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Abstract
Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide
(ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting,
optical, and piezoelectric properties hence has been investigated for a wide variety of applications.
One of the most important features of ZnO nanomaterials is low toxicity and biodegradability.
Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it
is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH
groups, which can be readily functionalized by various surface decorating molecules. In this
review article, we summarized the current status of the use of ZnO nanomaterials for biomedical
applications, such as biomedical imaging (which includes fluorescence, magnetic resonance,
positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery,
and biosensing of a wide array of molecules of interest. Research in biomedical applications of
ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be
needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical
translation.
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INTRODUCTION
Over the last decade, nanotechnology has been one of the fastest-growing areas of science
and technology with tremendous advancement being made. The unique physicochemical
properties of various nanomaterials make it possible to create new structures, systems,
nanoplatforms, or devices with potential applications in a wide variety of disciplines. The
development of biocompatible, biodegradable, and functionalized nanomaterials for
biomedical applications has been an extremely vibrant research area. To date, the most well-
studied nanomaterials for biomedical applications include quantum dots (QDs) [1, 2], carbon
nanotubes (CNTs) [3, 4], nanoshells [5], paramagnetic nanoparticles [6], among many others
[7-10].

Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures (Fig. (1)), possesses
unique semiconducting, optical, and piezoelectric properties [11, 12]. Therefore, ZnO-based
nanomaterials have been studied for a wide variety of applications such as nano-electronic/
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nano-optical devices, energy storage, cosmetic products, nanosensors, etc. [13-18]. ZnO is a
wide band gap semiconductor (3.37 eV) with high exciton binding energy (60 meV), which
leads to efficient excitonic blue and near-UV emission [19]. The use of ZnO in sunscreens
has been approved by the food and drug administration (FDA) due to its stability and
inherent capability to absorb UV irradiation.

One of the most important features of ZnO nanomaterials is low toxicity and
biodegradability. Zn2+ is an indispensable trace element for adults and it is involved in
various aspects of metabolism. 11.0 mg and 9.0 mg of Zn2+ per day is recommended for
adult men and women in the United States, respectively. Chemically, the surface of ZnO is
rich in -OH groups, which can be readily functionalized by various surface decorating
molecules [20, 21]. ZnO can slowly dissolve in both acidic (e.g. in the tumor cells and tumor
microenvironment) and strong basic conditions if the surface is in direct contact with the
solution [22]. Based on these desirable properties, ZnO nanomaterials have gained enormous
interest in biomedical applications. In this review, we will summarize the current status of
the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging, drug
delivery, gene delivery, and biosensing.

BIOIMAGING WITH ZNO NANOMATERIALS
Being inexpensive and convenient, fluorescence imaging has been widely used in preclinical
research [23-26]. Since ZnO nanomaterials exhibit efficient excitonic blue and near-UV
emission, which can also have green luminescence related to oxygen vacancies [27, 28],
many reports exist in the literature on the use of ZnO nanomaterials for cellular imaging.

Taking advantage of their intrinsic fluorescence, the penetration of ZnO nanoparticles in
human skin was imaged in vitro and in vivo [29]. It was found that most ZnO nanoparticles
stayed in the stratum corneum with low possibility to result in safety concerns. In another
study, biocompatible ZnO nanocrytstals (NCs) with nonlinear optical properties were
synthesized, encapsulated within the nonpolar core of phospholipid micelles, and conjugated
with folic acid (FA) for nonlinear optical microscopy [30]. The micelle encapsulated ZnO
NCs were stable in aqueous solutions and FA-conjugated ZnO NCs were found to
accumulate intracellularly throughout the cytoplasm, without inducing cytotoxicity in live
KB cells which express high levels of the folate receptor. Recently, transferrin-conjugated
green fluorescent ZnO NCs were also reported for cancer cell imaging with minimum
cytotoxicity [31].

The optical properties of ZnO nanomaterials can be tuned by doping with appropriate
elements [32]. In one report, ZnO NCs were doped with different cations (Co, Cu, or Ni)
and stabilized in aqueous colloidal solutions, which were employed for cellular imaging
studies in various cells [33]. It was suggested that these small ZnO nanoparticles could
penetrate into the cell nucleus.

