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Abstract
In MacLean’s triune brain, the amygdala putatively subserves motivated behavior by modulating
the “reptilian” basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially
showed that amygdalostriatal projections are much more extensive than were appreciated. Caudal
of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the
amygdala. They highlighted that amygdalar projections to the rostral ventromedial striatum
converged with projections from the ventral tegmental area and cingulate cortex, forming a
“limbic striatum”. Orthologous topographic projections subsequently were observed in fish,
amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this
neuroanatomical substrate. From Dr. Kelley’s work evolved insights into components of the
distributed, interconnected network that subserves motivated behavior, including the nucleus
accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic
frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior.
The ancient amygdala-to-striatum pathways remain a current functional thread not only for
stimulus–response valuation, but also for the psychopathological plasticity that underlies
addictionrelated memory, craving and relapse.
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1. Introduction
The amygdala, not included in early conceptualizations of the neurocircuitry of emotion
(Bard and Rioch, 1937; Bard, 1928; Cannon, 1931; Papez, 1937), is now a recognized
substrate for emotional behavior. In the late-1930s, Klüver and Bucy (1937, 1939) described
that bilateral temporal lobectomy in rhesus monkeys led to docility, decreased emotional
reactivity, increased exploratory behavior, and object-inappropriate sexuality, hyperphagia,
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and hyperorality, findings that overlapped those of Brown and Schäfer five decades earlier
(Brown and Schäfer, 1888). In the 1940s, more specific, bilateral amygdala lesions in cats
by Spiegel et al. (1940) and then Bard and Mountcastle (1948) elicited rage behavior, further
implicating a role for this structure in modulating emotional behavior. Accordingly,
MacLean (1949, 1952), in his triune brain model, included the amygdala in his
“paleomammalian limbic system,” which he hypothesized subserved motivated and
emotional behavior by modulating activity of the “reptilian” basal ganglia.

Subsequent studies confirmed that lesions that involve the amygdaloid complex “tamed”
animals, increased “fearlessness,” increased nonspecific overeating, and produced a deficit
in motivated behavior colloquially referred to as “amygdala hangover” (Green et al., 1957;
Rosvold et al., 1954; Schreiner and Kling, 1953; Walker et al., 1953; Weiskrantz, 1956;
Woods, 1956). Conversely, electrical stimulation of the amygdala potentiated flight and
defense reactions (de Molina and Hunsperger, 1959; Ursin and Kaada, 1960). As a result,
Weiskrantz (1956) influentially hypothesized that amygdala lesions make it difficult for
animals to identify the affective or reinforcing properties of stimuli, dissociating a stimulus’
value from its sensory representation.

Ann Kelley, with Ned Kalin and colleagues at the University of Wisconsin, later offered
support to this view by showing that bilateral amygdala destruction in rhesus monkeys
blunted fear responses to discrete naturalistic stimuli (Kalin et al., 2001). Lesioned monkeys
were less likely to withdraw to the back of their enclosure or delay retrieval of a food treat
when exposed to a snake stimulus. Lesioned monkeys were also less likely to exhibit fear
grimaces, submit, or perform coo or bark vocalizations when exposed to a threatening adult
male conspecific. This study was unique from preceding lesion studies in nonhuman
primates because it involved ibotenic acid destruction of cell bodies to spare fibers of
passage and used magnetic resonance imaging to guide the site-specificity of the lesion. As
such, together with a contemporary study (Meunier et al., 1999), it made a key contribution
by linking similar findings from lesion studies in rodents with the emerging human
neuroimaging literature (Kalin et al., 2001).

Nonetheless, following Weiskrantz’ hypothesis that the amygdala influences emotional
behavior by encoding a stimulus’ sensory representation with value, the circuitry through
which the amygdala might accomplish this remained unclear. Gloor (1955a,b) had surmised
in 1955 that the amygdala modulates “complex somatic, autonomic and behavioral
mechanisms integrated in subcortical structures”. Many studies emphasized amygdalar
projections that involved the hypothalamus or mediodorsal thalamus via the stria terminalis
(de Molina and Hunsperger, 1959; Egger and Flynn, 1962, 1963, 1967; Fox, 1943; Hall,
1963; Kling and Hutt, 1958; Lammers and Lohman, 1957; Nauta, 1961).

2. Identification of amygdalostriatal projections
Other neuroanatomical evidence, however, supported MacLean’s view that the limbic
amygdala might directly modulate activity of the basal ganglia (MacLean, 1952). Indeed,
Gurdjan wrote in 1928 that the caudate–putamen could not be differenti- ated from the
amygdaloid complex in caudal rat brain sections. By tracing fiber degeneration after
electrolytic lesions, Fukuchi (1952) described amygdala projections in ungulates, including
a medial stria terminalis component that courses ventromedially into the ventral caudate in
the vicinity of the nucleus accumbens (NAc) and a separate lateral component associated
with the external capsule of the lentiform nucleus. Williams (1953) described fibers that
course from the basolateral amygdala (BLA) of the bat via the anterior commissure and
external capsule to the caudate nucleus. Lammers and Lohman (1957) made similar
observations in the cat. Subsequently, in 1961, Dr. Walle Nauta, who would become Dr.
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Ann Kelley’s postdoctoral mentor, detailed that aspiration lesions of the amygdalo-piriform
complex in monkeys resulted in the degeneration of fibers that project to the ventromedial
putamen and NAc (Nauta, 1961).

Following the completion of her graduate studies with Dr. Susan Iversen at Cambridge
University in 1979, Dr. Kelley joined the Nauta laboratory at the Massachusetts Institute of
Technology. In the years since Dr. Nauta’s survey, others substantiated the existence of
direct amygdalostriatal pathways, including anatomical (Cowan et al., 1965; De Olmos and
Ingram, 1972; Ishikawa et al., 1969; Knook, 1966; Krettek and Price, 1978) and
electrophysiological (Gloor, 1955a; Ito et al., 1974; Powell et al., 1968; Sato, 1977)
evidence of an amygdaloid projection to the NAc via the stria terminalis. These studies,
including those enabled by the recently developed tract-tracing methods of anterograde
transport of tritiated amino acids (Krettek and Price, 1978) and retrograde labeling
(Groenewegen et al., 1980; Newman and Winans, 1980), supported the hypothesis that
amygdala projections to the ventral striatum, including the ventral putamen, NAc, and
olfactory tubercle, arise from the BLA and basomedial amygdala (BMA). Krettek and Price
(1978) provided initial evidence in the rat and cat of a topographic organization;
specifically, anterior-to-posterior BLA subregions projected preferentially to anterolateral-
to-posteromedial aspects of the ventral striatum, respectively. Groenewegen and colleagues,
using horseradish peroxidase (HRP) and bisbenzimid as retrograde labels in the cat, and
Newman and Winans, using HRP in the hamster, confirmed a predominantly BLA origin of
amygdaloid projections to the NAc. Both groups also proposed a rostral BLA-lateral NAc
and caudal BLA-medial NAc topography. Groenewegen et al.(1980) additionally reported
that the NAc received much greater input from the BLA than did the caudate, and Newman
and Winans (1980) observed that the BLA projected more to the caudal than rostral NAc.

