GEMP defined by

��GEMP (L) = − 1

8πεo

16π2

45

(
1 − 1

εS

)

×[
(QP + QL)2 − Q2

P

]R5
L

L6
. (25)

This term represents an adjustment of the net-charge under-
solvation term ��GUSV for the presence of the solute cavity.
It arises in the spherical cavity case as a higher order term in a
Rayleigh expansion of the reaction-field potential of the sol-
vent under periodic boundary conditions (see Appendix B in
Ref. 20).

In the protein-ligand case, RL represents an effective ra-
dius for the ligand within the protein-ligand complex. Since
the corresponding term in Eq. (22) involves the prefactor
(1 − εS

−1), RL should be considered as a solvation radius.
Thus, this effective radius is defined here as

RL =
{[

1

8πεo

4π

3

(
1 − 1

εS

)
QL

]−1

IL,SLV

}1/2

, (26)
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where IL,SLV represents the solvation contribution to the resid-
ual integrated potential IL of the ligand, namely,

IL,SLV = IL − {BHOM [L, Lref ] − BHOM [QL,Lref ]}.
(27)

The quantities BHOM are the analogs of the quantities BHET in
Eq. (18) with X = L (i.e., only involving the ligand charges),
but corresponding to the situation of a homogeneous dielec-
tric medium of permittivity εI (vacuum situation). They are
evaluated in a similar way, by performing a PB calculation
for BHOM[L, Lref] and by application of Eq. (21) with εS sub-
stituted by εI for BHOM[QL, Lref]. The application of the ana-
lytical scheme therefore requires three PB calculations in total
(to evaluate IP, IL, and IL,SLV). Additional details on these PB
calculations are provided in Sec. III B.

Considering again the special case where the protein and
ligand are (excluded) point charges at the center of a spherical
cavity of radius R, one has IL,SLV = IL in Eq. (27). Inserting
Eq. (24) into Eq. (26) with X = L leads to RL = R, i.e., the
effective solvation radius is as expected equal to the cavity ra-
dius. Given the full expression for ��GANA in Eq. (14), the
analytical result of Eq. (22) is then exactly recovered. In the
general case, however, the empirical nature of Eq. (25) leads
to a term ��GEMP that only represents an approximate ad-
justment to ��GUSV, taking into account the effective size
of the protein-ligand complex but not its detailed shape. As a
result, the analytical scheme is an approximation of the (for-
mally exact) numerical scheme, with an error of order O[L−6]
in the absence of counter-ions. In the presence of neutralizing
counter-ions, possibly along with a neutral salt excess, addi-
tional approximations are involved in the analytical scheme
when setting the inverse Debye screening length κ to 0 and
taking effective account of charge neutralization by using QP

= 0, which may further restrict the accuracy of the correction
term.

E. Correction for discrete solvent effects

Both the numerical and the analytical correction
schemes, see Eqs. (10) and (11), involve a term ��GDSC rep-
resenting a discrete solvent correction (DSC). The physical
origin of this term is similar to that of the residual integrated
potential term ��GRIP. However, unlike the latter term, it
cannot be accounted for by comparing the results of PB calcu-
lations under periodic and non-periodic boundary conditions,
because these calculations do not account for the discrete na-
ture of the solvent molecules. As illustrated in Figure 2, this
discrete solvent effect can be quantified in the context of a
pure liquid sample in the orientational-disorder limit (ODL),
i.e., in an idealized situation corresponding to the absence of
intermolecular orientational correlations between the solvent
molecules.22 In the implicit-solvent PB representation, due
to the total absence of solvent polarization, a solvent in the
ODL is non-solvating under any type of boundary conditions,
i.e., inert with respect to the insertion of a test charge. How-
ever, in the explicit-solvent MD representation under periodic
boundary conditions, the average electric potential generated
by the isotropically tumbling solvent molecules is offset by a
constant potential, so that the average potential over the box

is zero. For example, considering a typical three-site water
model with a negative central charge (oxygen atom) and pos-
itive peripheral charges (hydrogen atoms), the average poten-
tial generated by the solvent charges is negative within the
molecules and zero outside, so that the homogeneous offset
potential is positive everywhere. This offset potential con-
tributes to the solvation free energy of a test charge in the MD
representation of the ODL solvent. For example, for a three-
site water model, it causes an apparent solvation of a negative
test charge and an apparent anti-solvation of a positive test
charge. The term ��GDSC is introduced into the correction
scheme to remove this artifact.

As discussed in detail in Ref. 22 (see also Ref. 33), for a
solvent model with a single van der Waals interaction site, the
offset potential induced by the discrete solvent effect within
a periodic computational box filled with pure solvent in the
ODL is given by

�
DSC = ρS

6εoMS

γS, (28)

where MS and ρS are the molecular mass and density of the
solvent, respectively, and γ S is the quadrupole-moment trace
of the solvent model relative to its single Waals interaction
site. For a solvent model with n interaction sites {qi} at dis-
tances {ri} from the van der Waals interaction site, the latter
quantity is defined as

γS =
n∑

i=1

qir
2
i . (29)

Considering the excluded volume VC of the solute, the correc-
tion term ��GDSC can thus be written

��GDSC(L) = −γSρSQL

6εoMS

(
1 − VC

L3

)
, (30)

where ρS now represents the effective density of the solvent
in the solvent-occupied region of the computational box. For
the charging free energy of the ligand within the protein, the
cavity volume VC is defined by the excluded volume of the
protein-ligand complex, while for the free ligand, it is defined
by the excluded volume of the ligand alone. For simulations
with counterions, the ion excluded volume should also be in-
cluded within VC (constant number of ions) or ρS (constant
concentration of ions). It should be stressed that ��GDSC

only encompasses a part of the correction for the spurious po-
tential offset induced by the solvent, namely, the component
corresponding to the ODL situation, which cannot be cap-
tured in a PB calculation. In reality, the solvent surrounding
the protein-ligand complex is polarized and not in an ODL
situation, but this polarization-related component is already
included in the residual integrated potential term ��GRIP.

Whereas the correction terms ��GNUM and ��GANA

can really be called corrections for finite-size effects, i.e., they
vanish in the limit of infinitely large box sizes, this is not the
case for the term ��GDSC. To make the distinction explicit,
this term can be rewritten as the sum of an infinite-system dis-
crete solvent correction term (DSI) and an associated finite-
size adjustment (DSF), i.e.,

��GDSC(L) = ��GDSI + ��GDSF (L), (31)
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where

��GDSC(L) = ��GDSI + ��GDSF (L) (32)

is a constant independent of L whereas

��GDSF (L) = −��GDSI

VC

L3
(33)

is size-dependent and vanishes in the limit L → ∞. The con-
tribution of ��GDSI will often cancel out when considering a
thermodynamic cycle in which the two charging legs, which
involve the same QL, are carried out in the same solvent. This
is in particular the case for binding free energy calculations
(Sec. II A). A notable exception is the calculation of partition
coefficients, where the contribution of ��GDSI to the calcu-
lated transfer free energy must be considered.

Finally, note that Eq. (30) implicitly assumes the exis-
tence of a relationship of the form

NS = ρS

MS

(L3 − VC) (34)

between the number of solvent molecules NS in the computa-
tional box, its edge length L, and the solute cavity volume VC.
This assumption allows ��GDSC to be written as an explicit
function of L, which is convenient for discussing the nature
of this term, but not really necessary in practice. Considering
that NS is an input parameter of the MD simulations, ��GDSC

can also be calculated directly as

��GDSC(NS,L) = −γSQL

6εo

NS

L3
. (35)

In this case, the formulation of an estimate for VC becomes
unnecessary. Equation (35) is actually the exact equation for
��GDSC, whereas Eq. (30) is a convenient approximation.

III. COMPUTATIONAL DETAILS

A. Explicit-solvent simulations

All explicit-solvent MD simulations were carried out us-
ing the GROMACS 4.0.7 program61 and employed a slightly
modified AMBER99SB force field84 along with the TIP3P
water model.85 The slight modification of AMBER99SB in-
volved the replacement of the van der Waals interaction pa-
rameters of the hydrogen atom type HO by those of the hy-
drogen atom type H. The simulations were performed under
periodic boundary conditions in cubic computational boxes of
edge L encompassing one solute molecule, either the free lig-
and or the protein-ligand complex including NB bound water
molecules, surrounded by NS free water molecules. The so-
lute molecule or molecule group was kept entirely frozen dur-
ing the simulations, with all atoms fixed in space, including
the bound water molecules in the case of the protein-ligand
complex. The simulations were carried out in the canoni-
cal (NVT) ensemble at a reference temperature T = 300 K
and within fixed box volumes V = L3. Thermostatting was
ensured by mild Langevin coupling (friction coefficient γ

= 1.0 ps−1; see Ref. 86 for details). The equations of mo-
tion were integrated using the leap-frog stochastic dynam-
ics integrator87 with a timestep of 2 fs. Position constraints
on the solute atoms were enforced by coordinate resetting at

every timestep. The solvent molecules were constrained us-
ing LINCS.88 The Lennard-Jones interactions were smoothly
switched off after 0.8 nm and truncated at 0.9 nm, using a
pairlist with 1 nm cutoff which was updated every 10 steps.
Electrostatic interactions were calculated using the particle-
mesh Ewald (PME) lattice-sum method29 with tinfoil bound-
ary conditions, a real space cutoff of 1 nm, a spline order of
6, a grid spacing of 0.1 nm, and a relative tolerance between
long- and short-range energies of 10−6.

The topology and coordinates of engineered cytochrome
c peroxidase (CCP W191G “Gateless,”47, 48 289 residues,
see Figure 1) bound to 2-amino-5-methylthiazole (protonated
form, 14 atoms, net charge QL of +1 e) were prepared as in
Ref. 48 with a net protein charge of −5 e, and solvated in the
smallest cubic box (7.42 nm edge) using the GROMACS tool
genbox.61 Note that the 2-amino-5-methylthiazole pose em-
ployed is not the experimentally observed binding pose, but
rather the pose of the same ligand bound to the related protein
CCP W191G.89 Water molecules in the binding cavity within
0.9 nm of any atom of the ligand were identified and included
into the set of bound (frozen) water molecules. The system
was then equilibrated at constant volume for 2 ns. During
this simulation, several other water molecules became trapped
in different solvent-accessible cavities of the protein, causing
a noticeable step in the average instantaneous charging en-
ergy 〈�U〉 (see Eq. (6)). These water molecules were added
to the set of bound water molecules. This process of 2 ns
equilibration and addition of new trapped water molecules
to the set of bound water molecules was repeated three
more times, after which 〈�U〉 remained stable throughout the
trajectories.

Starting from this equilibrated box of 7.42 nm edge,
larger boxes with edges up to 11.02 nm were generated
by increasing the box size in steps of about 0.4 nm, each
time applying genbox to introduce additional water molecules
on all sides of the existing ones and removing the genbox-
inserted water molecules which were more than 0.4 nm in-
side the walls of the expanded box. Systems involving net
protein charges of 0, +3, or +9 e were then generated in
the following way: identifying the five glutamate residues
with highest estimated pKa values and converting them to
glutamic acids (net protein charge of 0), converting three
additional glutamate residues to glutamic acids (net protein
charge of +3 e), and converting five additional glutamate
residues to glutamic acids and one aspartate residue to as-
partic acid (net protein charge of +9 e). The pKa estima-
tions were performed using the program MCCE.90, 91 The four
protein charge isoforms can be thought of as corresponding
to different pH conditions, although the correspondence be-
tween protein charge state and pH conditions remains only
approximate. For one system (net protein charge of 0), larger
boxes with edges up to 13.02 nm were also created starting
from the box of 11.02 nm edge length. For the free ligand
simulations, the same ligand topology and coordinates were
used as in the complex,48 and boxes with edge lengths rang-
ing from 3.05 to 13.49 nm were generated in an analogous
fashion.

For one system (net protein charge of +9 e), a vari-
ant of the protein charge distribution was also considered,
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including an additional quasi-isotropic quadrupole moment,
as illustrated in Figure 1. The additional charges were intro-
duced at atomic sites, and involve a central point charge of
magnitude −80 e at atom HA1 of residue Gly112 along with
36 peripheral sites of charges summing up to +80 e located
at atoms in the distance range 8.1–8.5 nm from the central
charge. The charges added on the peripheral atoms were op-
timized based on 3 × 36 test points located along the vectors
connecting the center of the quadrupole to each of the pe-
ripheral atoms, at 1.50, 2.25, and 3.00 times their distance to
the center. The optimization was performed so as to minimize
the sum of the total unsigned electric potential caused by the
complete added charge distribution at all the test points. Nev-
ertheless, due to its discretization onto atomic sites, this added
charge distribution only approximates an isotropic quadrupole
and still exerts a small electrostatic field beyond its peripheral
shell.