Heterostructural ZnO/Au nanocomposites, where Au NCs grow at the tip of ZnO nanorods
or along the nanorod surfaces, were synthesized and investigated for their optical properties
and biocompatibility [34]. It was shown that the number of Au NCs on ZnO nanorods can be
controlled by changing the molar ratio of ZnO to HAuCl4, with the resulting
nanocomposites exhibiting tunable UV/visible emission intensity and excellent
biocompatibility. When incubated with HeLa cells, these ZnO/Au nanocomposites were
found to be internalized into the endosomes and cytosol. Nanoparticles of ~200 nm in
diameter, where nanoscale ZnO was used to coat fluorescent dye-encapsulating SiO2, have
been reported for the imaging of E. coli [35]. In addition, these nanoparticles showed
selective cytotoxicity to bacteria, as well as preferential killing of leukemic T cells while
sparing normal immune cells, because of the dissolution of surface ZnO layer. In a recent
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study, anti-epidermal growth factor receptor antibody-conjugated ZnO nanorods were used
for imaging of cancer cells in vitro [36]. However, the emission maximum of 377 nm for
these ZnO nanorods is not optimal for further investigation.

The most extensively studied nanoparticles for optical imaging are QDs due to their many
desirable optical properties [1, 37, 38]. However, the commonly used CdSe or CdTe cores of
QDs possess potential toxicity to biological systems. Therefore, much effort has been
devoted to the development of less toxic fluorescent nanoparticles such as ZnO-based QDs.
Because of the relatively weak emission and low stability of ZnO-based QDs in aqueous
solutions, various strategies for surface coating have been investigated.

In one report, ZnO@polymer core-shell nanoparticles with emission in the green and yellow
range and high stability in aqueous solutions were reported [39]. ZnO cores were coated
with a double-layer of polymer shell (a hydrophobic inside layer and an external hydrophilic
layer) to make them water soluble, as well as to improve the quantum yield. It was
demonstrated that the emission wavelength of these ZnO QDs could be tuned by changing
the particle size, with quantum yields of > 50%. When applied for in vitro cell imaging, the
ZnO QDs were found to be located in the cytoplasm, exhibiting stable luminescence under
UV light without significant cytotoxicity. In a follow-up study, similar QDs were tested in
mice after intradermal and intravenous injections [40]. It was found that the fluorescence
signal from QDs could be detected for > 90 minutes after intradermal injection. However,
the QD fluorescence could only be observed within 30 minutes after intravenous injection,
mostly in the vessels, liver, and kidneys. Toxicity study after intravenous injection
demonstrated that the ZnO QDs did not show any acute toxicity to mice within 24 hours. For
future studies, more stable surface coating will be needed for these ZnO QDs and longer
circulation half-life will also be more favorable.

Each of the imaging techniques has its own advantages as well as disadvantages [41].
Nanomaterials can be functionalized to be detectable by multiple imaging modalities, which
can provide synergistic advantages [2, 10]. When compared with small molecules,
nanomaterials are more suitable for multimodality imaging because of the large surface area
which provides more sites for functionalization, as well as the possibility to engineer them
for multimodal detection. In one interesting study, Gd-doped ZnO QDs (with sizes of < 6
nm) were developed for both optical and magnetic resonance imaging (MRI) (Fig. (2)) [42].
It was found that the emission intensity of the Gd-doped ZnO QDs increased with increasing
concentration of Gd3+, with maximum emission intensity at 550 nm. Upon surface coating
with N-(2-aminoethyl) aminopropyltrimethoxysilane (AEAPS), the resulting Gd-doped ZnO
QDs exhibited low toxicity to HeLa cells and could be imaged with both confocal
microscopy and MRI in vitro. In another study, multifunctional Fe3O4-ZnO core-shell
magnetic QDs were also reported for potential cancer imaging and therapy [43].

The major hurdles for biomedical applications of ZnO nanomaterials include low-intensity
and short-wavelength luminescence of ZnO, limited capability in size control, and
sharpness/stiffness of ceramic-based nanostructures (rigid and sharp tips/edges could
potentially cause cell/tissue damage). We recently synthesized green fluorescent ZnO
nanowires (NWs), which could overcome the abovementioned hurdles, and demonstrated
that the ZnO NWs can be employed for targeted imaging of cancer cells [44, 45]. The
c(RGDyK) (abbreviated as RGD) peptide, which is a potent antagonist of integrin αvβ3 (a
key protein involved in tumor angiogenesis and metastasis) [46, 47], was used as the
targeting ligand. After surface functionalization to render the ZnO NWs water solubility,
better biocompatibility, and lower cytotoxicity, RGD-conjugated green fluorescent ZnO
NWs selectively bound to U87MG human glioblastoma cells (which express a high level of
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integrin αvβ3) and the intrinsic fluorescence signal of ZnO NWs could be detected by a
fluorescence microscope (Fig. (3A,B)).