In 1982, Kelley et al., using anterograde autoradiographic and retrograde HRP techniques in
rats, provided their influential account that amygdalostriatal projections were much more
extensive than had been previously thought. First, they showed that caudal of the anterior
commissure (i.e., along the globus pallidus), the entire striatum receives amygdala afferents,
primarily from the BLA and, to a lesser degree, the BMA and lateral nucleus of the
amygdala. It was only rostral of the anterior commissure that projections were absent in the
dorsolateral striatum and became increasingly limited to the ventromedial striatum, as had
been emphasized up to that time. Thus, the entire caudal striatum and not only the NAc and
olfactory tubercle, were under “limbic” modulation. Second, they called attention to the fact
that amygdalar projections to the rostral striatum, in preferentially targeting its ventromedial
quadrant, closely overlapped projections from the ventral tegmental area (VTA) and rat
cingulate cortex, forming a putative “limbic striatum”. Third, they showed that the BLA
projects not only to the ipsilateral striatum but also, to a lesser degree, the contralateral
striatum. Fourth, they demonstrated two distinct amygdaloid efferents to the striatum, a sub-
striatal one via the ventral amygdalofugal pathway (or longitudinal association bundle) and a
second, more dorsal one via the stria terminalis. They concluded, “In view of the large
volume and wide intrastriatal distribution of the [amygdaloid] connection it is tempting to
speculate that the functional mode of a large part of the striatum may be decisively
influenced by the animal’s affects and motivational sets” (Kelley et al., 1982). Integrating
the hypotheses of MacLean (1949, 1952) and Weiskrantz (1956), the modern view by which
amygdalostriatal projections help put value into action was born.

3. Cortical-like, topographic projection of basal amygdala to dorsal and
ventral striatum

Prior to Kelley’s detailed analysis, limited anatomical (Fukuchi, 1952; Lammers and
Lohman, 1957; Royce, 1978; Veening et al., 1980; Williams, 1953) and electrophysiological
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(Dafny et al., 1975) evidence had linked the amygdala to the dorsal striatum. Since then,
much has been learned. Russchen, Price, and colleagues, using anterograde techniques in the
rat (phytohemagglutinin-L [PHA-L]) and cynomolgus monkey (tritiated amino acids), made
observations consistent with those of Kelley of widespread projections from the basal nuclei
of the amygdala to not only the ventral but also dorsal striatum (Russchen et al., 1985;
Russchen and Price, 1984), absent its antero-dorsolateral quadrant. Saint-Cyr et al. (1990)
obtained similar results in macaques with retrograde labeling, as did Ragsdale and Graybiel
(1988) and Gorbachevskaia (1988) in the cat. Fass et al. (1984) even found evidence using
fluorescent retrograde tracing that the rat BLA may, in fact, also project to the
precommisural dorsolateral striatum, a connection that also was suggested in later wheat
germ agglutinin (WGP)-HRP retrograde tracing by McDonald (1991). On the other hand,
this projection was not seen using anterograde techniques (Kelley et al., 1982; Kita and
Kitai, 1990; Ragsdale and Graybiel, 1988; Russchen et al., 1985; Russchen and Price, 1984)
and remains disputed. Nonetheless, their study confirmed that not only the BLA but also the
BMA and lateral nucleus send efferents to the striatum (McDonald, 1991; Russchen and
Price, 1984). Fudge, Breitbart, and McClain, noting similarities in histochemistry,
cytoarchitecture, and amygdala afferents between the NAc shell, lateral amygdalostriatal
transition region, and aspects of the caudal ventral striatum in cynomolgus monkeys, further
proposed that the entire rostral–caudal extent of the ventral striatum through these structures
is a continuum of “limbic striatum” (Ernst and Fudge, 2009; Fudge et al., 2004) and not only
the precommisural part, as was assumed before Ann Kelley sparked investigation of
amygdaloid projections to the caudal striatum.

McDonald (1991) clarified the topographic organization of rat amygdalostriatal projections
in partial agreement with earlier suggestions (Gorbachevskaya, 1990, 1991; Groenewegen et
al., 1980; Kelley et al., 1982; Kita and Kitai, 1990; Krettek and Price, 1978; Russchen et al.,
1985). First, a rostral–caudal topography indicates that the rostral two-thirds of the BLA
projects to the dorsal stri- atum, but the most caudal BLA does not; instead, the caudal BLA
selectively innervates the medial NAc (McDonald, 1991). Second, a medial–lateral
topography indicates that more lateral coordinates within the BLA map to more lateral
aspects of the dorsal striatum (e.g., ventrolateral caudatoputamen, fundus striati), whereas
more medial coordinates map to more medial striatal subregions (e.g., dorsomedial
caudatoputamen, NAc). Third, double-label fluorescent retrograde tracing showed that most
(>65–75%) individual amygdala neurons that innervate the dorsal striatum (e.g., fundus
striati, caudatoputamen) or ventral striatum (NAc) also send fibers to regions of the
prefrontal cortex that project to the respective striatal region. Thus, consistent with the
reviewed topographical organization, BLA neurons that project to more medial (or lateral)
prefrontal cortical targets also send collaterals to more medial (or lateral) striatal targets. The
results indicate coordinated amygdala modulation of corticostriatal circuits.

This triangular arrangement of amygalo-cortical-striatal projections was a key observation.
Analogous to the triangular arrangement of cortico-cortico-striatal circuits, it supports the
still prevailing view that the BLA is an “allocortical” structure that shares not only structural
but also connective properties with traditional cortical neurons, quite unlike the adjacent,
striatal-like CeA that shows fewer such efferents (Carlsen and Heimer, 1988; McDonald,
1991). Indeed, Kelley, Russchen, and colleagues had earlier inde- pendently noted the
“patchy” nature of amygdalostriatal terminals in the rat and primate, akin to the patchy
corticostriatal connections from the prelimibic medial prefrontal cortex (Kelley et al., 1982;
Russchen et al., 1985). As with corticostriatal projections, glutamatergic pyramidal (class I)
BLA neurons form excitatory, asymmetric synapses on dendritic spines of medium spiny
neurons in the striatum (Christie et al., 1987; Dafny et al., 1975; Kita and Kitai, 1990;
McDonald, 1992; Robinson and Beart, 1988). In contrast, γ-aminobutyric acid (GABA)-
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ergic non-pyramidal (class II and III) BLA neurons do not appreciably connect to the
striatum (Christie et al., 1987; McDonald, 1992).

4. Amygdalo-ventrostriatal projections: focus on the nucleus accumbens
While Kelley and colleagues’ paper demonstrated that basal amygdala nuclei project to what
had, until then, been considered “non-limbic” caudal striatum, it was also influential for
further characterizing the already known connection from the amygdala to the rostral ventral
striatum (Cowan et al., 1965; De Olmos and Ingram, 1972; Gloor, 1955a; Groenewegen et
al., 1980; Ishikawa et al., 1969; Ito et al., 1974; Knook, 1966; Krettek and Price, 1978;
Nauta, 1961; Newman and Winans, 1980; Powell et al., 1968; Yim and Mogenson, 1982). In
what would become a defining theme of Dr. Kelley’s research career, it squarely placed the
NAc as an interface between the limbic system and the extrapyramidal motor systems to
which it connected (Mogenson et al., 1980), including the globus pallidus, substantia nigra,
and subthalamic nucleus.

Further details of amygdala-NAc connectivity closely followed. Using retrograde WGA-
HRP labeling in cats, Phillipson and Griffiths (1985) showed that amygdaloid fibers most
heavily innervate the anteromedial NAc where they converge with afferents from the VTA,
thalamus, prefrontal and entorhinal cortices, and hippocampus. The BLA was shown to be
the primary source of direct amygdala input to the NAc, with additional minor contributions
from a restricted region of the CeA, BMA, and medial and cortical nuclei. Consistent with
the sparser amygdaloid innervation of the posterior NAc (Phillipson and Griffiths, 1985),
extracellular single-unit recordings in rats revealed that 30% of anterior NAc units
responded to electrical stimulation of the ipsilateral BLA compared with only 16% of
posterior NAc units (Callaway et al., 1991).

McDonald (1991) showed in rats that the caudal BLA preferentially inputs to the medial
NAc, whereas the rostral BLA differentially innervates the lateral NAc. He also
demonstrated that, within the rat striatum, only the medial NAc receives substantial input
from dorsal and medial aspects of the caudomedial BLA. Interestingly, this same BLA
subregion was found to send collaterals to the CeA and bed nucleus of the stria terminalis
(BNST), indicating a coordinated, allocortical influence over an “extended amygdala”
macrostructure (McDonald, 1991).