For two systems (net protein charges of −5 and +9 e),
additional simulations were also performed in the presence of
a neutralizing atmosphere of sodium and chloride ions corre-
sponding to a molal salt concentration of about 0.1 mol kg−1.
The ions were added using the GROMACS tool genion,61

used independently for either system and at each box size.
Ions were added by replacement of bulk water molecules, first
with just a neutralizing amount of ions (matching the charge
QP of the protein alone), and then equal amounts of sodium
and chloride ions to reach the desired salt concentration for a
given box size.

The systems involving protein-ligand complexes were
not pre-equilibrated at constant pressure. As a result, the ef-
fective solvent density in the boxes, determined by the ap-
plication of the genbox tool based on pre-equilibrated pure-
solvent configurations, may slightly deviate from the equilib-
rium density of the pure solvent model. For the free ligand
system, the box sizes were slightly readjusted to enforce an
effective solvent density close to that of the pure solvent. In
practice, an approximate relationship of the form of Eq. (34)
holds for the present systems with VC = 0.5 nm3 (free lig-
and) or 57.0 nm3 (protein-ligand complexes) along with ρS

= 997 kg m−3 (experimental value for water at 300 K and
1 bar92), with deviations in NS of at most 3%.

All simulations of the protein-ligand complexes were car-
ried out for 1 ns after 1 ns equilibration. The free ligand sim-
ulations were carried out for 9 ns after 1 ns equilibration.
A simulation length of 1 ns provides sufficient convergence
in the present case considering that the solute coordinates
are fixed. It was also verified that no significant changes in
〈�U〉 occurred between the equilibration and production pe-
riods. Statistical uncertainties on the raw charging free en-
ergies �GMD,PBC were estimated in two different ways, de-
pending on the system. For most systems, the standard error
on the mean of 〈�U〉0 and 〈�U〉1 was monitored (1 ps sam-
pling interval and accounting for the statistical inefficiency in
the time series93), and propagated into an error on �GMD,PBC

via Eq. (6). For three systems (net protein charge of 0 and
the two systems with ions), three independent calculations of
�GMD,PBC were performed using different initial velocities,
and the corresponding standard deviation is reported as the
estimated error in �GMD,PBC.

B. Continuum-electrostatics calculations

The continuum-electrostatics calculations were carried
out using a custom finite-difference PB solver written in C and
implementing a preconditioned Cholesky conjugate-gradient
algorithm, commonly used in programs such as UHBD.51, 52

In addition to solving the linearized PB equation under NBC,
this program also permits the use of PBC as described in Ap-
pendix A of Ref. 20. Routines for the calculation of the direct
interaction energy under NBC as a Coulomb sum or under
PBC as a lattice sum are also included, the latter implement-
ing Ewald summation.26

These calculations were used to evaluate the terms of
Eq. (13) in the numerical correction scheme, or the first terms
in the right-hand side of Eqs. (18) and (27) in the analyti-
cal correction scheme. In the former case, the solute position
within the PB computational domain is not critical, i.e., it only
affects the numerical accuracy of the results, and the calcula-
tions were centered on the center of the protein-ligand com-
plex (or ligand in the free ligand case). In the latter case, the
solute position is critical and directly impacts the results. In
this case, the calculations must be centered on the ligand, ir-
respective of its surroundings. In both cases, the center was
defined in terms of minimal and maximal atom coordinates
along the three Cartesian axes. In the protein-ligand com-
plex, the NB bound water molecules (at fixed coordinates in
the MD simulations) were treated as integral part of the so-
lute. The same atomic coordinates were used as in the MD
simulations. The atomic charges were also taken from the
AMBER99SB force field84 and the TIP3P water model85

(bound water molecules) used in the MD simulations.
The results of the PB calculations depend on the def-

inition of the solute-solvent interface. In the present work,
three choices were considered:94 van der Waals (VDW) sur-
face, probe-contact solvent-accessible surface (CTC(RS)), and
probe-center solvent-accessible surface (CEN(RS)), where RS

is the radius of a spherical probe (solvent molecule) rolled
over the VDW surface. Note that VDW = CTC(0) = CEN(0).
All the calculations reported in the main article were per-
formed with a CTC(RS) definition, most of them using RS

= 0.14 nm as usually selected for the water molecule. The
atomic radii defining the VDW surface were taken to be
one-half of the Lennard-Jones sigma parameters (zero-energy
point of the Lennard-Jones curve) of the AMBER99SB force
field84 used in the MD simulations, including the altered HO
atom type.

The remaining physical parameters of the PB calcula-
tions are: the subset of solute charges considered in the cal-
culation; the system boundary conditions, NBC or PBC; the
box-edge length L (PBC only); the relative dielectric permit-
tivity εI of the solute interior, set to one for all calculations
(see Sec. II C); the relative dielectric permittivity εS of the
solvent, set to 97 for all calculations as appropriate for the
TIP3P water model;95 and the inverse Debye screening length
κ and Stern layer thickness Rκ of the counter-ion atmosphere
(if counter-ions are present). Given these choices, the PB
solver can be used to produce grid-based finite-difference ap-
proximations for the electric potential over the computational
domain in two situations. The electric potential φHOM in the
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homogeneous (HOM) situation corresponds to the electric po-
tential generated by the charges considered in a system with
homogeneous permittivity εI and no counter-ion screening.
The electric potential φHET in the heterogeneous (HET) situ-
ation corresponds to the electric potential generated by these
charges in a system with heterogeneous permittivity and in
the possible presence of counter-ion screening, i.e., permittiv-
ity εI and no screening inside the solute cavity vs. permittiv-
ity εS and inverse Debye screening length κ outside the solute
cavity, the latter beyond a distance Rκ from the solute surface.

The first terms BHET[P, Lref], BHET[L, Lref], and BHOM[L,
Lref] in the right-hand-sides of Eqs. (18) and (27) are calcu-
lated under NBC and represent integrals of φHOM or φHET

based on specified sets of charges A (A = P or L), see Eq. (19)
and its analog in the homogeneous case. The first four terms
of the form �GHOM[A] and �GHET[A] in the right-hand side
of Eq. (13) represent electrostatic free energies of the system
of charges defined by set A (A = P or P + L). These free
energies are given by

�GHET [A] = 1

2

∑
j∈A

qjφHET,i∈A(rj ) and

(36)

�GHOM [A] = 1

2

∑
j∈A

qjφHOM,i∈A(rj ).

The quantity �GHOM[A] can in principle be calculated ana-
lytically under NBC,96 but was nevertheless evaluated numer-
ically in the absence of a corresponding expression for PBC.
The terms of the first two braces in the right-hand side of Eq.
(13) account for the solvation contribution to the electrostatic
free energy of the ligand-charged and the ligand-uncharged
states of the protein-ligand complex, respectively. Note that
the latter equation could also be rewritten as

�GPB = {�GHET [P, L] − �GHOM [P, L]}
+ {�GHET [P + L, L] − �GHOM [P + L, L]}
+ {UDIR[P + L] − UDIR[P]}, (37)

where �GHOM[A,B] and �GHET[A,B] represent electrostatic
free energies calculated considering set A as source charges
and set B as probe charges (L: ligand charges; P: protein
charges). The terms of the first two braces in the right-hand
side of Eq. (37) now account for the solvation contribution to
the ligand charging free energy in the ligand-uncharged and
the ligand-charged states of the system, respectively, in tight
analogy with the corresponding MD expression of Eq. (6).
The terms of the third brace in the right-hand sides of Eq. (13)
or (37) account for the remaining direct (vacuum) contribu-
tion to the ligand charging free energy, as a difference be-
tween the energy of the protein-ligand complex minus that of
the protein alone. In the NBC calculation, the energy UDIR[A]
corresponds to a Coulomb sum over all charge pairs in the
set A (A = P or P + L). In the PBC calculation, the energy
UDIR[A] corresponds to a lattice sum over all charge pairs in
the set A, calculated as in Eq. (7). For the PB calculations, the
numerical parameters were selected as follows.

All calculations relied on a common grid spacing l set
to 0.05 nm. The corresponding numbers NG of grid points

along each Cartesian direction are20 L/l − 1 under NBC (sur-
face boundary points handled implicitly) or L/l under PBC
(periodic-connection point included explicitly). To minimize
grid-discretization errors, the positioning of the solute rela-
tive to the grid points was the same for NBC and PBC cal-
culations. Note that the use of a relatively fine grid spacing
for these calculations is recommended. For comparison, the
use of coarser grids with l set to 0.1 nm or 0.2 nm, respec-
tively, results in changes in the calculated ��GNUM values
for the highest-charge protein (net charge +9 e) by 1.2 and
4.9 kJ mol−1, respectively (0.3 and 1.3 kJ mol−1, respectively,
considering the systems with L > 10 nm).

Under NBC, the electric potential at the surface of
the computational domain was defined by a Debye-Hückel
approximation summed over all solute atoms (Eq. A3 in
Ref. 20). Under PBC, the boundary condition on the electric
potential is defined by the constraint of periodicity along with
the requirement of vanishing average over the computational
domain (see last paragraph of Appendix A in Ref. 20). Note
that in this case, the neutralizing background charge must be
explicitly added to the charge-density grid prior to the calcu-
lation. If this is not done, the periodicity constraint will induce
a surface charge instead, which is not the target situation.

The implementation of the various solute-solvent inter-
face definitions relied on a threefold finer grid. For CEN(RS),
all fine-grid points within a distance RS beyond the atomic
VDW radius of any atom were allocated to the interior re-
gion and all others to the exterior region. For CTC(RS), all
fine-grid points within a distance RS of any fine-grid point
of the exterior region of CEN(RS) were allocated to the exte-
rior region and all others to the interior region. The fine grid
was subsequently used to generate the three regular permit-
tivity grids, shifted by l/2 relative to the charge-density and
potential grids,20 using harmonic averaging97, 98 of the permit-
tivity values (εI or εS) corresponding to the closest fine-grid
points. The finite-difference solver was iterated until conver-
gence within a relative tolerance of 10−5 for the residual.

The lattice-sum calculations under PBC relied on a
truncated-parabola charge-shaping function of width a = L/2,
no real-space cutoff, and reciprocal-space vectors with inte-
ger components up to ±200 along each Cartesian direction
together with a cutoff of 200 on the norm. These settings en-
sure that the accuracy of the calculation is the same for all box
sizes.

For the application of the numerical correction scheme
to systems where the MD simulations involve neutralizing
counter-ions, a neutralizing charge density must be introduced
at the surface of the protein prior to performing the PB calcu-
lations (see Sec. II C), possibly along with the use of a non-
zero κ value. For these systems, involving net protein charges
of −5 and +9 e, respectively, this was done here by introduc-
ing small counter charges at 3193 or 10 677 grid points (0.05
nm spacing), respectively, within 0.10–0.15 or 0.18–0.23 nm
of the VDW surface of the protein-ligand complex. These dis-
tances reflect the ionic radii of sodium and chloride,33 respec-
tively. The charges were determined so as to produce a Boltz-
mann distribution of electrostatic energy at 300 K assuming
monovalent ions and based on a preliminary calculation of
φHET under non-periodic boundary conditions in the absence
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of counter-ions. They sum up a total charge of −QP, i.e., neu-
tralize the protein alone. In the subsequent calculations in-
cluding these surface sites, they were assigned a zero radius
and thus do not influence the definition of the protein-ligand
cavity. In the main article, these calculations are only reported
for the numerical scheme and with an inverse Debye screen-
ing length κ = 0. However, tests using these explicitly neu-
tralized systems and the analytical scheme with κ = 0 or the
numerical scheme with κ �= 0 led to very similar results (re-
ported in Tables S2 and S4 of the supplementary material154).
As noted at the end of Sec. II C, this neutralizing surface
charge density is only used in the PB calculations correspond-
ing to MD simulations explicitly including counter-ions.

For all systems, calculations were performed for VDW,
CEN(RS), and CTC(RS) solute-solvent interface definitions
with RS ranging from 0.01 to 0.18 nm in steps of 0.01 nm, con-
sidering in each case box-edge lengths L ranging from 3 (free
ligand) or 7 (protein-ligand complexes) to 15 nm in steps of 1
nm. Unless otherwise noted, the results reported in the main
article correspond to CTC(0.14). For the numerical scheme,
both the NBC and PBC calculations were performed using
the same box-edge length, the results of the NBC calculation
being essentially independent of this parameter, with a maxi-
mal deviation (smallest box size relative to largest one) of at
most 0.2 kJ mol−1 over all the systems considered. Values of
the numerical correction term ��GNUM corresponding to the
box edges L used in the MD simulations (spacing of about 0.4
nm) were interpolated from these data by fitting to a function
of the form

��GNUM (L) ≈ A1/L + A2/L
3 + A3/L

3, (38)

where A1, A2, and A3 are fitting coefficients. The fit is typi-
cally excellent, with an error of at most 0.3 kJ mol−1 (at the
smallest box size) over all the systems considered. Although
the functional form of Eq. (38) is empirical, the error did not
change significantly upon including 4th and 5th order terms.
For the analytical scheme, the reference box-edge length Lref

was set to 15 nm for all calculations.