In addition, these ZnO NWs were also labeled with a positron emission tomography (PET)
isotope, 64Cu (t1/2: 12.7 h), to evaluate its biodistribution in normal mice without the use of
tumor-targeting ligands (e.g. RGD peptides) [44]. PET findings revealed that the ZnO NWs
accumulated mainly in the reticuloendothelial system (RES) and they could be degraded and
cleared from the mouse body (Fig. (3C)). Much further improvement will be needed before
these ZnO NWs can be applied for in vivo targeting/imaging of cancer. For example, the
size of ZnO NWs can be reduced to improve the tumor targeting efficiency; ZnO NWs with
fluorescence emission in the red or near-infrared (NIR) region are preferred which will have
better tissue penetration of the optical signal; the in vitro/in vivo stability of the ZnO NWs
needs to be evaluated and the long term toxicity should be studied. Since the major obstacle
facing most nanomaterial-based tumor targeting is efficient extravasation [10, 48], by
targeting integrin αvβ3 which is overexpressed on both tumor vasculature and certain tumor
cells, RGD-conjugated ZnO nanomaterials could have desirable in vivo tumor targeting
efficiency because extravasation is not needed for active tumor targeting.

To date, the use of radiolabeled, molecularly targeted ZnO nanomaterials has not been
reported yet. Radionuclide-based imaging techniques (i.e. PET [49-55] and single-photon
emission computed tomography [SPECT] [56-60]) have much better clinical relevance,
hence are more widely used in the clinic than optical imaging. Not only is there no tissue
penetration limit for these techniques, PET and SPECT are also highly quantitative and
sensitive [41, 49, 61-64]. Therefore, PET and SPECT only require tracer concentration
many orders of magnitude lower than the pharmacologically active level, which will have
little biological adverse effects. Combination of the high sensitivity of PET and intrinsic
fluorescence of ZnO nanomaterials through the use of radiolabeled ZnO nanomaterials can
provide synergistic advantages and greatly facilitate the development of ZnO nanomaterial-
based anti-cancer agents and their future clinical translation. PET, which detects the
radiolabel rather than ZnO itself, is sensitive, quantitative, and clinically relevant. Optical
imaging can provide inexpensive and convenient tracking of the ZnO nanomaterial itself in
animal models. Further, the intrinsic fluorescence of ZnO nanomaterials can enable
microscopy/histology studies without exogenous dyes, which can serve as a convenient and
robust means for validation of the in vivo findings in animal models.

DRUG DELIVERY WITH ZNO NANOMATERIALS
ZnO nanomaterials are versatile nanoplatforms for not only bioimaging but also drug
delivery applications, due to their large surface area, versatile surface chemistry, phototoxic
effect, among others. In vitro studies have shown that ZnO nanoparticles can be highly toxic
to cancer cells [65] or bacteria and leukemic T cells [35]. Therefore, not only have ZnO
nanomaterials been investigated as drug/gene delivery vehicles, they have also been studied
for cancer therapy.

ZnO QDs with intrinsic blue fluorescence were coated with folate-conjugated chitosan via
electrostatic interaction, which could be loaded with doxorubicin (DOX, a widely used
chemotherapy drug) at ~75% efficiency [66]. It was suggested that DOX was entrapped
through interaction with the surface of ZnO QDs and/or folate via hydrogen bonding,
whereas the external chitosan layer enhanced aqueous stability of the ZnO QDs due to the
charges and hydrophilicity. However, DOX was released quickly at the normal
physiological pH value of 7.4, which needs to be improved for future in vitro/in vivo
studies.
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One of the major obstacles in dendritic cell (DC)-based cancer immunotherapy is the
development of a delivery system which can efficiently deliver target antigens into DCs
[67]. Because of the large surface area, nanomaterials are promising candidates for this
application. Recently, Fe3O4-ZnO core-shell nanoparticles with an average diameter of 16
nm were prepared to deliver carcinoembryonic antigen into DCs, which could also serve as
imaging contrast agents (Fig. (4)) [68]. Antigen-bound nanoparticles were efficiently taken
up by DCs in vitro, where the ZnO shell facilitated cell internalization and significantly
reduced the incubation time needed for labeling DCs. No changes in viability or phenotype
were observed in the nanoparticle-labeled DCs. More importantly, the uptake of
nanoparticle-labeled DCs in draining lymph nodes of a mouse was successfully detected by
MRI, warranting future investigation of these nanoparticles for image-guided antigen
delivery and in vivo tracking of the loaded DCs.