5. Extended amygdala: an indirect pathway from the amygdala to
extrapyramidal motor system

In parallel to the direct BLA–striatal projections described by Kelley and colleagues, the
neuroanatomical entity termed the extended amygdala (Heimer and Alheid, 1991) is a
striatal-like substrate that indirectly conveys motivational information from the amygdala to
extrapyramidal motor systems (Alheid, 2003). An extended amygdala basal forebrain
macrostructure was originally suggested by Johnston (1923) and can be heuristically
differentiated into central vs. medial divisions that differ in structure, connectivity,
molecular content, and proposed functions (Alheid, 2003; Heimer and Alheid, 1991). The
central division includes the CeA, the central sublenticular extended amygdala, the lateral
BNST, and a transition area in the medial and caudal portions of the NAc. These structures
are interconnected, with extrinsic connections to the lateral hypothalamus (Alheid, 2003;
Koob, 2003). The medial division includes the medial BNST, MeA, and the medial
sublenticular extended amygdala, differentiated from the central division by their
interconnections and extrinsic relations to the medial hypothalamus (Alheid, 2003). The
lateral BNST of the central extended amygdala contains several transmitters related to
arousal and stress responses, including catecholaminergic terminals, CRF terminals, CRF
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cell bodies, NPY terminals, and galanin cell bodies, and receives afferents from the
prefrontal cortex, insular cortex, BLA, and amygdalopiriform area. The medial BNST of the
medial extended amygdala, in contrast, contains high amounts of vasopressin, is sexually
dimorphic, and is innervated by the infralimbic cortex, entorhinal cortex, and subiculum
(Allen and Gorski, 1990; Dong et al., 2001; Gray and Magnuson, 1992; Hines et al., 1992;
Kozicz, 2001; Kozicz and Arimura, 2000, 2001; Kozicz et al., 1997, 1998; McDonald et al.,
1999; Phelix et al., 1992; Phelix and Paull, 1990). The central division may be more
involved in receiving cortical and allocortical information and regulating the hypothalamic–
pituitary–adrenal stress axis (Gray et al., 1993), whereas the medial division may
differentially process olfactory information and subserve sympathetic and physiological
responses (Lesur et al., 1989; Nijsen et al., 2001; Pompei et al., 1991).

The central extended amygdala is known to play a key role in not only fear conditioning
(LeDoux, 2000) but also the emotional component of pain processing (Neugebauer et al.,
2004). Work from Ann Kelley’s laboratory further contributed to our understanding of the
extended amygdala as a component of the neurocircuitry that subserves arousal and stress-
and rewardrelated behavior. For example, Baldo, Kelley, and colleagues demonstrated
substantial innervation of the BNST, sublenticular extended amygdala, and CeA by fibers
that express the potentially aversive, arousal-related peptide hypocretin/orexin (Boutrel et
al., 2010), overlapping with catecholaminergic (dopamine β-hydroxylase-immunopositive)
fibers (Baldo et al., 2003). Their histochemical work supported the extended amygdala
concept and provided further evidence of a sub-specialization between the medial vs. lateral
CeA that is now increasingly accepted (Baldo et al., 2003).

Subsequently, Andrzejewski et al. (2004) provided evidence that the central extended
amygdala also subserves positively reinforced, instrumental behavior. For example, intra-
CeA administration of N-methyl-D-aspartate (NMDA) receptor antagonists reduced the
acquisition and expression of operant responding for sucrose pellets in food-restricted rats
and reduced the free intake of sucrose pellets in separate experiments. Food-approach
behavior was less affected, however, which was interpreted as a role for the extended
amygdala in the consummatory aspects of motivated behavior. They subsequently found that
intra-CeA infusion of a dopamine D1 receptor antagonist reduced the acquisition but not
expression of responding for sucrose pellets at doses that did not influence free feeding
(Andrzejewski et al., 2005). Consistent with a facilita- tory or permissive influence of the
CeA on consummatory behavior, the Kelley laboratory demonstrated that inactivation of the
CeA (via muscimol, a GABAA receptor agonist) blocked the hyperphagia that resulted from
food deprivation or from intra-NAc administration of a µ-opioid or GABAA receptor agonist
(Baldo et al., 2005; Will et al., 2004).

Major projections from the central extended amygdala, including those from its NAc aspect,
target the medial ventral pallidum. They thereby overlap the efferents to the extrapyramidal
motor system that arise from the direct BLA–NAc pathways described by Kelley and
colleagues.

6. Compartmental organization of amygdalo-accumbens projections
During the time that the extended amygdala was first proposed to be a macrostructure, it was
also becoming evident that the NAc was comprised of functionally distinct subdivisions,
with its caudal three-fourths consisting of a pericommisural “core” enveloped on its medial,
ventral, and lateral boundaries by a “shell”. These compartments show differences in
molecular content, cytoarchitecture, synaptic organization, connectivity, and functional
properties (Zahm and Brog, 1992). For example, as later reviewed by Kelley (2004) and
posthumously by her col- laborators (Meredith et al., 2008), the ventral subiculum of the
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hippocampus projects primarily to the shell, whereas the dorsal subiculum innervates the
core. Similarly, the prelimbic prefrontal cortex differentially targets the core, whereas the
infralimbic and piriform cortices innervate the shell. On the efferent side, the more striatal-
like core targets classic basal ganglia output structures, including the ventral pallidum,
subthalamic nucleus, and substantia nigra, whereas the shell preferentially targets
subcortical limbic structures, including the lateral hypothalamus, BNST, centromedial
amygdala, VTA, and ventromedial ventral pallidum. Accordingly, the core and shell were
proposed to subserve different aspects of motivated behavior, with the former involved more
with learning and the execution of adaptive motor actions and the latter involved with
visceral-endocrine responses to emotionally relevant stimuli (Kelley, 2004; Meredith et al.,
2008).

To test whether amygdala subdivisions also differentially innervate the core vs. shell, Brog,
Zahm, and colleagues used retrograde Fluoro-Gold (FG) labeling in rats to revisit the issue
of amygdala- NAc topography. Consistent with McDonald’s observations, the caudal BLA
(“basal nucleus,” using J.L. Price’s nomenclature) and, to a lesser degree, BMA (“accessory
basal nucleus”) project to the medial shell, whereas the rostral BLA and BMA both project
to the lateral shell (Brog et al., 1993). The core, in contrast to the shell, is less densely
innervated by the entire rostral–caudal extent of the BLA, with a slight rostral BMA
contribution (Brog et al., 1993). Using an anterograde approach, Wright, Bejer, and
Groenewegen similarly found in rats that (i) the caudal parvicellular BLA projects to the
dorsomedial shell, (ii) the caudal magnocellular BLA and BMA reach the ventral shell, and
(iii) the rostral magnocellular BLA inputs the lateral shell. In terms of connections to the
core/dorsal striatum, (i) the magnocellular and caudal parvicellular BLA innervate the
“patches” of the core and ventral caudatoputamen (CPv), (ii) the rostral BMA targets the
“matrix” of the core/CPv, and (iii) the caudal BMA avoids the core/CPv altogether (Wright
et al., 1996).

Fudge et al. (2002) showed that the BLA and BMA are also the major amygdaloid inputs to
the shell and extra-shell ventromedial striatum in cynomolgus monkeys, similar to the earlier
findings of Kunishio et al. (1996). The parvicellular BLA targets the ventral shell and core,
whereas the magnocellular subdivision inputs the ventral shell and ventromedial putamen.
The intermediate subdivision broadly projects across the ventromedial striatum, avoiding the
dorsomedial shell, which receives few BLA inputs in this species. In addition to inputs from
deep basal nuclei, the NAc shell in macaques also has afferents from the CeA and
periamygdaloid cortex; finally, only the dorsomedial NAc receives terminals from the
medial amygdala. The results indicate a more diverse amygdaloid innervation of the primate
shell than core (Fudge et al., 2002).