IV. RESULTS

A. Systems considered

Before discussing the results, it is useful to provide a
brief summary of the systems considered and their nomencla-
ture, as well as of the calculations performed and correction
schemes applied. The situation of the ligand free in aqueous
solution, with a net charge QL of +1 e, is identified by the
code lig. The situation of the protein-ligand complex in aque-
ous solution is identified by the codes net-5, net0, net3, and
net9, respectively, corresponding to protein net charges QP of
−5, 0, +3, or +9 e, respectively. The system based on net9
and including a large artificial quasi-isotropic quadrupole is
referred to as net9quad. Finally, the two systems based on
net-5 and net9 which involve a neutralizing counter-ion at-
mosphere are labeled net-5ion and net9ion.

The explicit-solvent MD simulations of these different
systems involve fixed solute coordinates (ligand or protein-
ligand complex, in the latter case also including a number

of bound water molecules). They are carried out under peri-
odic boundary conditions with lattice-sum (PME) electrostat-
ics considering cubic computational boxes with edge lengths
L ranging from 3.05 to 13.02 nm (lig), 7.42 to 13.02 nm
(net0), or 7.42 nm to 11.02 nm (all other systems) in steps
of about 0.4 nm. They deliver raw estimates �GMD,PBC for
the ligand charging free energy via Eq. (6). These estimates
are affected by finite-size errors and are corrected into esti-
mates �GMD,NBC corresponding to the same explicit-solvent
MD model, but under non-periodic boundary conditions with
Coulombic electrostatics and in the limit of a macroscopic
system (and therefore, ideally, without any dependence on L).
The numerical correction scheme relies on the application of
Eq. (10) and requires, for each system, PB calculations under
both non-periodic and periodic boundary conditions, the latter
at the specific box edge length L. In practice, these calcula-
tions are performed for boxes of edges L ranging from 3 (lig)
or 7 (all other systems) to 15 nm in steps of 1 nm, and interpo-
lated by means of Eq. (38). The analytical correction scheme
relies on the application of Eq. (11) and requires, for each
system, three PB calculations under non-periodic boundary
conditions, the dependence on the specific box edge length L
being analytical. These relied on a reference box-edge length
Lref of 15 nm.

A summary of the simulated systems and simulation con-
ditions is provided in Table I. Further details on these MD
simulations are provided in Sec. III A and in Table S1 of the
supplementary material.154 Further details on the PB calcula-
tions are provided in Sec. III B.

B. Finite-size effects on the raw charging
free energies

The raw charging free energies �GMD,PBC are displayed
as a function of the box edge L in Figure 4(a). The corre-
sponding numerical results are reported in Table II (see also
Table S1 of the supplementary material154 for the raw data
used in Eq. (6)). Except for the free ligand, �GMD,PBC ev-
idences a substantial dependence on L, the differences be-
tween the values at 7.42 and 11.02 nm ranging from −8.6 to
+17.1 kJ mol−1 for the different systems. For the systems net-
5, net3, and net9, the sign of this difference is correlated with
the net protein charge, but the corresponding magnitude is
not. For example, a small negative change is observed for net-
5, whereas a positive change of much larger in magnitude is
observed for net3. For system net0, the change is positive and
large, although it involves a protein without net charge. It is
qualitatively comparable to that observed for systems net-5ion
and net9ion, because, to a first approximation, the addition of
neutralizing counter-ions leads to an effective surface neutral-
ization of the protein. Remarkably, systems net9 and net9quad
evidence the largest positive and negative changes, respec-
tively, in spite of the fact that the quasi-isotropic quadrupole
introduced in net9quad has nearly no electrostatic influence
on the ligand. This difference is an artifact related to the
residual integrated potential IP of the protein (Eq. (18) with
X = P), which is dramatically altered by the introduction
of the quasi-isotropic quadrupole (see further discussion in
Secs. IV C and IV E).
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TABLE I. Overview of the simulated systems and simulation conditions. For the different systems (Sec. IV A), explicit-solvent MD simulations were carried
out at 300 K and constant volume (effective solvent density appropriate for water at 1 bar) using cubic periodic computational boxes and lattice-sum electrostat-
ics. For each system, the following quantities are reported: the net charge QP of the protein; the net charge QI of the counter-ion atmosphere; the minimal and
maximal edge lengths Lmin and Lmax of the box (incremented in steps of about 0.4 nm; see Table II for the individual values); the corresponding minimal and
maximal numbers NS ,min and NS ,max of freely moving water molecules (see Table II for the individual values); the number NB of bound (fixed coordinates) water
molecules (see Sec. III A); the numbers NNa,max and NCl,max of sodium and chloride counter-ions included in the largest box of edge Lmax; the ionic strength Istr

of the system; the inverse Debye screening length κ of the system. For the systems with counter-ions, the number of ions was adjusted to enforce QI = −QP

and to keep Istr and κ approximately constant across the different box-edge lengths. The ligand charge is QL = +1 e in all cases. More detailed information on
the simulated systems as well as the raw simulation results can be found in Table S1 of the supplementary material.154

System QP (e) QI (e) Lmin (nm) Lmax (nm) NS,min NS,max NB NNa,max NCl,max Istr (mol kg−1) κ (nm−1)

lig 0 0 3.05 13.50 928 80 897 0 0 0 0 0
net-5 − 5 0 7.42 11.02 12 077 43 591 69 0 0 0 0
net0 0 0 7.42 13.02 12 077 72 810 69 0 0 0 0
net3 3 0 7.42 11.02 12 077 43 591 69 0 0 0 0
net9 9 0 7.42 11.02 12 077 43 591 69 0 0 0 0
net9quad 9 0 7.42 11.02 12 077 43 591 69 0 0 0 0
net-5ion − 5 5 7.42 11.02 12 022 43 424 69 86 81 ∼0.1 ∼1.0
net9ion 9 − 9 7.42 11.02 12 017 43 419 69 81 90 ∼0.1 ∼1.0

Since the different curves of Figure 4(a) present crossing
points, raw charging free energies calculated using a single
box-edge length and interpreted naively may suggest oppo-
site conclusions concerning the relative affinity of the ligand
for different isoforms of the protein. For example, simulations
performed with L = 7.42 nm would appear to suggest prefer-
ential binding of the ligand to the protein in the net9 system
compared to the net-5 system, while simulations performed
with L = 11.02 nm would lead to the opposite conclusion.
Note that the estimation of infinite-system values by fitting of
the �GMD,PBC curves to analytical functions (e.g., polynomial

in L−1) and analytical extrapolation to L → ∞ is not a vi-
able alternative to the application of a correction scheme. The
reasons are that: this approach is computationally very expen-
sive (requiring multiple free-energy simulations at different L
to calculate a single charging free energy); it would require
more converged �GMD,PBC values or/and more L points than
considered here, so as to uniquely define the fitting function
(e.g., order of the polynomial in L−1) and its coefficients; it
would still overlook a size-independent correction term (dis-
crete solvent correction term in the infinite-system limit, see
��GDSI in Eq. (32)).
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FIG. 4. Raw and corrected charging free energies are shown as a function of the box size for the different systems considered. (a) Raw ligand charging
free energies �GMD ,PBC based on the MD simulations corresponding to the eight different systems (Table I), displayed as a function of the box edge L.
(b) Corresponding corrected charging free energies �GMD ,NBC. Top row: all systems. Bottom row: lig system only, also considering smaller box sizes and
represented on a smaller free-energy scale. The corrected values are obtained by application of either the numerical (Eq. (10); solid lines) or the analytical (Eq.
(11); crosses) correction scheme. In both cases, the correction relies on PB calculations with a probe-contact solvent-accessible surface based on a probe radius
RS = 0.14 nm (CTC(0.14)). The data are reported numerically in Table II. A corresponding figure for RS = 0.10 nm (CTC(0.10)) can be found in Figure S1 of
the supplementary material.154
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TABLE II. Raw and corrected charging free energies. For each system (Table I) and box edge length L, the following quantities are reported: the number
NS of freely moving water molecules in the computational box; the discrete solvent correction terms ��GDSI (infinite system limit) and ��GDSF (finite-
system adjustment), see Eq. (31); the finite-size correction terms ��GNUM (numerical estimate) or ��GANA (analytical estimate), see Eqs. (12) and (14);
the difference ��GANA-NUM between these two quantities; the raw ligand charging free energy ��GMD ,PBC based on the MD simulations; the corresponding
corrected ligand charging free energies ��GMD ,NBC,NUM or ��GMD ,NBC,ANA, see Eqs. (10) and (11); the estimated statistical uncertainty σ [�GMD] on the raw
MD results, calculated as described in Sec. III A. The quantity ��GMD ,PBC is calculated from Eq. (6). The corresponding raw data can be found in Table S1 of
the supplementary material.154 The terms ��GDSI and ��GDSF are calculated from Eqs. (31), (32), and (35) using the indicated NS along with MS = 18.015
g mol−1, γ S = 0.0764 e nm2 and ρS = 997 kg m−3. The term ��GNUM is interpolated to the indicated L based on the results of Table IV using a polynomial
fit of the form of Eq. (38). The corresponding coefficients can be found in Table S3 of the supplementary material.154 The term ��GANA is calculated using
the parameters reported in Table III. For both ��GNUM and ��GANA, the correction relies on PB calculations with a probe-contact solvent-accessible surface
based on a probe radius RS = 0.14 nm (CTC(0.14)). The data are displayed graphically in Figure 4 (see also Figure S1 of the supplementary material154 for a
corresponding graph with CTC(0.10)). Additional results concerning the systems with counter-ions can be found in Table S2 of the supplementary material.154

��GDSI ��GDSF ��GNUM ��GANA ��GANA-NUM �GMD,PBC �GMD,NBC,NUM �GMD,NBC,ANA σ [�GMD]
L (nm) NS (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

lig
3.05 928 − 74.10 1.39 0.80 0.78 − 0.02 − 198.67 − 270.59 − 270.60 0.25
3.48 1380 − 74.10 1.26 0.67 0.66 − 0.01 − 198.73 − 270.91 − 270.92 0.25
3.87 1904 − 74.10 1.18 0.59 0.58 − 0.01 − 198.10 − 270.43 − 270.44 0.26
4.28 2572 − 74.10 1.11 0.52 0.52 0.00 − 198.10 − 270.57 − 270.58 0.26
4.68 3362 − 74.10 1.08 0.47 0.47 0.00 − 198.21 − 270.76 − 270.76 0.26
4.99 4088 − 74.10 1.08 0.44 0.43 − 0.01 − 197.98 − 270.57 − 270.57 0.26
5.49 5423 − 74.10 1.04 0.39 0.39 0.00 − 198.04 − 270.72 − 270.72 0.28
6.29 8174 − 74.10 1.02 0.34 0.34 0.00 − 197.62 − 270.37 − 270.37 0.27
7.07 11 638 − 74.10 1.00 0.30 0.30 0.00 − 197.75 − 270.55 − 270.55 0.27
7.86 15 948 − 74.10 1.00 0.27 0.27 0.00 − 197.74 − 270.58 − 270.58 0.27
8.69 21 472 − 74.10 1.33 0.24 0.24 0.00 − 197.57 − 270.10 − 270.10 0.27
9.50 28 248 − 74.10 0.94 0.22 0.22 0.00 − 197.75 − 270.70 − 270.70 0.27
10.32 36 184 − 74.10 0.93 0.20 0.20 0.00 − 197.96 − 270.94 − 270.94 0.27
11.08 44 761 − 74.10 0.91 0.19 0.19 0.00 − 197.54 − 270.55 − 270.55 0.27
11.91 55 685 − 74.10 0.90 0.17 0.17 0.00 − 197.60 − 270.63 − 270.63 0.26
12.72 67 804 − 74.10 0.89 0.16 0.16 0.00 − 197.85 − 270.90 − 270.90 0.27
13.49 80 897 − 74.10 0.88 0.15 0.15 0.00 − 197.69 − 270.76 − 270.76 0.28