The cytotoxicity of aminopolysiloxane capped ZnO nanoparticles of different sizes (20, 60,
and 100 nm, respectively) was evaluated in leukemia K562 and adriamycin-resistant K562/
A02 cells [69]. The K562/A02 cells were found to be more sensitive to ZnO nanoparticles
than K562 cells. Furthermore, ZnO nanoparticles of different sizes showed different
cytotoxic effects on the two cell lines, where cell proliferation could be suppressed by UV
irradiation after incubation with ZnO nanoparticles. The synergistic cytotoxic effect of the
three ZnO nanoparticles and daunorubicin (DNR; which can cause DNA damage and induce
apoptosis in cells) against leukemia cells was also explored, and the presence of ZnO
nanoparticles were shown to enhance cellular uptake of DNR and inhibit proliferation of the
two cell lines. In a subsequent study, similar results were achieved in hepatocellular
carcinoma SMMC-7721 cells [70].

Photodynamic therapy (PDT) is an emerging and promising alternative for non-invasive
treatment of cancer [71]. Upon uptake of photosensitizers into cancer cells, irradiation with
light of suitable wavelength and dosage can generate reactive oxygen species (ROS) which
can induce cell death and/or necrosis [72]. ZnO nanoparticles can induce ROS such as
hydroxyl radical, hydrogen peroxide, and superoxide in aqueous solutions upon absorption
of UV illumination, making them good candidates for PDT (Fig. (5)) [73]. For cancer
therapy, combination of different regimens can often lead to better efficacy, reduce side
effects, and decrease the likelihood of drug resistance. In a proof-of-concept study, ZnO
nanorods of sizes 20 nm × 50 nm which exhibited minimal cellular cytotoxicity by
themselves were used to deliver DNR for combination therapy in SMMC-7721 cells (Fig.
(6)) [73]. Due to the negative surface charges of ZnO nanorods, positively charged DNR
self-assembled onto the nanorods via electrostatic interaction. The binding between DNR
and ZnO nanorods was found to be pH sensitive and DNR could be released gradually with
decreasing pH (Fig. (6B)), which is desirable since tumor microenvironment is typically
acidic. Cellular uptake of DNR was significantly increased when it is attached to ZnO
nanorods and enhanced anti-cancer efficacy of DNR-loaded ZnO nanorods was achieved.
UV illumination could further induce apoptosis of SMMC-7721 cells by photocatalysis of
ZnO nanorods (Fig. (6C,D)).

GENE DELIVERY WITH ZNO NANOMATERIALS
Gene therapy has attracted considerable interest over the last several decades for cancer
treatment [74]. One major challenge of gene therapy is the development of safe gene vectors
which can protect DNA from degradation and enable cellular uptake of DNA with high
efficiency. A wide variety of nanomaterials have been investigated for gene delivery and
gene therapy applications, including ZnO nanomaterials which have shown promise in
various literature reports.
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In a series of studies, three-dimensional tetrapod-like ZnO nanostructures were investigated
as gene vectors to deliver pEGFPN1 DNA (which contains the gene for green fluorescent
protein) to A375 human melanoma cells [75, 76]. The plasmid DNA (pDNA) was attached
to ZnO nanostructures via electrostatic interactions, and the three needle-shaped legs
favored the internalization of the tips within the cells for gene delivery. No significant
cytotoxicity was observed, which was reportedly attributed to the three dimensional
geometry.

Surface-coating of nanomaterials plays a critical role in efficient gene delivery. In one
report, ZnO QDs coated with positively charged poly(2-(dimethylamino)ethyl methacrylate)
(PDMAEMA) polymers were used to condense pDNA for gene delivery [77]. The polymer-
coated ZnO QDs exhibited fluorescence emission at 570 nm with quantum yield of >20%,
which was able to condense large pDNA such as a luciferase reporter gene. It was
demonstrated that COS-7 cells could be efficiently transfected with pDNA-carrying ZnO
QDs with low cytotoxicity. When compared with the use of PDMAEMA itself as the gene
vector, the ZnO QDs had significantly reduced cytotoxicity due to the presence of negative
charged polymethacrylate in the QDs which counteracted the positive charges.