Studies in rats and hamsters likewise identified projections to the ventral striatum not only
from the basal amygdalar nuclei but also, to a lesser degree, the anterior medial amygdala.
In hamsters, Gomez and Newman (1992) used PHA-L anterograde tracing to identify a
dense projection from the rostral MeA to NAc shell, fundus striati, and olfactory tubercle,
findings replicated by Coolen and Wood (1998) who showed a sparser ventral striatal
connection from the caudal posterdorsal medial amygdala. Canteras et al. (1995) likewise
saw PHA-L-labeled projections from the rat anterodorsal medial amygdala to the caudal
NAc shell, olfactory tubercle, and ventral fundus striati. Brog et al. (1993), using FG
retrograde tracing, similarly found in rats that some neurons in the anterodorsal medial
amygdala project to the NAc shell. Thus, not only the deep basal but also anterior medial
nuclei of the amygdala differentially project to the ventral striatum, including the NAc shell.
To date, the functional role of the striatum’s MeA afferents remains unclear.
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7. Ancient, conserved amygdalo-striatal circuitry
In addition to mammals (including rats, cats, hamsters, primates, and mice; Novejarque et
al., 2011; Ubeda-Banon et al., 2007), orthologous amygdalo-striatal projections have now
been described in opossum (McDonald and Culberson, 1986), fish (Lau et al., 2011;
Northcutt, 2006), newts (Dube et al., 1990; Marin et al., 1997), frogs (Marin et al., 1997),
and lizards (Gonzalez et al., 1990; Martinez-Garcia et al., 1993; Novejarque et al., 2004).
For example, in frogs (Xenopus laevis, Rana perezi), the retrograde tracing of dextran
amines showed that the lateral amygdala and lateral aspects of the medial amygdala project
bilaterally to the ventrolateral telencephalon (homologous to the mammalian caudate–
putamen; Marin et al., 1997). Also similar to mammals, dorsal and caudal aspects of the frog
lateral amygdala differentially innervate the ventromedial wall of the telencephalon
(homologous to the mammalian NAc (Marin et al., 1997)), along with afferents from the
medial amygdala. Similarly, in amphibian newts (Pleurodeles waltl), the retrograde tracing
of dextran amines from the lateral telencephalic wall (putative ortholog of the mammalian
striatum) showed bilateral afferents from the lateral amygdala and ipsilateral afferents from
the medial amygdala (Marin et al., 1997). Retrograde tracing from the newt ventral cellular
prominence (putative ortholog of the mammalian NAc) identified projections from lateral
aspects of the medial amygdala and a smaller contribution from the caudolateral amygdala
(Marin et al., 1997). In lizards (Podarcis hispanica), the posterior dorsal ventricular ridge
(orthologous to the mammalian amygdaloid complex) projects to the ventral striatum,
including the NAc; the adjoining dorsolateral amygdala area also projects bilaterally to both
the dorsal and ventral striatum (Novejarque et al., 2004). Finally, in zebrafish, coordinated
activity in the medial zone of the dorsal telencephalic region (Dm) and dorsal nucleus of the
ventral telencephalic area (Vm; teleost orthologs of the mammalian amygdala and striatum,
respectively) predict avoidance behavior (Lau et al., 2011). Consistent with an amygdalo-
striatal connection, the Dm sends efferents to the Vm in goldfish (Northcutt, 2006).
Consistent with the findings of Weiskrantz and his successors in mammals (Weiskrantz,
1956), lesions of the Dm reduce the expression of conditioned avoidance behavior in
goldfish (Portavella et al., 2004). The presence of similar amygdalo-striatal circuitry in not
only mammals but also marsupials, amphibians, reptiles, and teleost fish contradicts
MacLean’s view that limbic modulation of the basal ganglia developed with
paleomammalian species (MacLean, 1949, 1952). The data instead suggest an ancient role
for amygdalo-striatal signaling in motivated behavior.

8. BLA–NAc transmission and plasticity
Across species (Gorbachevskaia, 1992, 1997; Johnson et al., 1994), dopaminergic afferents
from the VTA converge postsynaptically on the same dendritic field of medium-spiny
neurons in the NAc on which BLA neurons form excitatory synapses (Stuber et al., 2011).
High-frequency electrical stimulation of the BLA in awake rats elicited glutamate and
dopamine efflux in the NAc (Jackson and Moghaddam, 2001). Accordingly, opti- cal
stimulation of channelrhodopsin-2-transduced BLA terminals elicited 2-amino-3-(3-
hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptor-dependent excitation of
postsynaptic NAc medium-spiny neurons (Stuber et al., 2011). The glutamatergic BLA
inputs to NAc dopamine terminals synaptically facilitate the release of dopamine,
independent of the firing rate of ascending VTA afferents (Floresco et al., 1998; Jones et al.,
2010a).

The NAc responses to BLA stimulation exhibit plasticity. Uno provided evidence of long-
term potentiation (LTP) in response to high-frequency stimulation (Uno and Ozawa, 1991).
Floresco and colleagues later found that tetanic stimulation of the BLA elicited dopamine
D1 and NMDA receptor-dependent short-term (25–30 min) potentiation of NAc firing
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probability in response to further BLA stimulation (Floresco et al., 2001a). More recently,
the cellular plasticity has been shown to be heterogeneous both within and across the caudal-
to-rostral extents of the NAc. Following theta-burst BLA stimulation, some NAc neurons
show a short-term depression (<10 min) of BLA-evoked firing probability, whereas others
exhibit a longer potentiation. Most neurons in the rostral NAc show short-term depression
(86%), whereas enhanced BLA-evoked responsiveness predominates in neurons of the
caudal NAc (75%); the rostral–caudal gradient of plasticity response is D2 receptor-
dependent, such that sulpiride pretreatment prevents the regional heterogeneity (Gill and
Grace, 2011).

9. Functional co-connectivity and convergence of BLA with other NAc
afferents

Corresponding to the reviewed BLA–NAc topography, more caudal neurons in the BLA
also co-target the medial NAc and prelimbic cortex, more rostral neurons co-target the
lateral NAc and dorsal agranular insular cortex, and intermediate neurons co-target the
lateral NAc and medial NAc (Shinonaga et al., 1994). Within a compartmental framework,
the convergence of prelimbic cortex, hippocampal, and ventral subicular afferents with BLA
afferents is seen within heterogeneous cell clusters of the shell. Some convergence occurs at
the single-neuron level with afferents from these interconnected brain regions converging
that converge on dendrites of individual NAc shell neurons (French and Totterdell, 2003). In
contrast, complementary segregation of paraventricular thalamus from parvicellular BLA
fibers is seen in the shell. Finally, afferents from the dorsal agranular insular cortex and
mediodorsal thalamus avoid the lateral NAc shell altogether. In contrast to the reviewed
shell afferents, projections from the prelimbic cortex, deep dorsal agranular insular cortex,
and paraventricular thalamus all converge with BLA afferents in the “patches” but not
“matrix” of the core (Groenewegen et al., 1999; Mulder et al., 1998; Wright and
Groenewegen, 1995, 1996).