net-5
7.42 12 077 − 74.10 8.33 − 11.66 − 11.77 − 0.11 − 200.76 − 278.20 − 278.30 0.31
7.82 14 377 − 74.10 7.22 − 10.22 − 10.30 − 0.08 − 201.03 − 278.14 − 278.22 0.28
8.22 16 875 − 74.10 6.51 − 9.03 − 9.09 − 0.06 − 200.69 − 277.32 − 277.38 0.33
8.62 19 798 − 74.10 5.34 − 8.04 − 8.08 − 0.04 − 201.50 − 278.30 − 278.34 0.27
9.02 22 999 − 74.10 4.39 − 7.20 − 7.23 − 0.03 − 201.43 − 278.35 − 278.38 0.29
9.42 26 492 − 74.10 3.60 − 6.49 − 6.52 − 0.03 − 201.80 − 278.80 − 278.82 0.30
9.82 30 296 − 74.10 2.93 − 5.89 − 5.90 − 0.01 − 201.30 − 278.36 − 278.37 0.36
10.22 34 748 − 74.10 1.69 − 5.37 − 5.38 − 0.01 − 200.54 − 278.32 − 278.33 0.33
10.62 38 852 − 74.10 1.95 − 4.91 − 4.92 − 0.01 − 201.36 − 278.43 − 278.44 0.30
11.02 43 591 − 74.10 1.65 − 4.52 − 4.52 0.00 − 201.72 − 278.70 − 278.70 0.33

net0
7.42 12 077 − 74.10 8.33 − 0.22 − 0.17 0.05 − 193.97 − 259.96 − 259.91 0.12
7.82 14 377 − 74.10 7.22 − 0.16 − 0.12 0.04 − 193.05 − 260.10 − 260.05 0.17
8.22 16 875 − 74.10 6.51 − 0.11 − 0.08 0.03 − 192.48 − 260.18 − 260.15 0.12
8.62 19 798 − 74.10 5.34 − 0.07 − 0.04 0.03 − 191.45 − 260.28 − 260.26 0.15
9.02 22 999 − 74.10 4.39 − 0.04 − 0.02 0.02 − 191.62 − 261.38 − 261.36 0.57
9.42 26 492 − 74.10 3.60 − 0.01 0.00 0.01 − 190.53 − 261.04 − 261.03 0.48
9.82 30 296 − 74.10 2.93 0.01 0.02 0.01 − 189.59 − 260.75 − 260.74 0.19
10.22 34 748 − 74.10 1.69 0.03 0.03 0.00 − 188.85 − 261.24 − 261.23 0.18
10.62 38 852 − 74.10 1.95 0.04 0.04 0.00 − 188.86 − 260.97 − 260.97 0.19
11.02 43 591 − 74.10 1.65 0.05 0.05 0.00 − 188.87 − 261.28 − 261.28 0.33
11.42 49 170 − 74.10 0.67 0.06 0.06 0.00 − 187.93 − 261.31 − 261.31 0.20
11.82 53 925 − 74.10 1.47 0.07 0.06 − 0.01 − 188.45 − 261.02 − 261.02 0.04
12.22 60 146 − 74.10 0.79 0.07 0.07 0.00 − 187.91 − 261.15 − 261.16 0.08
12.62 66 411 − 74.10 0.61 0.08 0.07 − 0.01 − 188.04 − 261.46 − 261.46 0.25
13.02 72 810 − 74.10 0.73 0.08 0.08 0.00 − 187.98 − 261.27 − 261.28 0.38

net3
7.42 12 077 − 74.10 8.33 6.96 7.17 0.21 − 197.07 − 255.88 − 255.68 0.22
7.82 14 377 − 74.10 7.22 6.15 6.32 0.17 − 195.11 − 255.85 − 255.68 0.23
8.22 16 875 − 74.10 6.51 5.48 5.61 0.13 − 193.48 − 255.60 − 255.47 0.21
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TABLE II. (Continued.)

��GDSI ��GDSF ��GNUM ��GANA ��GANA-NUM �GMD,PBC �GMD,NBC,NUM �GMD,NBC,ANA σ [�GMD]
L (nm) NS (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

8.62 19 798 − 74.10 5.34 4.91 5.02 0.11 − 192.03 − 255.88 − 255.77 0.22
9.02 22 999 − 74.10 4.39 4.44 4.52 0.08 − 190.89 − 256.18 − 256.09 0.21
9.42 26 492 − 74.10 3.60 4.03 4.10 0.07 − 190.50 − 256.97 − 256.90 0.27
9.82 30 296 − 74.10 2.93 3.68 3.74 0.06 − 189.19 − 256.68 − 256.62 0.24
10.22 34 748 − 74.10 1.69 3.38 3.42 0.04 − 188.34 − 257.37 − 257.33 0.24
10.62 38 852 − 74.10 1.95 3.11 3.15 0.04 − 187.61 − 256.65 − 256.62 0.24
11.02 43 591 − 74.10 1.65 2.88 2.91 0.03 − 187.65 − 257.23 − 257.20 0.22

net9
7.42 12 077 − 74.10 8.33 20.06 20.65 0.59 − 205.70 − 251.41 − 250.83 0.21
7.82 14 377 − 74.10 7.22 17.69 18.16 0.47 − 202.22 − 251.42 − 250.95 0.19
8.22 16 875 − 74.10 6.51 15.72 16.10 0.38 − 199.97 − 251.84 − 251.46 0.22
8.62 19 798 − 74.10 5.34 14.08 14.38 0.30 − 197.18 − 251.87 − 251.57 0.22
9.02 22 999 − 74.10 4.39 12.69 12.93 0.24 − 195.58 − 252.60 − 252.36 0.22
9.42 26 492 − 74.10 3.60 11.51 11.70 0.19 − 193.28 − 252.27 − 252.08 0.21
9.82 30 296 − 74.10 2.93 10.49 10.65 0.16 − 192.09 − 252.76 − 252.61 0.24
10.22 34 748 − 74.10 1.69 9.62 9.74 0.12 − 191.46 − 254.25 − 254.13 0.35
10.62 38 852 − 74.10 1.95 8.85 8.95 0.10 − 189.59 − 252.89 − 252.79 0.23
11.02 43 591 − 74.10 1.65 8.19 8.27 0.08 − 188.59 − 252.86 − 252.78 0.24

net9quad
7.42 12 077 − 74.10 8.33 − 18.39 − 17.82 0.57 − 190.11 − 274.27 − 273.70 0.21
7.82 14 377 − 74.10 7.22 − 15.16 − 14.70 0.46 − 192.76 − 274.81 − 274.35 0.21
8.22 16 875 − 74.10 6.51 − 12.56 − 12.19 0.37 − 194.10 − 274.26 − 273.88 0.25
8.62 19 798 − 74.10 5.34 − 10.45 − 10.15 0.30 − 195.46 − 274.67 − 274.38 0.26
9.02 22 999 − 74.10 4.39 − 8.72 − 8.48 0.24 − 195.51 − 273.94 − 273.70 0.24
9.42 26 492 − 74.10 3.60 − 7.29 − 7.09 0.20 − 195.89 − 273.68 − 273.49 0.25
9.82 30 296 − 74.10 2.93 − 6.10 − 5.94 0.16 − 198.43 − 275.69 − 275.54 0.23
10.22 34 748 − 74.10 1.69 − 5.10 − 4.98 0.12 − 197.67 − 275.18 − 275.06 0.28
10.62 38 852 − 74.10 1.95 − 4.26 − 4.16 0.10 − 199.01 − 275.43 − 275.33 0.22
11.02 43 591 − 74.10 1.65 − 3.56 − 3.47 0.09 − 198.69 − 274.71 − 274.62 0.27

net-5ion
7.42 12 022 − 74.10 8.63 − 0.31 − 0.71 − 0.40 − 207.89 − 273.68 − 274.08 0.31
7.82 14 314 − 74.10 7.51 − 0.23 − 0.58 − 0.35 − 206.93 − 273.76 − 274.11 0.19
8.22 16 804 − 74.10 6.79 − 0.17 − 0.48 − 0.31 − 205.73 − 273.21 − 273.52 0.40
8.62 19 715 − 74.10 5.63 − 0.13 − 0.39 − 0.26 − 205.91 − 274.51 − 274.78 0.53
9.02 22 906 − 74.10 4.67 − 0.09 − 0.32 − 0.23 − 204.83 − 274.36 − 274.59 0.21
9.42 26 387 − 74.10 3.88 − 0.06 − 0.26 − 0.20 − 204.60 − 274.88 − 275.09 0.45
9.82 30 177 − 74.10 3.21 − 0.03 − 0.22 − 0.19 − 204.19 − 275.11 − 275.30 0.16
10.22 34 615 − 74.10 1.97 − 0.01 − 0.18 − 0.17 − 202.71 − 274.86 − 275.02 0.50
10.62 38 703 − 74.10 2.23 0.01 − 0.14 − 0.15 − 203.10 − 274.97 − 275.12 0.22
11.02 43 424 − 74.10 1.93 0.03 − 0.11 − 0.14 − 202.52 − 274.68 − 274.82 0.32

net9ion
7.42 12 017 − 74.10 8.66 1.15 0.76 − 0.39 − 190.27 − 254.56 − 254.95 0.34
7.82 14 309 − 74.10 7.53 1.02 0.68 − 0.34 − 188.59 − 254.14 − 254.48 0.30
8.22 16 799 − 74.10 6.81 0.91 0.61 − 0.30 − 188.09 − 254.48 − 254.77 0.28
8.62 19 710 − 74.10 5.64 0.81 0.55 − 0.26 − 188.36 − 256.01 − 256.27 0.43
9.02 22 901 − 74.10 4.68 0.73 0.50 − 0.23 − 186.51 − 255.20 − 255.44 0.21
9.42 26 382 − 74.10 3.89 0.66 0.46 − 0.20 − 185.97 − 255.52 − 255.73 0.28
9.82 30 172 − 74.10 3.23 0.61 0.42 − 0.19 − 185.75 − 256.02 − 256.21 0.11
10.22 34 610 − 74.10 1.98 0.56 0.39 − 0.17 − 184.31 − 255.88 − 256.05 0.41
10.62 38 698 − 74.10 2.23 0.51 0.36 − 0.15 − 183.80 − 255.16 − 255.31 0.26
11.02 43 419 − 74.10 1.93 0.47 0.34 − 0.13 − 183.27 − 254.97 − 255.10 0.28

C. Numerical correction scheme

The corrected charging free energies �GMD,NBC cal-
culated using the numerical correction scheme (Eq. (10),
based on a probe-contact solvent-accessible surface dielectric
boundary condition with a 0.14 nm solvent probe radius for

the PB calculations) are displayed as a function of the box-
edge length L using solid lines in Figure 4(b). The correspond-
ing numerical results are also reported in Table II. Compared
to the raw data in Figure 4(a), it is immediately seen that the
correction scheme successfully removes the largest compo-
nent of the finite-size errors. The residual dependence on L
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now ranges from −1.5 to +0.4 kJ mol−1 for the different sys-
tems, as estimated by the differences between the values at
7.42 and 11.02 nm. The magnitude of �GMD,NBC also differs
significantly from that of the raw values �GMD,PBC due to the
inclusion of the discrete solvent correction term in the infinite-
system limit, see ��GDSI in Eq. (32), which amounts to about
−74.1 kJ mol−1 for the TIP3P water model at the experimen-
tal density of water.

After correction, the ranking of the systems in terms of
increasing ligand charging free energies is essentially inde-
pendent of L. For the systems net-5, net0, net3, and net9, the
charging free energy becomes less negative upon increasing
the protein charge from −5 to +9 e, as expected for the bind-
ing of a positively charged ligand. For the system net9quad,
one would expect a value identical to that for the system
net9 if the added quadrupole was exactly isotropic. In prac-
tice, the slight anisotropy of this quadrupole, which involves
very large charges, induces a shift in the ligand charging free
energy by about −22 kJ mol−1. Comparing the system net-
5ion to net-5, the inclusion of neutralizing sodium counter-
ions (plus neutral salt excess) in the MD simulations is seen
to cause an increase in the charging free energy by about 4
kJ mol−1. Comparing the system net9ion to net9, the inclu-
sion of neutralizing chloride counter-ions (plus neutral salt
excess) in the MD simulations is seen to cause a decrease in
the charging free energy by about 3 kJ mol−1. Because the
ligand is positively charged, these changes are consistent with
the presence of an excess of counter-ions, positive for net-5
and negative for net9, in the neighborhood of the ligand
binding site. Although the inclusion of an explicit neu-
tralizing counter-ion charge density in the PB calculations
(Sec. III B) is absolutely essential for obtaining meaningful
results, the use of a finite inverse Debye screening length
κ = 1.0 nm−1 only has a marginal influence on the result
of the calculations (Tables S2 and S4 of the supplementary
material154), i.e., for the counter-ion concentration considered
here, this additional screening contribution can be neglected
in the calculation of the correction terms. Note that the differ-
ences in the corrected �GMD,NBC values between the different
systems are likely to be exacerbated by the use of fixed solute
coordinates. In MD simulations considering flexible solutes,
conformational relaxation of the solute would probably atten-
uate these differences.