BIOSENSORS BASED ON ZNO NANOMATERIALS
Biosensors (e.g. photometric, calorimetric, electrochemical, piezoelectric, among others
when categorized based on the detection principles) are widely used in healthcare, chemical/
biological analysis, environmental monitoring, and food industry [78]. Nanomaterials, alone
or in combination with biologically active substances, are attracting ever-increasing
attention since they can provide a suitable platform for the development of high performance
biosensors due to their unique properties [17]. For example, the high surface area of
nanomaterials can be employed to immobilize various biomolecules such as enzymes,
antibodies, and other proteins. In addition, they can allow for direct electron transfer
between active sites of the biomolecules and the electrode.

Besides semiconducting properties, ZnO nanomaterials also exhibit various desirable traits
for biosensing such as high catalytic efficiency, strong adsorption capability, and high
isoelectric point (IEP; ~9.5) which are suitable for adsorption of certain proteins (e.g.
enzymes and antibodies with low IEPs) by electrostatic interaction [79]. Furthermore, high
surface area, good biocompatibility/stability, low toxicity, and high electron transfer
capability also make them promising nanomaterials for biosensors [80]. The majority of
reported ZnO-based biosensors are for the detection of various small molecule analytes such
as glucose, phenol, H2O2, cholesterol, urea, etc. (Table 1). In addition, there are also various
biosensors for other molecules of interest and certain chemical/physical properties such as
pH [81, 82]. Interested readers are referred to several excellent review articles on this topic
for more detailed discussion [17, 78, 83]. Herein we will give a brief overview of this area
and only discuss selected literature reports.

Glucose Biosensors
Glucose biosensors, using glucose oxidase (GOx) as the enzyme, can be used both in the
clinic (e.g. for diagnosis of diabetes) and in food industry. Early stage ZnO-based biosensors
were fabricated by loading GOx onto single crystal ZnO nanocombs [79], NWs [84], or NW
arrays [85] by physical adsorption, which exhibited high sensitivity because of the strong
affinity of GOx to glucose. Other biosensors have been constructed by immobilizing GOx
electrostatically onto a supporting matrix made up of ZnO nanorods [86] or crystallized ZnO
nanonails [87], which had good stability, high sensitivity, and short response time (e.g. 10s)
for glucose detection due to direct electron transfer between the active sites of immobilized
GOx and the electrode surface. A variety of other GOx-based glucose biosensors have also
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been reported using tetragonal pyramid-shaped porous ZnO nanostructures fabricated on a
glassy carbon electrode (GCE) [88], ZnO nanorod/Au nanocrystal matrix [89], ZnO
nanoclusters doped with Co [90], carbon-decorated ZnO NW array [91], and vertically
grown ZnO NW coated with a monolayer of ZnS NCs [92].

Recently, several interesting reports appeared on ZnO-based glucose biosensors. In one
study, multiwalled CNTs on the GCE was used to immobilize the first layer of GOx and
electrodeposited ZnO nanoparticles were coated with a second layer of GOx [93]. Rapid
response to glucose with a detection limit of 2.22 μM was achieved with this biosensor.
Another approach was based upon the variation in fluorescence signal of ZnO NCs with
different glucose concentrations [94]. The ZnO NCs were covalently functionalized with
GOx, which gave a fast response time of 5s and a lower detection limit of 0.33 mM.

Phenol Biosensors
Phenolic compounds are highly toxic to animal and plants. Since they commonly exist in
industrial waste, it is important to detect and measure them for environmental monitoring.
Among the many analytical methods developed for detection of phenolic compounds,
biosensors based on immobilization of tyrosinase were shown to be convenient, high
sensitive, and effective [95, 96]. Many of these biosensors have been fabricated on a
platform of ZnO nanoparticles, because of the inherent electrostatic attraction between
electropositive ZnO nanostructures and tyrosinase, which has a low IEP of 4.6 [97].

Tyrosinase has been adsorbed onto different ZnO nanomaterials such as ZnO sol-gel matrix
[98], ZnO nanoparticles [99], and ZnO nanorods [100] through electrostatic interaction,
which were further immobilized on a GCE. Similarly, a biosensor was constructed by
immobilizing tyrosinase onto ZnO nanorod clusters supported by nanocrystalline diamond
electrodes [101]. These abovementioned ZnO nanomaterials not only provided strategic
microenvironment for tyrosinase loading due to its favourable IEP but also helped in
retaining the enzymatic activity, which enabled sensitive detection of phenolic compounds.