These zones of neuroanatomical interaction influence the synaptic transmission of
converging pathways in an activitydependent fashion. Some of these interactions are
facilitatory. For example, discrete amygdala pre-stimulation of a BLA-driven single unit in
the shell can potentiate the response of that NAc neuron to stimulation of its converging
subiculum afferent (Mulder et al., 1998). Theta train stimulation of the BLA can similarly
increase converging ventral subiculum-evoked responses in some caudal but not rostral NAc
neurons in a D2 receptor-dependent manner (Gill and Grace, 2011). Likewise, single-pulse
activation of converging BLA and mPFC afferents mutually facilitates spiking in their
targeted NAc neuron, especially at subthreshold activation levels (McGinty and Grace,
2008, 2009b). Joint tetanic stimulation of converging fimbria and BLA projections likewise
facilitates NAc responses evoked from either pathway (Floresco et al., 2001b). Finally,
inactivation of converging ventral subiculum afferents can reduce the efficacy of BLA
stimulation onto caudal NAc neurons (Gill and Grace, 2011).

In contrast, some converging interactions are competitive in a gating manner. For example,
reducing the activation of the prefrontal cortex with an AMPA receptor antagonist or
metabotropic glutamate 2/3 receptor (mGluR2/3) agonist disinhibited and hastened the onset
of BLA-evoked NAc dopamine release (Jackson and Moghaddam, 2001). In contrast to the
facilitatory effect of singlepulse subthreshold stimulation, high-frequency train stimulation
of a BLA afferent that was sufficient to elicit NAc firing decreased the probability of mPFC-
evoked firing of the same NAc neuron (McGinty and Grace, 2009a). Theta stimulation of
BLA inputs can also decrease converging ventral subiculum-evoked responses in a
significant minority of NAc neurons (Gill and Grace, 2011). Moreover, tetanic stimulation
of the fimbria (hippocampal/subiculum afferent) in the absence of coincident BLA
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stimulation yields LTP of hippocampal-evoked NAc responses via D1 and NMDA receptor-
dependent mechanisms, but long-term depression of the converging BLA–NAc pathway via
D1 and adenosine-R1-dependent mechanisms (Floresco et al., 2001b; Mulder et al., 1998).
Finally, consistent with an inhibitory action of dopamine on BLA-evoked NAc responses,
train pre-stimulation of converging VTA neurons reduced subsequent BLA-evoked NAc
activation (Yim and Mogenson, 1982). Accordingly, increased NAc dopamine, via D1
receptor activation, attenuates glutamatergic synaptic transmission of the BLA–NAc
projection (Charara and Grace, 2003).

10. Functional significance of amygdala–ventrostriatal pathways
What aspects of emotional behavior do amygdalo-striatal projections help subserve in
coordination with the converging, interactive cortico-striatal, thalamo-striatal, hippocampal–
striatal, and ascending midbrain–striatal pathways? As reviewed earlier, Weiskrantz (1956)
hypothesized that the amygdala helps associate a stimulus’ affective value to its sensory
representation. Consistent with a role for the amygdala in stimulus valuation, behavioral
responses to negative reward prediction errors (e.g., as in frustrative non-reward or negative
contrast), in which an “expected” reward is underprovided, are attenuated by
amygdalectomy (Henke et al., 1972; Henke and Maxwell, 1973; Kemble and Beckman,
1970; McDonough and Manning, 1979). Amygdala lesions or inactivation also impairs the
formation of conditioned avoidance responses (Nagel and Kemble, 1976) and Pavlovian fear
conditioning (Davis, 1990; Miserendino et al., 1990) in rats. Jones, Spiegler, and Miskhin
found that lesions that involve the amygdala impair the formation of stimulus-reward
associations in monkeys, despite preserved stimulus recognition (Jones and Mishkin, 1972;
Spiegler and Mishkin, 1981), a result elegantly corroborated by Gaffan and Harrison using
secondary reinforcers (Gaffan and Harrison, 1987; Gaffan et al., 1988).

10.1. Amygdalo-striatal projections and the incentive value of stimulus-reward
associations

In a series of reports published in 1989, Robbins et al. provided evidence that the amygdalo-
ventrostriatal projections detailed by Kelley and colleagues convey Pavlovian stimulus-
reward associations, representing acquired stimulus incentive value in a manner that
influences behavior. First, bilateral excitotoxic lesions of the BLA reduced the maintenance
of instrumental responding for a conditioned reinforcer (i.e., a conditioned stimulus
associated with sexual reinforcement) under a second-order schedule of reinforcement but
not for sexual reinforcement itself. The reduced responding was restored by intra-NAc
administration of D-amphetamine, but this occurred differentially in the presence of the
conditioned reinforcer (Everitt et al., 1989). Similarly, bilateral excitotoxic lesions of the
basolateral amygdala complex reduced the acquisition of responding of water-deprived rats
for a secondary reinforcer (i.e., a water-conditioned stimulus), without influencing
noncontingent water intake, the discrimination of the water-conditioned stimulus, or the
acquisition of a new operant response for water (i.e., the primary reinforcer). Intra-NAc D-
amphetamine again selectively restored responding for the secondary reinforcer (Cador et
al., 1989). Subsequently, Kelley and Delfs (1991) demonstrated that intracerebral D-
amphetamine administration differentially and specifically facilitated responding for a
conditioned reinforcer when administered into the NAc or surrounding ventromedial
striatum compared with the ventrolateral or posterior striatum. Kelley and Throne (1992)
also showed that NMDA receptor blockade specifically attenuated the invigorating action of
intra-NAc D-amphetamine to promote responding for a conditioned reinforcer. Thus, the
ascending mesolimbic dopamine system appears to “gain” the incentive value of Pavlovian
stimulus-reward associations that are conveyed by glutamatergic amygdalo-ventrostriatal
projections.
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Consistent with this interpretation, Everitt et al. (1991) subsequently demonstrated that
“disconnection” of the basolateral amygdala complex and ventral striatum, achieved through
unilateral, asymmetrical (i.e., contralateral) excitotoxic lesions of each structure, compared
with sham lesions or control ipsilateral lesions abolished the expression of classically
conditioned preferences for places associated with 20% sucrose access in food-restricted
rats. Pointing to a specific role for the amygdala–ventrostriatal pathway, bilateral lesions of
the basolateral amygdala complex, ventral striatum, or ventromedial caudate–putamen but
not dorsolateral striatum abolished the expression of established place preferences (Everitt et
al., 1991). Setlow et al. (2002) demonstrated that contralaterally placed unilateral
(“disconnection”) lesions of the basolateral amygdala complex and NAc blocked the
acquisition of Pavlovian second-order conditioned appetitive responses. Importantly,
ipsilaterally lesioned controls (which still had an intact amygdalo-striatal projection in one
hemisphere) showed normal second-order performance, which depends upon the acquired
value of the first-order conditioned stimulus after being paired with food. The collective
results support the hypothesis that amygdaloventrostriatal projections convey the acquired
incentive value of classically conditioned, previously neutral, environmental stimuli.

10.2. Amygdalo-striatal projections and the association of actions with valued outcomes
The Kelley laboratory then provided evidence that amygdalostriatal projections also convey
value in response-outcome relations. They showed that blockade of NMDA receptors in the
NAc impairs the acquisition of both spatial- and operant responsereinforcement associations
in food-restricted rats (Kelley et al., 1997; Maldonado-Irizarry and Kelley, 1995).
Subsequently, Baldwin and Kelley demonstrated that blockade of NMDA receptors within
the lateral/basolateral amygdala also blocked the acquisition (but not expression) of
response-reinforcement associations (lever pressing for food). Unilateral blockade of
amygdala and NAc NMDA receptors was likewise sufficient to impair the acquisition of
operant responding for food, implicating an amygdalo-striatal interaction. The results were
both neuroanatomically specific, because NMDA receptor blockade within the dorsal or
ventral subiculum did not produce similar effects, and behaviorally specific, because general
changes in motor behavior or consummatory behavior were not seen (Baldwin et al., 2000).