D. Choice of dielectric boundary conditions

The numerically corrected charging free energies
�GMD,NBC (Figure 4, Table II) are based on PB calculations
relying on a probe-contact solvent-accessible surface with a
probe radius RS = 0.14 nm (CTC(0.14)). However, the choice
of specific dielectric boundary conditions to define the so-
lute low dielectric cavity may have a strong influence on the
results. Three possible choices are:94 VDW surface, probe-
contact solvent-accessible surface (CTC(RS)), or probe-center
solvent-accessible surface (CEN(RS)), where RS is the radius
of a spherical probe (solvent molecule) rolled over the VDW
surface. The difference between the three types of surfaces is
illustrated graphically in Figure 5.

FIG. 5. Alternative choices of dielectric boundary conditions. Boundaries of
enclosed volumes are shown for a cut in the xy-plane through the center of
the protein-ligand complex, with the van der Waals surface (VDW; red), a
probe-contact solvent-accessible surface (CTC(RS); green), or a probe-center
solvent-accessible surface (CEN(RS); blue), where RS is the radius of a spher-
ical probe (solvent molecule) rolled over the VDW surface, here RS = 0.14
nm. Note that CTC(0) = CEN(0) = VDW. The solvent region is show in
cyan.

The sensitivity of the corrected ligand charging free en-
ergies �GMD,NBC to the choice of dielectric boundary condi-
tions is analyzed in Figure 6 for the CTC(RS) choice, con-
sidering probe radii RS ranging from 0 to 0.18 nm. For the
eight systems considered, Figure 6(a) displays the calculated
�GMD,NBC value corresponding to the largest box size, which
represents the most accurate estimate available. Figure 6(b)
displays the slope of a regression line fitting �GMD,NBC as a
function of L−1, which measures the ability of the correction
scheme to remove the box-size dependence, along with an er-
ror estimate on this slope evaluated by bootstrapping. A re-
gression slope of zero, within its error bounds, for all systems
would be expected for a correction scheme able to entirely
remove finite-size effects. This is essentially achieved by the
CTC(0.10) choice. For probe radii smaller than 0.10 nm, the
regression slopes rapidly diverge upon decreasing RS, and
the �GMD,NBC values present an important sensitivity to this
parameter, especially for the systems with high net protein
charges and no counter-ions (net-5, net9, net9quad, and to
a lesser extent, net3). This is because small probe radii lead
to the inclusion of high-dielectric cavities within the protein-
ligand complex. These high-dielectric cavities, visible in Fig-
ure 5 as green volumes within the CTC(0.14) surface but
outside the VDW surface, represent an artifact considering
that they would be too small to accommodate even a sin-
gle water molecule. For probe radii larger than 0.10 nm, the
regression slopes also slightly diverge upon increasing RS,
but the �GMD,NBC values only evidence a weak sensitivity to
this parameter. This is because once the high-dielectric cavi-
ties have been removed, further increasing the probe radius
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FIG. 6. Influence of the dielectric boundary conditions on the corrected charging free energies. This graph illustrates the sensitivity of the corrected results
to the solvent probe radius used in the definition of the solute-solvent dielectric boundary, based on the numerical correction scheme and a probe-contact
solvent-accessible surface definition. (a) Sensitivity of the corrected charging free energies at the largest box size. Shown are ligand charging free energies
�GMD ,NBC calculated based on explicit-solvent MD simulations corresponding to the eight different systems (Table I) at the largest box size Lmax, corrected for
finite-size effects using the numerical scheme (Eq. (10)) and displayed as a function of probe radius RS used in the PB calculations required for the evaluation
of the correction term ��GNUM (Eq. (12)). (b) Residual box size-dependence in the corrected charging free energies. The remaining box size-dependence
of the corrected ligand charging free energies �GMD ,NBC for a given system is quantified by the slope of a linear regression of the corrected charging free
energies at all box sizes as a function of the inverse box edge L−1 (solid lines). The error on the regression slope (dashed lines) is calculated based on 10 000
resamplings of the �GMD ,NBC data for a given system, where each resampling includes the same number of points (i.e., box sizes) taken at random from the set
of box sizes, the error in the regression slope being estimated by the standard deviation of the corresponding resampled slopes. All PB calculations relied on a
solute-solvent dielectric boundary defined as a probe-contact solvent-accessible surface with a probe radius RS (CTC(RS), where CTC(0) = VDW corresponds
to a van der Waals surface). A corresponding figure for a probe-center solvent-accessible surface (CEN(RS)) boundary definition can be found in Figure S2 of
the supplementary material.154

only alters the smoothness of the boundary. The scheme
CTC(0.10) therefore seems to represent an optimum for these
calculations. However, as shown in Figure S1 of the supple-
mentary material,154 the difference relative to the results with
the more commonly used CTC(0.14) choice of Figure 4 is
only marginal.

A figure corresponding to Figure 6 for the CEN(RS)
choice is provided in Figure S2 of the supplementary
material.154 There, an optimum is found for RS = 0.05 nm,
but the sensitivity of the results to the choice of RS is large for
both smaller and larger values. A larger dependence upon in-
creasing RS above than 0.05 nm is expected here compared
to CTC(RS), because once the high-dielectric cavities have
been removed, further increasing the probe radius alters not
only the smoothness of the boundary but also its position. For
this reason, it is recommended to apply the present correction
scheme based on PB calculations relying on a probe-contact
solvent-accessible surface, with a probe radius in the range
0.10–0.14 nm for water.

Different research groups advocate the use of dif-
ferent surfaces99 in PB calculations, typically van der
Waals79, 80, 100–102 or molecular103–105 surfaces, along with dif-
ferent solute permittivity values.76–80 However, this debate
mostly concerns calculations aiming at accounting for the di-
electric properties of protein-solvent systems as realistically

as possible using the approximate PB approach, usually based
on a single system configuration. In those cases, the mean di-
electric effects of the protein electronic polarizability, protein
conformational fluctuations, and transient bulk-interior wa-
ter exchanges must be considered, as well as the correlation
between various methodological choices (e.g., surface type,
atomic radii, solute flexibility, and solute permittivity). In the
present study, PB is used for the correction of MD simula-
tion results relying on a non-polarizable force field and con-
strained solute coordinates. In this case, the interior permit-
tivity must be set to one, and the preference for a molecular
surface is determined by the sensitivity analysis of Figure 6
(and Figure S2 of the supplementary material154) rather than
by theoretical arguments, although the poor performance of
the van der Waals surface in the correction scheme can be in-
tuitively understood as being caused by the presence of spuri-
ous high-dielectric cavities in the solute.

The results displayed in Figures 4 and 6 show that the PB
analysis works remarkably well to correct the results of the
MD simulations for finite-size effects. This may be surprising
at first sight considering that charging free energies calculated
directly using PB calculations are generally qualitative at best,
accounting only approximately for numerous physical effects
such as electrostriction, dielectric saturation, solute-solvent
hydrogen bonding, and solvation-shell structure.33 However,
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TABLE III. Parameters of the analytical correction scheme. For each system (Table I), the following quantities are reported: the effective protein net charge
QP used in Eqs. (15)–(17) and (25), which is set to zero for the systems with neutralizing counter-ions; the ligand net charge QL; the residual integrated potential
IP of the protein based on Eq. (18) with X = P; the residual integrated potential IL of the ligand based on Eq. (18) with X = L; the solvent contribution IL , SLV

to IL based on Eq. (27); the effective solvation radius RL of the ligand within the protein-ligand complex based on Eq. (26). The evaluation of IP, IL and
IL , SLV relied on PB calculations under non-periodic boundary conditions within a cubic box of edge Lref = 15 nm centered on the ligand, with a probe-contact
solvent-accessible surface based on a probe radius RS = 0.14 nm (CTC(0.14)). Parameters of additional calculations concerning the systems with counter-ions
as well as the fitting parameters of Eqs. (34) and (38) for the numerical scheme can be found in Table S3 of the supplementary material.154

System QP (e) QL (e) IP (kJ nm3 mol−1 e−1) IL (kJ nm3 mol−1 e−1) IL , SLV (kJ nm3 mol−1 e−1) RL (nm)

lig 0 1 0 3 37 0.36
net-5 − 5 1 − 1088 690 721 1.58
net0 0 1 − 865 690 721 1.58
net3 3 1 − 579 690 722 1.58
net9 9 1 − 484 690 722 1.58
net9quad 9 1 − 16 188 690 722 1.58
net-5ion 0 1 − 1088 690 721 1.58
net9ion 0 1 − 484 690 722 1.58

this is irrelevant for the PB correction because these physi-
cal effects are short-ranged so that the corresponding errors
largely cancel out in the difference between periodic and non-
periodic PB calculations. On the other hand, the PB model
provides an excellent description of long-range polarization
effects, which represent the dominant cause of finite-size arti-
facts in the MD simulations.

E. Analytical correction scheme

The corrected charging free energies �GMD,NBC cal-
culated using the analytical correction scheme (Eq. (11),
based on a probe-contact solvent-accessible surface dielectric
boundary condition with a 0.14 nm solvent probe radius for
the PB calculations) are displayed as a function of the box
edge L using crosses in Figure 4(b). The parameters of the
correction scheme for the different systems are summarized
in Table III and the numerical results corresponding to the
figure can be found in Table II.

The analytical correction scheme is essentially as
successful as the numerical one in removing the largest
component of the finite-size errors. This can be seen by
comparing the analytically corrected results to the raw data
(Figure 4(a)) and to the numerically corrected results (solid
lines in Figure 4(b)). The maximal differences between
��GNUM and ��GANA are at most of 0.6 kJ mol−1 in mag-
nitude over all systems (0.2 kJ mol−1 considering the systems
with L > 10 nm). The differences are most significant for
systems net9 and net9quad (high protein charge) as well as
net-5ion and net9ion (different ways of accounting for the
counter-ions).

The residual integrated potential IL of the ligand is
essentially the same for all protein-ligand complexes. This
is expected considering that this quantity is determined by
the ligand charge distribution and the size and shape of the
protein-ligand cavity, the latter being nearly the same for all
complexes. This parameter is expectedly much smaller for
the free ligand, where the cavity is comparatively small. In
contrast, the residual integrated potential IP of the protein
for the different protein-ligand complexes is extremely
sensitive to the charge distribution of the protein. Note

in particular the very large difference between the values
for systems net9 and net9quad. The latter system includes
a quasi-isotropic quadrupole added to the protein charge
distribution (Figure 1). Such a quadrupole is expected to have
a negligible influence on the field generated by the protein on
the ligand (none if the quadrupole was exactly isotropic and
entirely encompassed within the protein volume), because
the electrostatic influence of the central atom (charge −80 e)
is screened by the shell of peripheral atoms (total charge
+80 e). In practice, the slight anisotropy of this quadrupole,
which involves very large charges distributed on atomic sites,
induces a shift in the ligand charging free energy by about
−22 kJ mol−1 in terms of corrected values, as mentioned in
Sec. IV C. However, the quadrupole has a large influence
on the average electric potential within the computational
box. Based on an approximate distance of 0.82 nm between
central charge and peripheral shell, the quadrupole-moment
trace γ IQ is about 54 e nm2 (cf Eq. (29)) so that the con-
tribution of the quadrupole to IP should be about IP,IQ

= −(6εo)−1 γ IQ = −15 690 kJ nm3 mol−1 e−1. This value
is negative, because the potential between the central
charge and the screening shell is negative, and matches
the IP difference between net9quad and net9 in Table III
(−15 704 kJ nm3 mol−1 e−1). This very large negative in-
tegrated potential IP,IQ induces a positive offset potential
−L−3IP,IQ in a lattice-sum MD simulation (or lattice-sum PB
calculation) at box edge L, and a positive offset −L−3QLIP,IQ

in the calculated ligand charging free energy, for example
about +16 kJ mol−1 for L = 10 nm (using QL = 1 e). This
artifact is corrected in the analytical scheme by the term
�GRIP of Eq. (17). Thus the residual integrated potential
IP of the protein depends in a complex way on the protein
charge distribution, i.e., it is not necessarily simply related to
the protein net charge QP.