To improve biosensor performance, ZnO nanostructures were fabricated on gold wires to
facilitate the nucleation for growth, which resulted in a response time of <5s [102].
Recently, a biosensor based on ZnO nanorod microarrays on boron-doped nanocrystalline
diamond substrates was reported [103]. Since tyrosinase was covalently immobilized to ZnO
nanorods, this sensor showed very high sensitivity for p-cresol, 4-chlorophenol, and phenol
(576.2, 339.3, and 287.1 μA cm-2 mM-1 respectively). In another biosensor design,
tyrosinase was encapsulated by CNT-ZnO-nafion composite film on GCE, which exhibited
excellent sensitivity and a very fast response time of 2s [104].

H2O2 Biosensors
Recently, detection of H2O2 has become a vibrant research area as it plays an important role
in the food industry, environmental monitoring, and clinical diagnosis [105]. For H2O2
detection, the enzyme horse radish peroxidase (HRP) is commonly used due to its high
selectivity. In one report, ZnO in the form of nanosized flowers, dispersed in chitosan
solution to form ZnO/chitosan composite matrix which was further immobilized with HRP,
were used to generate a biosensor with good reproducibility and stability [106]. Another
H2O2 biosensor was constituted by co-immobilizing waxberry-like ZnO microstructure
composed of 8-10 nm nanorods with HRP onto the surface of a GCE [107]. A biosensor
based on ZnO nanorods fabricated on gold wire, with multilayer immobilization of HRP,
was also reported [108]. The multiple layers of HRP not only enhanced the detection
sensitivity, due to better affinity effect of HRP to the catalysed target, but also decreased the
response time considerably to ~5s.
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Cholesterol Biosensors
Cholesterol is an important molecule for humans and serum cholesterol level is an indicator
for various diseases such as hypertension, myocardial infarction, and arteriosclerosis [109,
110]. Therefore, many biosensors have been developed for fast measurement of cholesterol
concentration [111]. These biosensors were constructed by immobilizing cholesterol
oxidase, through either physical absorption or electrostatic interaction, onto various ZnO
nanomaterials such as ZnO nanoporous thin films grown on gold surface [112], well-
crystallized flower-shaped ZnO structures [113], electrodeposited ZnO nanospheres
incorporated with Pt onto a GCE [114], gold/platinum hybrid functionalized ZnO nanorods
constructed on multiwalled CNT modified GCE [115], hexagon-shaped ZnO nanorods
grown on silver wire [116], or ZnO nanowalls chemically fashioned on aluminium wires
[117].

Urea Biosensors
Urea plays a critical role in the metabolism of nitrogen-containing compounds in the human
body. Abnormal urea levels in the blood and urine may lead to renal failure, urinary tract
obstruction, dehydration, shock, gastrointestinal bleeding, etc. Therefore, measurement of
urea in the blood and serum is important for the diagnosis of renal and liver diseases. In urea
biosensors, the enzyme urease is generally used to catalyse the conversion of urea into
hydrogen carbonate and ammonium [118].

The first urea biosensor based on ZnO nanomaterials was reported in 2008, in which urease
was immobilized onto ZnO-chitosan nanobiocomposite film on indium-tin-oxide coated
glass by physical adsorption [119]. Subsequently, a similar biosensor was fabricated using
the same design but without chitosan, which gave significantly lower detection sensitivity
[120]. Another biosensor based on amperometric detection of urea was constructed by
electrostatically immobilizing urease to ZnO nanorods grown onto indium-tin-oxide coated
glass, which had a response time of 3s and a detection limit of 0.13 mM urea [121].
Recently, ZnO NW arrays fabricated on gold coated plastics were also utilized in a urea
biosensor, where urease was immobilized by physical adsorption [122].

Other Biosensors
Aside from the biosensors mentioned above, many other biosensors have been reported for
the detection of a wide variety of molecules. For example, films of ZnO nanoparticles and
NWs impregnated with 1% Pt or doped with Mn and Co have been investigated for sensing
of H2, CO, and ethanol vapour [123], showing stability over 1000 cycles. ZnO-based
biosensors have also been reported for the detection of substances such as uric acid [124,
125], lactic acid [126], DNA [127, 128], proteins [129], a breast cancer marker
(carbohydrate antigen 15.3) [130], among many others [17, 78].