The basolateral amygdala is not essential for the acquisition of instrumental conditioning per
se, however, because the rats in the studies of Kelley and colleagues were impaired, not
absent, in their acquisition. Indeed, Balleine and collaborators showed that food-restricted
rats with complete bilateral excitotoxic lesions of the lateral/basolateral amygdala or
asymmetric contralateral “disconnection” lesions of the BLA and NAc compartments
exhibited normal acquisition of instrumental responding for food under different conditions
(Balleine et al., 2003; Shiflett and Balleine, 2010). Rather, BLA lesions appear to impair the
encoding of action outcomes. For example, lesioned rats did not show differences between
responding for otherwise valued (not pre-fed) vs. devalued (pre-fed) reinforcers in choice
extinction and choice reward tests. Responding in lesioned rats also did not decrease
appropriately when a reinforcer was provided noncontingently during a session, which
otherwise should degrade both its value and the action–outcome contingency. Finally, unlike
in sham controls, responding in lesioned rats in a discriminative outcome procedure, in
which the reinforcer obtained during a session identified which of two possible operant
responses would yield a reinforcer during that session, was insensitive to the discriminative
outcome. Basolateral amygdala-lesioned rats did not appear to utilize the discriminative
(value) information present in the action’s outcome; instead, they persistently emitted their
preferred operant response even when it did not yield reinforcer delivery (Balleine et al.,
2003).

A specific role for BLA–ventrostriatal interactions in representing the predictive association
between actions and their valued outcomes is implicated by the finding that asymmetric
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“disconnection” excitotoxic lesions of the BLA and NAc core but not ipsilateral lesions also
rendered rats insensitive to sensory-specific reinforcer devaluation by pre-feeding (Shiflett
and Balleine, 2010). Also consistent with this hypothesis, pharmacological “disconnection”
of the BLA from the NAc by unilateral inhibition of the BLA (via muscimol) and
contralateral NAc (via α-flupenthixol) reduced the expression of high-ratio-requirement
(i.e., fixed-ratio 16) operant responding for food but not free food intake in food-restricted
rats. The same effects were seen following bilateral administration of either pharmacological
treatment but not following ipsilateral administration, implicating BLA–NAc interactions
(Simmons and Neill, 2009).

The insensitivity to outcome value that results from contralateral BLA–NAc core lesions is
specific to the core compartment because combining BLA lesions with contralateral NAc
shell lesions does not yield the same effect (Shiflett and Balleine, 2010). A double
dissociation, asymmetric lesion disconnection of the BLA from the NAc shell but not core
reduces the outcome-specific, cued invigoration of instrumental responding characteristic of
Pavlovian-instrumental transfer. Thus, when presented with a cue stimulus that had
previously been classically conditioned with reinforcer delivery, rats with contralateral
BLA–NAc shell lesions failed to increase their operant responding for the same reinforcer
(i.e., outcome-specific “transfer” of the Pavlovian excitation). Deficits in outcome-specific
Pavlovian transfer to instrumental responding likewise are seen in rats with bilateral lesions
of the BLA (Corbit and Balleine, 2005) or NAc shell (Corbit et al., 2001) or following
bilateral inactivation of the NAc shell (Corbit and Balleine, 2011). Such effects are not seen
on baseline response rates or in rats with ipsilateral BLA–NAc shell lesions or contralateral
BLA–NAc core lesions (Shiflett and Balleine, 2010). Recent high-resolution functional
neuroimaging data implicated activation of a ventral portion of the human BLA in outcome-
specific Pavlovian-instrumental transfer (Prevost et al., 2012). Thus, whereas BLA–NAc
core interactions convey the relations of actions to valued outcomes, BLA–NAc shell
interactions may represent the incentive relations of Pavlovian cues to valued outcomes.
Both processes serve to guide behavior.

10.3. Amygdalo-striatal projections and the discriminative stimulus control of reward
seeking

Ambroggi et al. (2008) provided evidence that amygdalo- ventrostriatal projections also
convey the discriminative, reward-predictive value of previously neutral stimuli.
Foodrestricted rats were first allowed to learn that one auditory discriminative stimulus
signaled the availability of 10% sucrose solution via lever pressing, whereas a different
auditory stimulus signaled non-availability. Unilateral inhibition (“disconnection”) of the
BLA complex (via baclofen and muscimol) and contralateral NAc core (via the D1 receptor
antagonist SCH23390) selectively reduced the ratio but not latency of sucrose-directed
responding in the presence of the discriminative stimulus and did so to a greater degree than
did ipsilateral inactivation. They further showed that the discriminative stimulus evoked
sustained excitation of BLA neurons (several seconds), whereas the non-discriminative
stimulus elicited an identical initial (~100 ms) excitation, which then rapidly returned to
baseline. Within the NAc core, in contrast, discriminative stimuli uniquely or differentially
excited the majority of neurons compared with non-discriminative stimuli during both the
early (~100–200 ms) and sustained (seconds) phases of excitation. The mean onset of NAc
excitation lagged behind BLA excitation by ~40 ms, consistent with downstream
information processing. Consistent with coupling as well, those neurons within the BLA and
NAc that most rapidly (~100 ms) showed differential excitation in response to
discriminative vs. non-discriminative stimuli showed similarly fast response latencies to one
another (Ambroggi et al., 2008). Basolateral amygdala inactivation reduced both the
discriminative stimulus- and non-discriminative stimulus-induced excitation of ipsilateral
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NAc core neurons, consistent with the proposed BLA–NAc flow of information.
Accordingly and replicating reviewed electrophysiological findings (Ito et al., 1974; Powell
et al., 1968; Sato, 1977; Yim and Mogenson, 1982), electrical stimulation of the BLA
rapidly excited 16% of ipsilateral NAc neurons. More compelling, BLA-evoked NAc
neurons in the ipsilateral hemisphere were disproportionately the same ones that were
excited by the discriminative stimulus, and most of these had monosynaptic-like BLA-
evoked latencies (4–20 ms; Ambroggi et al., 2008). The results support the hypothesis that
the direct BLA–NAc core projection conveys the acquired incentive value of previously
neutral, discriminative stimuli that signal the availability of valued outcomes.

Accordingly, Jones et al. (2010a,b) found that discriminative stimuli predictive of operant
access to sucrose pellets in foodrestricted rats elicit greater dopamine release in the NAc
core than do non-discriminative stimuli. Unilateral inactivation of the BLA (via muscimol
and baclofen) was sufficient to reduce discriminative stimulus-evoked approach behavior
and increase instrumental response latencies. Unilateral BLA activation selectively reduced
discriminative stimulus-elicited neuronal excitation (Jones et al., 2010b) and dopamine
levels (Jones et al., 2010a) in the ipsilateral NAc core, without influencing the effects of the
non-discriminative stimulus on these endpoints. Moreover, excitation in the NAc shell and
contralateral NAc core were unaffected by BLA inactivation (Jones et al., 2010b). The
results suggest that discriminative stimuli may facilitate reward-directed behavior in part via
BLA-evoked excitation and dopamine efflux in the core compartment of the NAc.