The effective solvation radius RL of the ligand in the
protein-ligand complex, as determined from the solvation
contribution IL,SLV to the residual integrated potential IL of
the ligand, is essentially the same for all systems, evaluat-
ing to 1.58 nm. This is expected considering that this quan-
tity is determined by the ligand charge distribution and the
size and shape of the protein-ligand cavity, which is nearly the
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same for all complexes. This value is somewhat smaller than
the volume-based effective radius of the complex, 2.2 nm,
estimated as the radius of a sphere with the same volume
(based on CTC(0.14)) as the protein-ligand complex. As ex-
pected, for the free ligand, the effective solvation radius is
much smaller, evaluating to 0.36 nm, while the corresponding
volume-based effective radius is 0.29 nm.

The analytical correction scheme permits a partitioning
of the correction into terms corresponding to different physi-
cal effects. The individual contributions in Eqs. (11) and (14)
are reported in Table IV. These contributions are also illus-
trated graphically in Figure 7.

The terms ��GNET and ��GUSV correcting for
periodicity-induced net-charge interactions and undersolva-
tion, respectively, are individually very large. However, for
a solvent of high dielectric permittivity such as water, these
largely cancel out (compare Eqs. (15) and (16)). As discussed
in Secs. II D 1 and II D 2, this cancellation is somewhat mis-
leading. If the net-charge term ULS,NET of Eq. (9) were in-
cluded in the lattice-sum energy expression of the MD sim-
ulations, as suggested in Refs. 67 and 68, ��GNET would
be omitted from the correction scheme. The remaining term
��GUSV would then give a more appropriate idea of the real
impact of using nanoscale box sizes with lattice-sum electro-
statics when considering charged systems (see discussion in
Sec. II D 2).

Given the lattice-sum energy expression used in the
present work and in current MD programs, which omits
ULS,NET, the sum of ��GNET + ��GUSV can be consid-
ered. It is most significant for the systems net-5, net3, net9,
and net9quad with high protein charge magnitude (up to
5.5 kJ mol−1 in magnitude for L = 7 nm), negative for net-5
(where QP and QL are of opposite signs) and positive other-
wise. It is small for the systems lig, net0, net-5ion, and net9ion
with zero effective protein charge (up to 0.7 kJ mol−1 in mag-
nitude for L = 7 nm), for which the correction scheme is ap-
plied with QP = 0, so that ��GNET + ��GUSV is propor-
tional to Q2

L (Eqs. (15) and (16)).
The correction term ��GRIP for residual integrated po-

tential effects is also large for the systems with high pro-
tein charge magnitude (up to 27.1 kJ mol−1 in magnitude for
L = 7 nm, or up to 18.7 kJ mol−1 excluding net9quad). It is
small for the systems with zero effective protein charge (up to
1.1 kJ mol−1 in magnitude for L = 7 nm), where ��GRIP is
proportional to (IP + IL)QL (Eq. (17)). This term depends in
a complex way on the protein charge distribution and cannot
be directly related to the relative signs of QP and QL. Note in
particular the large magnitudes and opposite signs of ��GRIP

for the systems net9 and net9quad. For these two systems,
the terms of Eq. (17) proportional to IL are about the same,
and are positive. The remaining component in IPQL is small
and negative for net9, leading to an overall positive ��GRIP,
while it is very large and negative for net9quad, leading to an
overall negative ��GRIP. This comparison illustrates clearly
how features of the charge distribution within the protein that
should not affect the ligand charging can still lead to very
large artifacts in the raw charging free energies from MD
simulations. It should also be stressed that in a binding free
energy calculation, the term ��GRIP will not cancel out be-

tween the two legs of the alchemical thermodynamic cycle.
For example, in the present case, this term is large and protein-
dependent for the ligand charging in the complex, and nearly
zero for the charging of the ligand in solution.

The empirical term ��GEMP enforcing agreement be-
tween the correction scheme and the analytical solution for
point charges centered in a spherical cavity is small in all
cases (at most 0.4 kJ mol−1 in magnitude for L = 7 nm). It is
of the same sign as ��GUSV and thus enhances undersolva-
tion. To assess the validity of this term, additional calculations
were performed for a model system consisting of a spherical
cavity of radius R = 2.5 nm encompassing a protein point
charge of +3 e and a ligand charge +1 e at its center (ex-
cluded from direct Coulomb interaction), see system sph3 in
Table S4 of the supplementary material.154 It was verified in
this case that RL evaluates to R, ��GRIP agrees with the ana-
lytical result of Eq. (22), and ��GANA is rigorously identical
to ��GNUM within numerical precision.

Finally, the discrete-solvent term ��GDSC consists of
two parts. The box-size independent term ��GDSI is a con-
stant −74.1 kJ mol−1 for all systems, characteristic of the em-
ployed water model and its bulk density. This term is negative
and, in the orientational disorder limit, corrects for the posi-
tive offset potential in the MD simulations induced by the con-
straint of vanishing average potential in lattice-sum methods.
The finite-size adjustment term ��GDSF is box-edge depen-
dent, identical and positive for all protein-ligand complexes,
and typically large (up to 12.3 kJ mol−1 for L = 7 nm). It is
small for the free ligand (at most 1.4 kJ mol−1 for L = 3 nm),
due to its small excluded volume. In the context of a binding
free energy calculation, the contribution of ��GDSI will can-
cel out between the two legs of the alchemical thermodynamic
cycle because it only depends on the nature and equilibrium
density of the solvent, whereas that of ��GDSF will in gen-
eral not.

For the systems net-5ion and net9ion involving neutraliz-
ing counter-ions, the analytical correction scheme is applied
with an effective protein charge QP set to zero, accounting
approximately for a surface neutralization of the protein, and
an inverse Debye screening length κ = 0. This scheme has
not been generalized to the κ �= 0 situation, but tests with
non-zero κ values in the context of the numerical scheme
showed a negligible influence of this parameter on the results
(Sec. IV C). An alternative to the use of QP = 0 is to introduce
an explicit neutralizing surface charge distribution as done in
the numerical scheme (Sec. III B). The results of correspond-
ing calculations are reported in Tables S2 and S4 of the sup-
plementary material.154 They do not differ significantly from
those reported in Tables II and IV.

Figure 7 suggests that for a number of systems (lig, net0,
net-5ion, and net-9ion), the discrete solvent term ��GDSC

alone might represent an adequate correction. However, this
observation is tightly linked to the fact that the ligand is small
and monovalent with a relatively simple charge distribution.
When the analytical scheme is applied with QP = 0, the terms
��GNET, ��GUSV, and ��GEMP become proportional to
Q2

L, and the term ��GRIP to (IP + IL)QL. These terms are
small here because QL = 1 e and IL is small (the most sig-
nificant contribution being the IPQL component of ��GRIP).
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TABLE IV. Components of the analytical correction scheme. For each system (Table I) and box edge length L, the following quantities are reported: the
net-charge interaction term ��GNET, see Eq. (15); the net-charge undersolvation term ��GUSV, see Eq. (16); the residual integrated potential term ��GRIP,
see Eq. (17); the empirical correction term ��GEMP, see Eq. (25); the analytical finite-size correction term ��GANA, see Eq (14); the discrete solvent
correction terms ��GDSI (infinite system limit) and ��GDSF (finite-system adjustment), see Eq. (31); the total numerical ��GMD ,COR,NUM (= ��GNUM

+ ��GDSI + ��GDSF) or analytical ��GMD ,COR,ANA (= ��GANA + ��GDSI + ��GDSF) correction terms, see Eqs. (10) and (11); and the difference
��GMD ,COR,ANA-NUM between these two quantities. The terms ��GDSI and ��GDSF are calculated from Eqs. (31)–(33) using VC = 0.5 nm3 for lig or
57.0 nm3 for all other systems along with MS = 18.015 g mol−1, γ S = 0.0764 e nm2 and ρS = 997 kg m−3. The term ��GANA is calculated using the
parameters reported in Table III. For both ��GNUM and ��GANA, the correction relies on PB calculations with a probe-contact solvent-accessible surface
based on a probe radius RS = 0.14 nm (CTC(0.14)). The data are displayed graphically in Figure 7. Additional results concerning the systems with counter-ions
can be found in Table S4 of the supplementary material.154

��GNET ��GUSV ��GRIP ��GEMP ��GANA ��GDSI ��GDSF ��GMD ,COR, NUM ��GMD ,COR, ANA ��GMD ,COR,ANA-NUM

L (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

lig
3 65.70 − 65.02 0.12 0.00 0.80 − 74.1 1.37 − 71.91 − 71.93 − 0.02
4 49.28 − 48.77 0.05 0.00 0.56 − 74.1 0.58 − 72.96 − 72.97 − 0.01
5 39.42 − 39.01 0.03 0.00 0.43 − 74.1 0.30 − 73.37 − 73.38 0.00
6 32.85 − 32.51 0.02 0.00 0.35 − 74.1 0.17 − 73.58 − 73.58 0.00
7 28.16 − 27.87 0.01 0.00 0.30 − 74.1 0.11 − 73.70 − 73.70 0.00
8 24.64 − 24.38 0.01 0.00 0.26 − 74.1 0.07 − 73.77 − 73.77 0.00
9 21.90 − 21.67 0.00 0.00 0.23 − 74.1 0.05 − 73.82 − 73.82 0.00
10 19.71 − 19.51 0.00 0.00 0.21 − 74.1 0.04 − 73.86 − 73.86 0.00
11 17.92 − 17.73 0.00 0.00 0.19 − 74.1 0.03 − 73.89 − 73.89 0.00
12 16.43 − 16.26 0.00 0.00 0.17 − 74.1 0.02 − 73.91 − 73.91 0.00
13 15.16 − 15.01 0.00 0.00 0.16 − 74.1 0.02 − 73.93 − 73.93 0.00
14 14.08 − 13.93 0.00 0.00 0.15 − 74.1 0.01 − 73.94 − 73.95 0.00
15 13.14 − 13.00 0.00 0.00 0.14 − 74.1 0.01 − 73.96 − 73.96 0.00

net5
7 − 253.42 250.80 − 11.21 0.18 − 13.64 − 74.1 12.31 − 75.07 − 75.43 − 0.36
8 − 221.74 219.45 − 7.51 0.08 − 9.71 − 74.1 8.25 − 75.39 − 75.57 − 0.18
9 − 197.10 195.07 − 5.27 0.04 − 7.27 − 74.1 5.79 − 75.48 − 75.58 − 0.10
10 − 177.39 175.56 − 3.85 0.02 − 5.65 − 74.1 4.22 − 75.47 − 75.53 − 0.06
11 − 161.26 159.60 − 2.89 0.01 − 4.54 − 74.1 3.17 − 75.43 − 75.47 − 0.04
12 − 147.83 146.30 − 2.23 0.01 − 3.74 − 74.1 2.44 − 75.37 − 75.40 − 0.03
13 − 136.45 135.05 − 1.75 0.00 − 3.15 − 74.1 1.92 − 75.31 − 75.33 − 0.02
14 − 126.71 125.40 − 1.40 0.00 − 2.70 − 74.1 1.54 − 75.25 − 75.27 − 0.02
15 − 118.26 117.04 − 1.14 0.00 − 2.36 − 74.1 1.25 − 75.20 − 75.21 − 0.01

net0
7 28.16 − 27.87 − 0.51 − 0.02 − 0.24 − 74.1 12.31 − 61.99 − 62.03 − 0.04
8 24.64 − 24.38 − 0.34 − 0.01 − 0.10 − 74.1 8.25 − 65.92 − 65.95 − 0.03
9 21.90 − 21.67 − 0.24 0.00 − 0.02 − 74.1 5.79 − 68.30 − 68.33 − 0.03
10 19.71 − 19.51 − 0.18 0.00 0.03 − 74.1 4.22 − 69.83 − 69.86 − 0.02
11 17.92 − 17.73 − 0.13 0.00 0.05 − 74.1 3.17 − 70.86 − 70.88 − 0.02
12 16.43 − 16.26 − 0.10 0.00 0.07 − 74.1 2.44 − 71.58 − 71.59 − 0.01
13 15.16 − 15.01 − 0.08 0.00 0.08 − 74.1 1.92 − 72.09 − 72.11 − 0.01
14 14.08 − 13.93 − 0.06 0.00 0.08 − 74.1 1.54 − 72.47 − 72.48 − 0.01
15 13.14 − 13.00 − 0.05 0.00 0.08 − 74.1 1.25 − 72.76 − 72.77 − 0.01

net3
7 197.10 − 195.07 6.36 − 0.14 8.25 − 74.1 12.31 − 53.69 − 53.54 0.14
8 172.46 − 170.69 4.26 − 0.06 5.97 − 74.1 8.25 − 59.95 − 59.88 0.07
9 153.30 − 151.72 2.99 − 0.03 4.54 − 74.1 5.79 − 63.81 − 63.77 0.04
10 137.97 − 136.55 2.18 − 0.02 3.59 − 74.1 4.22 − 66.31 − 66.29 0.02
11 125.43 − 124.13 1.64 − 0.01 2.92 − 74.1 3.17 − 68.02 − 68.01 0.01
12 114.98 − 113.79 1.26 − 0.01 2.44 − 74.1 2.44 − 69.23 − 69.22 0.01
13 106.13 − 105.04 0.99 0.00 2.08 − 74.1 1.92 − 70.10 − 70.10 0.00
14 98.55 − 97.53 0.79 0.00 1.81 − 74.1 1.54 − 70.76 − 70.76 0.00
15 91.98 − 91.03 0.65 0.00 1.59 − 74.1 1.25 − 71.26 − 71.26 0.00

net9
7 534.99 − 529.47 18.67 − 0.39 23.80 − 74.1 12.31 − 38.60 − 37.99 0.62
8 468.11 − 463.29 12.51 − 0.17 17.16 − 74.1 8.25 − 49.00 − 48.69 0.31
9 416.10 − 411.81 8.79 − 0.09 12.99 − 74.1 5.79 − 55.49 − 55.32 0.17
10 374.49 − 370.63 6.41 − 0.05 10.22 − 74.1 4.22 − 59.76 − 59.66 0.10
11 340.45 − 336.94 4.81 − 0.03 8.30 − 74.1 3.17 − 62.70 − 62.64 0.07
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TABLE IV. (Continued.)