CONCLUSION AND FUTURE PERSPECTIVES
Nanotechnology has had a revolutionary impact on biomedicine and witnessed tremendous
advancement over the last several decades. With sizes less than a few hundred nm, several
orders of magnitude smaller than human cells, nanomaterials can exhibit properties distinct
from both molecules and bulk solids and offer unprecedented interactions with biomolecules
both on the surface of and inside cells [131, 132]. With many attractive physicochemical
properties and tremendous potential for various biomedical applications, ZnO nanomaterials
are excellent candidates as biocompatible, biodegradable, “deliver and dissolve”
nanoplatforms for cancer targeted imaging and therapy. Even though this research area is
still nascent, various ZnO nanomaterials have already been evaluated for optical imaging
and MRI in cells, as well as dual-modality MRI/optical imaging. For in vivo imaging and
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therapy applications, the future of nanomedicine lies in multifunctional nanoplatforms
combining both therapeutic components and multimodality imaging, so that the therapeutic
efficacy could be not only improved but also accurately monitored non-invasively over time.
To date, no in vivo targeted imaging with ZnO nanomaterials has been reported, which
deserves significant research effort in the near future.

For applications of nanomaterials in biomedicine, the biocompatibility is always a concern.
Even though ZnO has been approved for cosmetic uses by the FDA, the detailed
toxicological profile and the mechanism of cytotoxicity for ZnO nanomaterials is not yet
well elucidated [133]. Many studies have focused on the biocompatibility of ZnO
nanomaterials without surface coating/modifications. For example, it was reported that ZnO
nanoparticles showed cytotoxic effect above certain concentrations and the toxicity was pH
dependent, due to the increased concentration of Zn2+ in the culture medium or inside cells
from dissolved ZnO [134]. Nonetheless, such leakage of ionic Zn2+ into the biological
system from dissolution of ZnO can perhaps be well-tolerated since ~10 mg/day of Zn2+ is
needed for adults. Meanwhile, other reports have shown that ZnO nanomaterials were
nontoxic and preferentially toxic to bacteria or cancer cells [35, 65], which could be
advantageous for cancer therapy applications.

Surface modification of nanomaterials plays a crucial role for potential biomedical
applications. It has been demonstrated that the biocompatibility of ZnO nanomaterials could
be improved by slowing down the dissolution rate through Fe doping [135] or surface
capping [136]. We believe that the key question to ask is not how toxic “naked” ZnO
nanomaterials are, but how to functionalize/modify them so that they exhibit minimum
potential toxicity, can be cleared from the human body, and thus can be applied in biological
systems. To date, most of the reported toxicology studies of ZnO nanomaterials were carried
out in vitro. Much effort is needed for long term in vivo toxicology studies to pave the way
for future biomedical applications of these intriguing nanomaterials.