In a fascinating set of complementary findings, Popescu et al. (2009) demonstrated in cats
that coordinated gamma oscillations emerge between local field potentials in pyramidal
neurons of the BLA complex and medium spiny neurons of the ventral putamen during the
acquisition of a discriminative stimulus. Under baseline (pre-learning) conditions, they
observed that coherence of gamma oscillations was much greater between striatal and BLA
field potentials than between cortico-amygdalar, thalamo-amygdalar, cortico-striatal, or
thalamo-striatal relations. Consistent with the existence of a BLA → ventrostriatal
projection underlying the gamma coherence: (1) the gamma coherence between the BLA
and ventral putamen uniquely exhibited a reliable phase lag, (2) spontaneous BLA and
striatal unit activity showed coupling during periods of high-amplitude gamma oscillations,
and (3) BLA inactivation (via muscimol) differentially reduced the power of striatal gamma
activity under baseline conditions. Food-restricted cats were then allowed to learn that one
auditory tone immediately preceded the availability of a palatable liquid (i.e., pureed sweet
potatoes and turkey baby food), whereas another tone did not. Initially, both stimuli elicited
comparable transient increases in coherent BLA-striatal gamma activity. With learning,
however, the discriminative stimulus elicited greater BLA-striatal gamma coupling than did
the non-predictive stimulus. The emerging coherent gamma differential between the two
stimuli correlated directly with the emergence and frequency of discriminative
stimulusevoked anticipatory licking at the sipper. With reversal learning, the new
discriminative stimulus also came to elicit larger increases in coordinated BLA-striatal
gamma activity in direct relation to changes in anticipatory licking. All of these changes
were unique to the BLA–ventral putamen relation and were not seen between the other pairs
of recording sites. The results suggest that not only BLA projections to the NAc core but
also connections to the functionally related ventral putamen transmit the reward-predictive
value of previously neutral discriminative stimuli and provide insights into the possible
mechanism of influence.

Consistent with the overarching view that excitation of the BLA-to-NAc projection conveys
incentive instrumental value, selective optogenetic, channelrhodopsin-2-dependent
activation of the pathway is reinforcing to mice in a D1 receptor-dependent manner (Stuber
et al., 2011). Conversely, selective optogenetic, halorhodopsin-dependent silencing of the
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pathway during repeated pairings of a neutral auditory stimulus and contiguous access to
sucrose solution blocks the development of cued anticipatory or consummatory licking at
the reward sipper otherwise seen in controls (Stuber et al., 2011).

10.4. Hypothesized role of amygdalo-striatal projections in disincentive motivation
Killcross et al. (1997b,c) proposed that projections from the BLA to the ventral striatum also
may mediate the acquisition of negative incentive value, such as by shock-paired stimuli in a
conditioned punishment procedure, and thereby also subserve instrumental choice behavior
vis-a-vis noxious events. Accordingly, systemic administration of the indirect dopamine
agonist D-amphetamine or dopamine antagonist α-flupenthixol potentiated or diminished,
respectively, the influence of not only a conditioned reinforcer but also a conditioned
punisher on instrumental responding, without influencing operant responding with neutral
stimuli (Killcross et al., 1997a). Consistent with the hypothesis that the amygdalo-striatal
projection helps convey negative incentive value to stress-paired stimuli or actions, Setlow
et al. (2000) showed that the glucocorticoid-facilitated retention of passive avoidance of
footshock was eliminated by asymmetric, contralateral (“disconnection”) lesions but not
ipsilateral, excitotoxic lesions of the BLA and NAc. Also consistent with this view, lesion or
inactivation of the BLA can block NAc dopaminergic responses to previously conditioned
aversive stimuli. For example, intra- BLA administration of the GABA agonist tetrodotoxin
blocked the depression of NAc core dopamine efflux that otherwise resulted from exposure
to a LiCl-conditioned (aversive) olfactory stimulus. In parallel with its action on core
dopamine efflux, BLA inactivation also eliminated the expression of place aversion to the
aversive stimulus (Louilot and Besson, 2000).

11. Psychopathological role of amygdalo-striatal circuits in motivated
behavior
11.1. “Light side” of the central extended amygdala

In addition to playing a role in the reinforcing effects of food as shown by the Kelley
laboratory (Andrzejewski et al., 2004, 2005), the central extended amygdala plays a key role
in the acute, primary reinforcing effects of drugs of abuse. For example, local administra-
tion of dopamine D1 receptor antagonists directly into the medial NAc, CeA (Caine et al.,
1995), and lateral BNST (Epping-Jordan et al., 1998) reduced intravenous cocaine self-
administration. Similarly, the reinforcing effects of ethanol were blocked by intra-CeA
administration of GABAergic and opioidergic antagonists (Heyser et al., 1999; Hyytia and
Koob, 1995), and excitotoxic lesions of the CeA reduced ethanol self-administration (Moller
et al., 1997).

The correspondence of activation of the CeA to increased drug, ethanol, or palatable food
consummatory behavior is consistent with Kelley and colleagues’ finding that silencing the
CeA prevents increases in food consummatory behavior (Baldo et al., 2005; Will et al.,
2004).

11.2. “Dark side” of the central extended amygdala
In addition to mediating the positive reinforcing effects of some substances of abuse, the
central extended amygdala has been implicated in neuroadaptive processes that come to
motivate behavior during withdrawal or extended drug taking via negative reinforcement
mechanisms (Cottone et al., 2009; Koob, 2003, 2009, 2010; Koob and Le Moal, 2005;
Parylak et al., 2011). Some of these changes involve within-neurochemical system,
opponentprocess “anti-reward” neuroadaptations. For example, whereas the acute
reinforcing and rewarding effects of cocaine involve increased extracellular dopamine in the
medial NAc (Pontieri et al., 1995), continuous self-administration of cocaine for 12 h
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ultimately decreases levels in the same region (Parsons et al., 1995). Decreased activity of
NAc dopamine and serotonergic systems is also seen during drug withdrawal in animal
models (Diana et al., 1992; Parsons et al., 1995; Rossetti et al., 1992a,b,c; Weiss et al.,
1992).

Other changes involve the between-neurochemical system recruitment of brain stress
circuitry within the extended amygdala, perhaps reflecting a functional opponent-process to
excessive, drug-induced reward system activation. For example, as our group has reviewed
previously (Koob, 2003, 2009, 2010; Koob and Le Moal, 2005; Koob and Zorrilla, 2010;
Logrip et al., 2011; Parylak et al., 2011; Zorrilla and Koob, 2010), acute withdrawal from
drugs of abuse, ethanol, and palatable high-sucrose diets is associated with activation of
CeA corticotropin-releasing factor (CRF) systems. Furthermore, systemic or site-specific
administration of CRF antagonists into components of the extended amygdala can
differentially reduce the anxiety-like behavior, motivational deficits for other reinforcers,
and increased self-administration of addictive substance that are seen during withdrawal in
animal models of addiction. A similar role for aversive dynorphin-κopioid receptor
activation within the central extended amygdala has been proposed (Shippenberg et al.,
2007; Wee and Koob, 2010).

The central extended amygdala also appears to play a major role in the stress-induced
reinstatement of drug-, ethanol-, and palatable-food seeking (Kalivas and McFarland, 2003;
Koob, 2010; Koob and Zorrilla, 2010; Logrip et al., 2011; McFarland et al., 2004; Nair et
al., 2009; Parylak et al., 2011; Shaham et al., 2000, 2003; Shalev et al.,2002, 2010; Zorrilla
and Koob, 2010). For example, inactivation of the CeA or BNST can prevent stress-induced
reinstatement, as does microinfusion of CRF antagonists or noradrenergic antagonists into
the CeA or lateral BNST. Altogether, the results suggest a major role for anti-reward and
stress-like neuroadaptations within the central extended amygdala in promoting drug-
seeking or self-administration behavior (Koob, 2009, 2010; Koob and Le Moal, 2005; Koob
and Zorrilla, 2010; Logrip et al., 2011; Parylak et al., 2011).

11.3. BLA–ventral striatum: emotional memory and acquired (dis)incentive value
In the context of addiction, projections from the deep basal nuclei of the amygdala (BLA,
BMA) to the extended amygdala, corticostriatal circuits, and ventral striatum can be
conceptualized as conveying the drug- or withdrawal-conditioned incentive value through
which previously neutral stimuli gain control over behavior (Kelley et al., 2005). Thus, the
projections subserve instrumental phenomena such as drug cue-induced reinstatement of
drug-seeking and drug-cue directed operant behavior (Milton et al., 2008a); Pavlovian
phenomena such as conditioned approach (e.g., place preferences) or conditioned
withdrawal (e.g., place aversion) behavior (Milton et al., 2008b); and Pavlovian cue-
induced, outcome-specific facilitation of drug-seeking behavior.