��GNET ��GUSV ��GRIP ��GEMP ��GANA ��GDSI ��GDSF ��GMD ,COR, NUM ��GMD ,COR, ANA ��GMD ,COR,ANA-NUM

L (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

12 312.08 − 308.86 3.71 − 0.02 6.91 − 74.1 2.44 − 64.80 − 64.75 0.05
13 288.07 − 285.10 2.92 − 0.01 5.88 − 74.1 1.92 − 66.34 − 66.31 0.03
14 267.49 − 264.74 2.33 − 0.01 5.09 − 74.1 1.54 − 67.50 − 67.48 0.02
15 249.66 − 247.09 1.90 0 4.47 − 74.1 1.25 − 68.40 − 68.39 0.02

net9quad
7 534.39 − 528.88 − 27.11 − 0.39 − 21.98 − 74.1 12.31 − 84.36 − 83.78 0.58
8 467.59 − 462.77 − 18.16 − 0.17 − 13.51 − 74.1 8.25 − 79.64 − 79.37 0.27
9 415.64 − 411.35 − 12.75 − 0.09 − 8.55 − 74.1 5.79 − 77.01 − 76.87 0.14
10 374.07 − 370.22 − 9.30 − 0.05 − 5.49 − 74.1 4.22 − 75.45 − 75.37 0.08
11 340.07 − 336.56 − 6.99 − 0.03 − 3.51 − 74.1 3.17 − 74.49 − 74.44 0.05
12 311.73 − 308.51 − 5.38 − 0.02 − 2.18 − 74.1 2.44 − 73.88 − 73.84 0.03
13 287.75 − 284.78 − 4.23 − 0.01 − 1.28 − 74.1 1.92 − 73.48 − 73.46 0.03
14 267.2 − 264.44 − 3.39 − 0.01 − 0.64 − 74.1 1.54 − 73.22 − 73.21 0.02
15 249.38 − 246.81 − 2.75 0 − 0.19 − 74.1 1.25 − 73.06 − 73.04 0.02

net5ion
7 28.16 − 27.87 − 1.16 − 0.02 − 0.89 − 74.1 12.31 − 61.98 − 62.68 − 0.70
8 24.64 − 24.38 − 0.78 − 0.01 − 0.53 − 74.1 8.25 − 65.93 − 66.39 − 0.46
9 21.90 − 21.67 − 0.55 0.00 − 0.32 − 74.1 5.79 − 68.31 − 68.64 − 0.32
10 19.71 − 19.51 − 0.40 0.00 − 0.20 − 74.1 4.22 − 69.84 − 70.08 − 0.23
11 17.92 − 17.73 − 0.30 0.00 − 0.12 − 74.1 3.17 − 70.87 − 71.05 − 0.18
12 16.43 − 16.26 − 0.23 0.00 − 0.06 − 74.1 2.44 − 71.58 − 71.72 − 0.14
13 15.16 − 15.01 − 0.18 0.00 − 0.03 − 74.1 1.92 − 72.10 − 72.21 − 0.11
14 14.08 − 13.93 − 0.15 0.00 0 − 74.1 1.54 − 72.48 − 72.57 − 0.09
15 13.14 − 13.00 − 0.12 0.00 0.02 − 74.1 1.25 − 72.76 − 72.84 − 0.07

net9ion
7 28.16 − 27.87 0.58 − 0.02 0.85 − 74.1 12.31 − 60.42 − 60.95 − 0.53
8 24.64 − 24.38 0.39 − 0.01 0.63 − 74.1 8.25 − 64.86 − 65.22 − 0.37
9 21.90 − 21.67 0.27 0.00 0.49 − 74.1 5.79 − 67.55 − 67.82 − 0.27
10 19.71 − 19.51 0.20 0.00 0.40 − 74.1 4.22 − 69.28 − 69.48 − 0.20
11 17.92 − 17.73 0.15 0.00 0.33 − 74.1 3.17 − 70.45 − 70.60 − 0.15
12 16.43 − 16.26 0.11 0.00 0.28 − 74.1 2.44 − 71.26 − 71.38 − 0.12
13 15.16 − 15.01 0.09 0.00 0.25 − 74.1 1.92 − 71.84 − 71.94 − 0.09
14 14.08 − 13.93 0.07 0.00 0.22 − 74.1 1.54 − 72.27 − 72.35 − 0.08
15 13.14 − 13.00 0.06 0.00 0.19 − 74.1 1.25 − 72.60 − 72.66 − 0.06

In different situations, these terms could become important
even in cases where the protein bears no effective net
charge.

The application of the analytical correction scheme re-
lies on three PB calculations to determine IP, IL, and IL,SLV.
These are done under non-periodic boundary conditions for
each system. Just as was the case for the numerical scheme,
the results of these calculations depend on the choice made
for the solute-solvent dielectric boundary conditions. In this
respect, the considerations made in Sec. IV D concerning the
influence of the type of dielectric boundary and of the probe
radius in the numerical correction scheme also apply to the
analytical scheme.

V. DISCUSSION

Charging free energies from MD simulations can be sub-
ject to very large finite-size effects. These errors can be cor-
rected by the proposed numerical and analytical correction
schemes. The approximate analytical scheme is in practice es-

sentially as accurate as the numerical one, and presents four
main advantages: (i) it only requires three PB calculations for
a given system, the dependence on the box-edge length being
analytical; (ii) it only requires non-periodic boundary condi-
tions for these PB calculations, which can thus be performed
using free or commercial PB solvers such as UHBD,51, 52

DelPhi,53 or APBS;54 (iii) it provides insight into the phys-
ical origin of the finite-size effects; (iv) its application to MD
simulations involving a neutralizing counter-ion atmosphere
is straightforward. This scheme is therefore the one recom-
mended by the authors. With the numerical scheme, care must
be taken that the PB solver employed handles periodic bound-
ary conditions in a correct way and, in particular, that a neu-
tralizing background charge is explicitly added to the charge-
density grid prior to the calculation, as described in Ref. 20.
If this is not done, the application of a periodicity constraint
on the electric potential will induce a surface charge in-
stead, which is not the target situation. This can easily be
verified for a given PB solver claiming to handle periodic
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FIG. 7. Components of the analytical correction scheme for the eight different systems (Table I), displayed as a function of the box edge L. The components are:
the combined net-charge interaction and net-charge undersolvation terms ��GNET+USV, see Eqs. (15) and (16); the residual integrated potential term ��GRIP,
see Eq. (17); the empirical correction term ��GEMP, see Eq. (25); the finite-system adjustment to the discrete solvent correction term ��GDSF, see Eq. (33).
The discrete solvent correction in the infinite-system limit, ��GDSI, is a constant (indicated in the legend only). The sum of these six terms represents the
total analytical correction term ��GMD ,COR,ANA (= ��GNET + ��GUSV + ��GRIP + ��GEMP + ��GDSI + ��GDSF), see Eqs. (11) and (14). Note
that ��GNET and ��GUSV are individually very large, but largely cancel each other in their sum ��GNET+USV (= εS

−1 ��GNET). The data are reported
numerically in Table IV.

boundary conditions, e.g., by testing the results against the
analytical equation (Eq. (22) with QP = 0) for a single spher-
ical ion.

A. Procedure for applying the analytical
correction scheme

The procedure to apply the analytical correction scheme
is straightforward. The following steps are necessary to cor-
rect the charging free energy of a ligand (net charge QL)
within a solvated protein (net charge QP) in water as cal-
culated from MD simulations with lattice-sum electrostatics
(cubic box of edge L):

1. Using a standard PB solver, calculate the integrated po-
tentials BHET[P, Lref] and BHET[L, Lref] of Eq. (19), cor-
responding to integrals over the entire non-periodic cu-
bic computational domain of edge Lref. The solute cav-
ity should correspond to that of the protein-ligand com-
plex and be defined by a probe-contact surface (recom-
mended probe radius 0.10–0.14 nm). The interior per-
mittivity should be set to one, the exterior permittivity
to a value εS appropriate for the water model used in
the MD simulations, and the inverse Debye screening
length κ to zero. The edge Lref of the computational do-
main should be sufficiently large to ensure the box-size
independence of the results (in terms of IP, IL, and RL).
In practice, a distance of a few nanometers between the
solute surface and the box wall is typically sufficient.
The ligand should be at the center of this domain. In
the calculation of BHET[P, Lref], only the protein charges
should be included, with the ligand charges set to zero

(the ligand atoms should still be included to ensure a
proper cavity size). In the calculation of BHET[L, Lref],
only the ligand charges should be included, with the pro-
tein charges set to zero (the protein atoms should still be
included to ensure a proper cavity size). The integrated
potential BHOM[L, Lref], which is the analog of BHET[L,
Lref], is evaluated analogously, but with the exterior per-
mittivity set to one instead of εS.

2. Use Eqs. (18) and (21) with X = L or P to evaluate
the residual integrated potentials IP and IL of the protein
and ligand, respectively. Use Eq. (27) and the analog of
Eq. (21) for BHOM[L, Lref], i.e., Eq. (21) with εS replaced
by one, to calculate the solvent contribution IL,SLV to IL.
Use Eq. (26) to calculate the effective solvation radius
RL of the ligand within the protein-ligand complex.

3. Use Eq. (28) to calculate the quadrupole-moment trace
γ S of the water model used in the MD simulations rela-
tive to its single van der Waals interaction site.

4. Use the results of points 1–3 to compute the full cor-
rection term as defined by Eqs. (11), (14)–(17), (25)
and (35), where L is the box-edge length and NS the
number of explicit solvent molecules in the MD simula-
tions. If the simulations involve a neutralizing counter-
ion atmosphere, an effective protein net charge QP of
zero should be used in these equations, irrespective of
the original net charge of the protein.

The charging free energy of the free ligand in solution
can be calculated in a similar way (point 1: calculation of
BHET[P, Lref] omitted and cavity defined by the ligand atoms
only; point 2: calculation of IP omitted; point 4: QP and IP set
to zero). Any standard PB solver can in principle be used,
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provided that it can report data to calculate the integral of
the electric potential over the considered non-periodic com-
putational domain. For example, Figure S3 of the supplemen-
tary material154 presents a comparison between the results of
test calculations performed using the freely available soft-
ware APBS54 and those of the custom PB solver employed
here in the context of 100 evenly spaced snapshots from an
independent 5 ns MD simulation of the system net-5 (lig-
and uncharged, all protein, ligand, and solvent atoms free to
move, i.e., no atoms fixed in space). In spite of minor numer-
ical differences (probably related to slightly different bound-
ary smoothing procedures), the APBS results work perfectly
within the analytical scheme, the calculated corrections dif-
fering by less than 0.1 kJ mol−1. A sample Python script and
input files to perform and analyze such APBS calculations are
also provided as the supplementary material.154

B. Special situations and extensions of the analytical
correction scheme

A number of situations that are common in practice have
not been encountered in the present work and deserve some
additional discussions. They are the following:

1. Non-cubic computational box. MD simulations are
sometimes performed using non-cubic shapes for the
computational box. In principle, simulations carried out
in boxes of arbitrary space-filling shapes can be trans-
formed to correspond to a given triclinic box,106 so that
it is sufficient to consider the general triclinic case. In
this case, the analytical correction scheme can still be
applied in the following way. In Eqs. (15) and (16), the
quantity L−1ξLS must be replaced by a corresponding
expression for the triclinic Wigner integration constant,
which will depend on the full 3 × 3 matrix of the box-
edge vectors. Although there is no analytical expression
for this quantity, it is easily evaluated numerically for a
given box-edge matrix,25 e.g., by calculating the lattice-
energy of a single point charge in the given box using the
MD simulation program. Equations (17) and (30), on the
other hand, account for average potential effects and can
be applied based on the box volume, i.e., replacing L3

by the box volume V. Eq. (25) can also be applied in the
same way, i.e., empirically replacing L by V1/3 (this term
is generally very small in any case). Finally, since the
residual integrated potentials IP, IL and IL,SLV account for
short-range effects (potential inside and near the solute)
and rely on PB calculations under non-periodic bound-
ary conditions, they can still be calculated using cubic
boxes.