Facile conjugation of various biocompatible polymers, imaging labels, and drugs to ZnO
nanomaterials can be achieved because of the versatile surface chemistry. For future
biomedical applications of ZnO nanomaterials, several directions are of great importance
and deserve significant research effort: 1) Labeling ZnO nanomaterials with radionuclides
for PET/SPECT imaging and the use of ZnO nanomaterials for in vivo tumor targeting; 2)
Development of a biocompatible/biodegradable ZnO nanomaterial platform for tumor
targeted drug/gene delivery; 3) In vivo targeted PDT with drug/gene-loaded ZnO
nanomaterials for combination therapy of cancer; 4) The use of dual-modality PET/optical
or PET/MRI imaging, which takes advantage of the quantitation capability of PET and the
intrinsic fluorescence signal of ZnO (and/or high resolution of MRI) to track ZnO
nanomaterials in vivo; 5) Thorough investigation of the pharmacokinetics and long term
toxicity of ZnO nanomaterials with different surface modifications; among others.
Furthermore, ZnO-based biosensors and in vivo imaging are both critical for future patient
management, which can provide complementary information and offer synergistic
advantages. It is expected that research in biomedical applications of ZnO nanomaterials
will continue to flourish over the next decade, and we hope that this timely review which
gives a snapshot of this vibrant research area can attract new talents to this vibrant area.
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Fig. (1).
ZnO can be synthesized to display a wide variety of nanostructures. Adapted from [137].
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Fig. (2).
MRI and optical imaging with Gd-doped ZnO QDs. White field (A) and fluorescence (B)
images of HeLa cells after incubation with Gd-doped ZnO QDs. C. A T1-weighted MRI
image of aqueous solutions of Gd-doped ZnO QDs with various Gd3+ concentrations,
obtained with a 1.5 T clinical MRI system. D. A T1-weighted image of HeLa cells pellet
without (left) and with Gd-doped ZnO QDs (right). Adapted from [42].
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Fig. (3).
Targeted optical imaging with green fluorescent ZnO nanowires (NWs). A. A schematic
structure of RGD peptide conjugated ZnO NWs. PEG denotes polyethylene glycol. B.
Fluorescence imaging of integrin αvβ3 on U87MG human glioblastoma cells with NW-PEG-
RGD. Magnification: 200×. C. Representatives positron emission tomography images
of 64Cu-labeled non-targeted ZnO NWs at 20 min and 20 h postinjection into female Balb/c
mice. Adapted from [44].
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Fig. (4).
A. A diagram of the core-shell Fe3O4-ZnO nanoparticle. B. A transmission electron
microscopy image of the core-shell Fe3O4-ZnO nanoparticles. C. Fluorescence images of
dendritic cells (DCs) without (top) or with (bottom) the nanoparticles. The fluorescence
signal is shown in green and the nuclei (in blue) were stained with ToPro-3. DIC:
differential interference contrast. D. An in vivo MRI image of draining lymph nodes of a
mouse injected with DCs labeled with Fe3O4-ZnO (red arrowhead) or ZnO nanoparticles
(yellow arrowhead) into the ipsilateral footpads. Adapted from [68].

Zhang et al. Page 19

Curr Mol Med. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. (5).
Possible mechanism of reactive oxygen species (ROS) production by ZnO nanorods under
UV irradiation. Adapted from [73].
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Fig. (6).
A. A transmission electron microscopy image of ZnO nanorods. B. In vitro daunorubicin
(DNR) release profiles at pH 7.4, 6.0, and 5.0. Nuclear morphologic changes of untreated
SMCC-7721 cells (C) or cells treated with DNR-ZnO nanocomposites upon UV irradiation
(which showed features of apoptosis; D). Magnification: 400×. Adapted from [73].
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Table 1

A selected list of ZnO-based biosensors which use immobilized enzymes.

Analyte ZnO Nanostructure Immobilization
Mode

Detection Limit
(μM)

References

Nanocombs Physical adsorption 20 [79]

Nanowires Physical adsorption 0.7 [84]

Nanowire arrays Physical adsorption 100 [85]

Nanorods Electrostatic 10 [86]

Nanonails Electrostatic 5 [87]

Tetragonal pyramid-
shaped porous ZnO
nanostructures

Physical adsorption 10 [88]

Glucose Nanorods Crosslinking 0.01 [89]

Nanoclusters Crosslinking 20 [90]

Carbon decorated Physical adsorption 1 [91]

Nanowires

Nanoparticles Physical adsorption 2.2 [93]

Nanocrystals Covalent bonding 330 [94]

Nanowires Covalent bonding 140 [92]

ZnO sol-gel matrix Electrostatic 0.08 [98]

Nanoparticles Electrostatic 0.05 [99]

Nanorods Electrostatic 15.6 [100]

Phenol Nanorod cluster Electrostatic 0.5 [101]

Nanorods Electrostatic 0.63 [102]

Nanorod microarray Covalent bonding 0.25 [103]

Nanofilm Encapsulation 0.047 [104]

Nanoflower Entrapment 2.0 [106]

H2O2 Nanorods Chemical
adsorption

0.12 [107]

Nanorods on gold wire Physical adsorption 5 [108]

Nanoporous thin film Physical adsorption / [112]

Flower shaped
nanostructure

Physical adsorption 0.012 [113]

Cholesterol Nanospheres Physical adsorption 0.5 [114]

Nanorods Electrostatic 0.03 [115]

Nanorods Electrostatic 1 [116]

Nanorods Electrostatic 1 [117]

Nanobiocomposite film Physical adsorption 3mg/dl [119]

Urea Nanofilm Physical adsorption 13.5 mg/dl [120]

Nanorods Electrostatic 0.4 [121]

Nanowires Physical adsorption / [122]

Curr Mol Med. Author manuscript; available in PMC 2014 December 01.