Accordingly, excitotoxic lesions of the BLA block cocaineseeking behavior under a second-
order schedule (Whitelaw et al., 1996), effects recapitulated by pharmacological
“disconnection”, in which a dopamine antagonist is administered into the BLA, and an
AMPA-kainate receptor antagonist is administered into the contralateral NAc (Di Ciano and
Everitt, 2004). Basolateral amygdala inactivation also reduces cocaine cue-induced
locomotor activity (Chefer et al., 2011). Moreover, excitotoxic lesions of the BLA (Meil and
See, 1997), BLA inactivation (Grimm and See, 2000; Kantak et al., 2002), D1 antagonism in
the BLA (See et al., 2001), and zif268 knockdown in the BLA (Hellemans et al., 2006) all
prevent cue-induced reinstatement of extinguished drug seeking (but not self-administration
of the primary drug reinforcer). Similarly, intra-BLA administration of the mGluR5
antagonist MTEP reduced cue-induced reinstatement of ethanol-seeking behavior (Sinclair
et al., 2012), and intra-BLA blockade of opioid receptors reduced context-induced
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reinstatement of ethanol seeking (Marinelli et al., 2010). Consistent with these findings, cue-
induced reinstatement of drug and ethanol seeking are associated with increased neuronal
activation and glutamatergic synaptic transmission in the BLA (Gass et al., 2011; Jupp et al.,
2011; Madsen et al., 2012).

The BLA is also involved in multiple stages of Pavlovian stimulus-drug reward and
stimulus-withdrawal aversion association learning and memory. For example, rats with BLA
lesions do not develop conditioned opioid withdrawal (Schulteis et al., 2000). The activation
state of dopamine D1 and D2 receptors in the BLA bidirectionally modulates the ability of
morphine to promote conditioned place preferences in opiate-naive and withdrawn, opiate-
dependent subjects, respectively (Lintas et al., 2011, 2012). Inhibition of protein kinase Mζ
within the BLA prevents the maintenance of opioid-conditioned place preferences and
opioid withdrawal-conditioned place aversions (He et al., 2011). Knockdown of protein
synthesis or several plasticityrelated molecules within the BLA (e.g., zif268, neuronal
protein kinase cyclin-dependent kinase 5) can impair the consolidation or reconsolidation of
drug-conditioned place preferences, drug withdrawal-conditioned place aversions, and the
memory for drug contexts that otherwise would reinstate drug-seeking behavior (Fuchs et
al., 2009; Li et al., 2010; Theberge et al., 2010; Wu et al., 2012). Accordingly, drug- and
palatable food-conditioned stimuli (Ciccocioppo et al., 2001; Kelley et al., 2005; Kufahl et
al., 2009; Lucas et al., 2008, 2012; Schiltz et al., 2005, 2007; Weiss et al., 2000) as well as
withdrawal-conditioned stimuli (Frenois et al., 2005; Hellemans et al., 2006; Li et al., 2009;
Lucas et al., 2012) elicit neuroactivational responses in the BLA in both animals and
humans (Bonson et al., 2002; Childress et al., 1999; Grant et al., 1996; Kilts et al., 2001).
The degree to which direct amygdalo-striatal projections mediate these functions compared
with complementary projections from the BLA to cortico-striatal and extended amygdala
circuitry remains to be determined.

11.4. BLA–dorsal striatum: once conditioned value, now conditioned habit?
Although a key contribution of Kelley, Domesick, and Nauta’s neuroanatomical study in
1982 was to reinforce the existence of direct projections from the deep basal nuclei of the
amygdala to the caudate–putamen in the dorsal striatum, the functional significance of these
connections still remains largely unknown 30 years later. Both primate and rodent studies
have implicated the posterior dorsomedial striatum, networked with the medial parafasicular
nucleus and prefrontal cortical areas, in the cognitive control of goal-directed action
selection. In contrast, the dorsolateral striatum, networked with ventrolateral and ventral
anterior nuclei and sensorimotor cortices, subserves the learning and perfor- mance of non-
goal-directed, outcome-independent habits (Shiflett and Balleine, 2011). The competition
between these regions has been implicated in action selection (i.e., controlled, goal-directed
behavior vs. uncontrolled habitual behavior). The role of prominent cortical and thalamic
afferents to each of these regions, forming cortico-striatal–pallidal–thalamic loops that
influence the competition of stimulus–response valuation and, thereby, action selection,
have received substantial attention. Those described by Kelley and colleagues from the
allocortical BLA have not.

Interestingly, however, several recent functional neuroimaging findings suggest that obese
humans show heightened food cueevoked functional activation and connectivity of the
dorsal striatum and amygdala. Such effects may undesirably facilitate food stimulus
(palatable food smell)-behavioral response (eat) relations. First, obese subjects showed
greater regional brain glucose uptake with positron emission tomography in the dorsal
caudate and amygdala compared with controls (Nummenmaa et al., 2012). Second, obese
subjects showed heightened amygdala functional magnetic resonance imaging (fMRI)
responses to food stimuli than did controls (Stoeckel et al., 2008). Third, obese subjects
showed differentially increased hemodynamic fMRI responses in the caudate/dorsal striatum
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in response to pictures of palatable vs. bland food compared with controls (Nummenmaa et
al., 2012; Rothemund et al., 2007; Stoeckel et al., 2008). Fourth, the palatable food imagery-
related functional connectivity of the amygdala with the dorsal caudate was greater in obese
subjects than in controls (Nummenmaa et al., 2012). The collective results suggest the
hypothesis that abnormal food cue-evoked excitation of an amygdalo-caudate pathway may
contribute to habitual (i.e., automatic, uncontrolled, and not goaldirected) excessive food
intake. Further investigation of projections from the BLA to different compartments of the
dorsal striatum appears warranted.

12. Conclusion
Thus, the original hypothesis of MacLean that the amygdala was a key part of the
“paleomammalian limbic system” that adaptively modulates activity of the “reptilian” basal
ganglia was transitioned to modern neurobiology by the pioneering work of Ann Kelley and
her associates. From her work with Nauta and later with her own team, a clearer picture
evolved on the motivational significance of BLA projections to the ventral striatum and the
extended amygdala macrostructure. Direct amygdalo-ventrostriatal projections, in
conjunction with well-studied cortico-striatal–pallidal–thalamic and hippocampal–striatal
circuits, form part of a distributed motivational network (Ernst and Fudge, 2009; Gruber and
McDonald, 2012; Kelley, 2004; Koob and Le Moal, 2006; Meredith et al., 2008; Sesack and
Grace, 2010; Thompson and Swanson, 2010) that, by associating actions and predictive cues
with the value of successive events (Morrison and Salzman, 2010), guide the acquisition and
expression of adaptive motor behavior. In parallel, the central extended amygdala represents
an indirect amygdalo-striatal entity that influences stimulus–response valuation both by
acutely mediating primary reinforcement and by neuroadaptive stress and anti-reward
processes that contribute to negative reinforcement mechanisms. Dr. Kelley’s work has
provided a heuristic framework for elucidating not only the neurocircuitry of motivation and
emotion but also, and perhaps more importantly, the plasticity in the neurocircuitry that
underlies the psychopathology of motivation.
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Highlights

► Ann Kelley studied functionally distinct direct vs. indirect amygdalostriatal pathways.
► The entire caudal striatum receives afferents from deep basal amygdalar nuclei. ► The
rostral ventromedial striatum differentially receives amygdalar input. ► The ancient
amygdala-to-striatum pathways participate in stimulus–response valuation. ► Plasticity
in the pathways underlies addiction-related memory, craving and relapse.
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