2. Variable box size. MD simulations are commonly per-
formed using pressure coupling,107–109 in which case the
box-edge length fluctuates along the simulation. Since
the analytical correction scheme is defined by an explicit
function of the box-edge length, averaging over the box-
edge length distribution from the MD simulations of-
fers a simple way to account for the variable box size.
In practice, the box-size fluctuations are typically small

and the use of an effective average value for L instead of
a distribution would incur essentially negligible errors.

3. Flexible solute. The present calculations were performed
with fixed solute coordinates. In a real situation, how-
ever, the solute coordinates will vary in time, and the PB
calculation should in principle be performed for each (or
a subset) of the solute configurations sampled during the
MD simulations. In practice, it would be far more conve-
nient to use effective average values of IP, IL, and IL,SLV.
To investigate the feasibility of this option, the three
quantities were calculated based on 100 evenly spaced
snapshots from an independent 5 ns MD simulation of
the system net-5 (ligand uncharged, all protein, ligand,
and solvent atoms free to move). The distributions of the
three quantities are shown in Figure S3(a) of the sup-
plementary material.154 The average and standard devia-
tions of IP, IL, and IL,SLV over this set are −675 ± 97, 321
± 26, and 352 ± 26 kJ nm3 mol−1 e−1, respectively. For
QP = −5 e, QL = +1 e and assuming a box-edge length
L of 10 nm, the corresponding estimates for ��GRIP

(Eq. (17)) and ��GEMP (Eq. (25)) are −1.96 ± 0.14
and 0.0036 ± 0.0007 kJ mol−1, respectively. This sug-
gests that the use of effective average values of IP, IL,
and IL,SLV, or even of single values calculated based on a
representative structure, incurs a relatively limited error,
at least for the systems considered here.

4. Solvent with multiple van der Waals interaction sites.
Most water models have a single van der Waals interac-
tion site, in which case the corresponding quadrupole-
moment trace can be evaluated analytically using Eq.
(29). In the case of a solvent involving multiple van der
Waals interaction sites, it is possible to evaluate numeri-
cally an effective quadrupole moment. This can be done
by explicitly performing simulations in the orientational-
disorder limit, i.e., where the electrostatic interactions
are turned off during the sampling, as described in
Ref. 31.

5. Other electrostatic interaction schemes. Electrostatic
interaction schemes other than lattice-sum methods
are also often employed in MD simulations, one of
the most common alternative being the reaction-field
scheme.110, 111 The analytical correction scheme remains
to be generalized to these interaction forms. How-
ever, the numerical scheme can still be applied using
a PB solver capable of handling alternative interaction
functions,70, 71, 75,74 see, e.g., Refs. 24 and 36.

The analytical correction scheme is immediately appli-
cable to essentially all types of free-energy calculations rel-
evant for (bio)chemical problems, and its application should
become a standard in cases involving charge transformations.

C. Comparison of the analytical correction scheme
with previously proposed schemes

Although several schemes have been previously pro-
posed to circumvent or correct for finite-size effects, none
are, in the opinion of the authors, entirely satisfactory. These
include:



184103-27 Rocklin et al. J. Chem. Phys. 139, 184103 (2013)

1. Potential of mean force calculation. In this
approach,37–39 the calculation of the binding free
energy is performed by calculation of the reversible
work for explicitly dissociating the species. Three
shortcomings of this approach are that: (i) depending
on the system, explicit dissociation pathways can be
more difficult to sample than alchemical pathways;39

(ii) the end-state of the process corresponds to dis-
sociated charged species in the same computational
box, which will only yield correct free energies if
the residual interaction is negligible; (iii) finite-size
effects may still be significant in this end state even
if formally neutral, due to its high dipole and to the
influence of the residual integrated potential term. With
respect to the last point, it is important to stress that the
residual integrated potentials IP and IL are configuration
dependent (via the solute cavity shape) and cannot be
assumed to be identical for the protein-ligand complex
and the dissociated species.

2. Simultaneous counter-ion mutation. In this
approach,40–42 the charging of the ligand is per-
formed simultaneously with the uncharging of a distant
counter-ion in the same computational box, in such
a way that the overall process involves no net-charge
change. Three shortcomings of this approach are that:
(i) the free energy of the counter-ion mutation must be
calculated separately and subtracted from the result,
which implies that finite-size effects still have to be
appropriately corrected in this second calculation;
(ii) the accuracy of the result rests on the assumption
that the interaction between the protein-ligand complex
and the counter-ion is negligible; (iii) finite-size effects
may still be significant, even in the absence of system
net charge. The two latter problems are identical to those
encountered in the potential of mean force approach
(point 1 above).

3. Twin simulations with opposite counter-ion mutations.
In this approach proposed by Morgan and Massi,43 two
separate calculations are performed, involving a distant
counter-ion mutation performed in opposite directions.
The two coupled processes are selected in such a way
that the total square-net-charge change of the system is
zero (e.g., for a neutral protein and a monovalent lig-
and L, one would select the two coupled processes Lo

+ C− → L+ + Co and Lo + Co → L+ + C−). The lig-
and charging free energy (process Lo → L+) is obtained
by averaging the two results, while the half difference
can be compared to the result of a separate calculation
for the counter-ion mutation alone (process Co → C−),
as a check for the assumption of weak interaction be-
tween the protein-ligand complex and the counter-ion.
The apparent advantage of the procedure is that finite-
size errors which are quadratic in the system net charge
will cancel out in the average. Unfortunately, only the
net-charge interaction and the net-charge undersolva-
tion components of the error are exactly quadratic, these
terms being straightforward to calculate analytically. Er-
rors which are linear in the ligand charge, such as the dis-
crete solvent term, will not be accounted for (and their

effect will not be evidenced by the checking compar-
ison). Similarly, the residual integrated potential term,
which has a complex dependence on the protein and lig-
and charge distributions, will be inadequately captured,
leading to unpredictable errors (e.g., the difference be-
tween the net9 and net9quad systems would be entirely
overlooked). These problems are not obvious from the
results reported in Ref. 43 because only small ions are
considered (nearly quadratic residual integrated poten-
tial term, see, e.g., Eq. (22) for a monoatomic ion) and
because the checking comparison is insensitive to the ne-
glect of the linear discrete solvent correction term.

4. Numerical correction scheme. This recently proposed
approach of Reif and Oostenbrink36 follows the ideas
previously developed in Refs. 20–24, 31, 32, 34, 35,
46, and 69–75. The resulting scheme is essentially
equivalent to the numerical correction scheme pro-
posed in the present article (see also last paragraph of
Sec. II B), and is general and accurate. However, this
scheme: (i) requires a PB solver capable of handling cor-
rectly periodic boundary conditions; (ii) requires calcu-
lations performed at the specific box-edge length used
in the simulation (no analytical dependence on the box-
edge length); (iii) does not provide insight into the dif-
ferent error contributions; (iv) is difficult to apply to MD
simulations involving a neutralizing counter-ion den-
sity because this density must be introduced explicitly
(Sec. III B). Note also that the scheme was ap-
plied in Ref. 36 based on a van der Waals dielectric
boundary definition whereas the present results sug-
gest that a probe-contact surface should be used instead
(Sec. IV D).

So far, the majority of studies concerning the binding
free energy of charged species do not apply any of the above
schemes, and simply disregard the issue altogether.

VI. CONCLUSION

In this article, finite-size effects on calculated charging
free energies are investigated considering as a test case the
binding of 2-amino-5-methylthiazole to a mutant form of
yeast cytochrome c peroxidase in water. Considering differ-
ent charge isoforms of the protein, either in the absence or
the presence of neutralizing counter-ions, and cubic compu-
tational boxes of edges ranging from 7.42 to 11.02 nm, the
potentially large magnitude of finite-size effects on the raw
charging free energies (up to 17.1 kJ mol−1) is clearly demon-
strated. Two correction schemes are then proposed to elim-
inate these effects, a numerical and an analytical one. Both
schemes are based on a continuum-electrostatics analysis and
require performing PB calculations on the protein-ligand sys-
tem. While the numerical scheme requires PB calculations un-
der both non-periodic and periodic boundary conditions, the
latter at the box size considered in the MD simulations, the
analytical scheme only requires three non-periodic PB calcu-
lations for a given system, and depends analytically on the
box size.

The analytical scheme also provides insight into the
physical origin of the finite-size effects, by separating the
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correction into terms for periodicity induced net-charge in-
teractions, periodicity induced net-charge undersolvation, dis-
crete solvent, and residual integrated potential effects. Al-
though the first two effects are often recognized in the lit-
erature, the latter two are generally overlooked in existing
approaches to calculate binding free energies. The residual
integrated potential correction can be very large for typical
protein-ligand systems and does not depend in a simple way
on the net charges of the interacting species. It cannot be
assumed to cancel out between the bound and free states in
pathway-based methods such as potential of mean force cal-
culations and in alchemical methods such as thermodynamic
cycle calculations. The discrete solvent correction can also
be very large and persists even in the limit of infinite box
sizes. It depends on the quadrupole-moment trace of the sol-
vent model, a quantity that is essentially arbitrary because it
does not influence the ability of the model to reproduce the
experimental thermodynamic properties of the solvent. Al-
though the infinite-system component of this term can be ex-
pected to cancel out between the bound and free states of
the system or between the two charging legs of a thermo-
dynamic cycle (unless these legs involve different solvents
or solvent densities), its dependence on the system-size re-
mains very significant and must be considered. The physi-
cal meaning of this discrete solvent effect has been matter
of considerable debate in the classical simulation literature
over the last two decades, in the context of ionic solvation
free energies22, 44, 45, 112–121 as well as in the context of surface
potential calculations.22, 122–136 The authors believe that this
debate and its conclusions are appropriately summarized in
Ref. 22 (see also Ref. 33), which underlies the form of the cor-
rection term adopted in the present study. Interestingly, a sim-
ilar debate is arising at present, in the quantum-mechanical
community137–144 (see also Refs. 145 and 146 at the classical
level), the same issues being discussed anew, and the same
conclusions being progressively reached.

Application of either the numerical or the analytical cor-
rection scheme essentially eliminates the size dependence of
the corrected charging free energies over the range of box
sizes considered (maximal deviation of 1.5 kJ mol−1), pro-
vided that the solute-solvent boundary conditions in the PB
calculations are defined appropriately (probe-contact surface
with a recommended probe radius of 0.10–0.14 nm). While
this work focuses on corrections for binding free energy cal-
culations, the same errors affect all main types of free energy
calculations involving charged solutes. Because it is relatively
simple to apply, the analytical correction scheme offers a gen-
eral solution to this problem, with potential applications to
protein-ligand binding, biomolecular association, residue mu-
tation, pKa and redox potential estimation, substrate transfor-
mation, solvation and solvent-solvent partitioning.

With recent progresses made in the development of ded-
icated computers147–149 and softwares accelerated by the use
of graphic processing units (GPUs),150–152 system sizes could
soon become large enough to eliminate finite-size effects
in molecular simulations in the absence of any correction
scheme. But this may not be the best approach. Increased
computing power is often used to study new challenging prob-
lems involving larger solutes or/and longer timescales, rather

than to increase the number of solvent molecules. Further-
more, the number of solvent molecules required to calcu-
late a solvation free energy within chemical accuracy (e.g.
kBT) scales with the sixth power of the solute net charge (as
can be inferred from the Born model153), implying extremely
large systems beyond the simplest monovalent cases. Finally,
given that the analytical correction scheme proposed here is
straightforward to apply and accurately accounts for long-
range solvation in a computationally inexpensive implicit-
solvent representation, increasing the explicit-solvation
range instead represents an inefficient use of computing
power.

In summary, the classical simulation community will al-
ways be confronted with finite-size effects, and must learn to
deal with them in an appropriate way. The authors believe that
the analytical correction scheme presented here represents a
significant step in this direction.
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