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† Background and Aims The role of flower specialization in plant speciation and evolution remains controversial. In
this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria
sect. Versicolores), a monophyletic group of �30 species and subspecies with highly specialized corollas.
† Methods A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a co-
alescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional
trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently devel-
oped methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted
for a representative sample of species.
† Key Results A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor
of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been conver-
gently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on
diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers
are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects.
† Conclusions The results confirm that different forms of floral specialization can lead to dissimilar evolutionary
success in terms of diversification. It is additionally suggested that opposing individual-level and species-level
selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes.

Key words: Convergence, flower specialization, trait-dependent diversification, species selection, pollination,
speciation, reversal, nectar spur, flower tube, toadflax, Linaria sect. Versicolores.

INTRODUCTION

Variation of flower morphological traits has long been consid-
ered to drive evolution and diversification of angiosperms
(Darwin, 1862, 1877; Grant, 1949; Stebbins, 1970; Kay and
Sargent, 2009; van der Niet and Johnson, 2012). Adaptation to
different pollinator vectors (particularly animal pollinators)
has been hypothesized to be a major force shaping flower morph-
ology. This notion gave rise to the concept of pollination syn-
dromes, i.e. sets of flower traits (shape, colour, nectar, scent)
that have convergently evolved in distant plant lineages as an
adaptation to particular pollinators (bees, birds, moths, etc.)
(Faegri and van der Pijl, 1979; Fenster et al., 2004). However,
the concept of pollination syndromes, which relies on flower spe-
cialization, has been challenged in recent times (Waser et al.,
1996; Ollerton et al., 2009). Specialization may still play a rele-
vant role in plant speciation (Kay and Sargent, 2009), but syn-
drome shifts may not account for the majority of speciation
events (e.g. Valente et al., 2012). Therefore, rather than focusing
on the evolution of syndromes, the investigation of particular
traits, including their evolutionary trends, shifts and correlations,
is probably more fruitful for understanding flower evolution in
most plant lineages (Smith, 2010).

Traits that restrict the access of pollinators to flower rewards
(nectar, pollen) are of exceptional interest because these physical
barriers may have evolved as a specialization to particular polli-
nators. Variations in length and width of flower tubes and nectar
spurs have been the subject of several studies (Herrera, 1990;
Johnson and Steiner, 1997; Alexandersson and Johnson, 2002;
Pérez et al., 2004; Whittall and Hodges, 2007; Tripp and
Manos, 2008). An extreme case of restriction of pollinator
access is the personate corolla of snapdragons (Antirrhinum)
and some relatives of the tribe Antirrhineae and the order
Lamiales (Sutton, 1988; Endress, 1994; Kampny, 1995). These
species display zygomorphic, gamopetalous, bilabiate corollas
in which the lower lip is conspicuously arched upwards, consti-
tuting a palate. This structure closes access to pollen and nectar
rewards, therefore making the mechanical opening of the
corolla necessary for insect pollination. The personate corolla
has long been considered as an adaptation to bee pollination
(mellitophily), as insects other than bees would not be strong
or heavy enough to open it (Hill, 1909; Müller, 1929; Sutton,
1988; Endress, 1992; Vargas et al., 2010).

The relationships between changes in restrictive flower traits
and diversification (speciation minus extinction) rates remain
poorly understood. Nectar spurs have been hypothesized to
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represent a key innovation that promotes species diversification
by providing a mechanism of pre-zygotic reproductive isolation
through differential pollinator visitation (Hodges and Arnold,
1995; Hodges, 1997; but see Hagen and Kadereit, 2003; Cacho
et al., 2010). On the other hand, it has been historically argued
that ecological specialists usually evolve from generalists, and
that specialization constitutes an evolutionary dead end, i.e. a
derived state from which both reversal to a generalist state and
shift to a different specialized state would be unlikely
(Futuyma and Moreno, 1988). There are, however, many exam-
ples that contradict this idea (Gómez and Zamora, 2006). In par-
ticular, such a view has been challenged by phylogeny-based
analyses of flower evolution (Armbruster and Baldwin, 1998;
Tripp and Manos, 2008; Fleming et al., 2009). Simultaneous
estimations of rates of character change and state-dependent spe-
ciation/extinction rates across phylogenetic trees are crucial for a
correct understanding of character evolution (Maddison, 2006;
Goldberg and Igić, 2008). Recently developed methods
(Maddison et al., 2007; FitzJohn et al., 2009; FitzJohn, 2010)
enable such estimations and hold great promise for understand-
ing flower evolution (Smith, 2010), yet they have rarely been
applied in this context (but see Armbruster et al., 2009; Smith
et al., 2010; Valente et al., 2012).

Toadflaxes (Linaria) constitute the most species-rich (�150
species) genus of the snapdragon lineage (tribe Antirrhineae,
Plantaginaceae) (Sutton, 1988). Linaria pollination has historic-
ally attracted the interest of botanists and evolutionary biologists
(Sprengel, 1793; Darwin, 1876). Toadflaxes constitute a natural
group (Vargas et al., 2004; Fernández-Mazuecos et al., 2013)
and displaya remarkably diverse arrayof flower traits whose evo-
lution has not, however, been analysed in a phylogenetic frame-
work to date. Several traits of Linaria flowers are potentially
linked to pollinator specialization: they have a zygomorphic,
bilabiate, usually personate corolla in which a spur of variable
length is formed at the base of the lower lip (Fig. 1). The spur
contains nectar dripping down from a nectary located at the
base of the ovary (Valdés, 1970). The two pairs of anthers are
placed at slightly different heights, with the stigma in the space
between. While most species have well-developed palates that
close access to the corolla throat, in some species belonging to
sections Versicolores, Macrocentrum and Lectoplectron the
palate is poorly developed, and access to the corolla throat is
wide open (e.g. Fig. 1Q). This seems to be usually related to a nar-
rowing of the corolla tube and a broadening of the lower lip
(Viano, 1969; Sutton, 1980). Such morphology has been sug-
gested to be related to pollination by long-tongued lepidopterans
and dipterans (Hill, 1909; Sutton, 1980, 1988), while the typical
personate corolla would be linked to bee pollination (Hill, 1909;
Arnold, 1982; Sánchez-Lafuente, 2007; Carrió et al., 2012).

Here we analysed the evolution of flower morphology in a
clade of Linaria (sect. Versicolores) that displays remarkable
flower diversity. In particular, we used phylogenetic and com-
parative methods to achieve the following objectives: (1) to get
a deeper insight into the phylogenetic relationships within this
lineage; (2) to evaluate intra- and inter-specific morphological
variation of traits limiting pollinator access to nectar reward;
(3) to analyse whether restrictive traits have exerted an effect
on diversification rates; and (4) to reconstruct the evolutionary
history of flower morphology and to investigate its potential
links to pollinators.

MATERIALS AND METHODS

Study group and taxonomic treatment

Linaria sect. Versicolores (bifid toadflaxes) is an assemblage of
�25 species mainly distributed in the western Mediterranean
region (Sutton, 1988) (see examples in Fig. 1). According to
phylogenetic analyses based on both nuclear and plastid DNA
markers (Fernández-Mazuecos and Vargas, 2011; Fernández-
Mazuecos et al., 2013) bifid toadflaxes constitute a monophyletic
group within Linaria, formed by twowell-supported sister groups:
subsect. Elegantes (two species) and subsect. Versicolores (�23
species). All species are diploid (2n ¼ 12) except for the tetraploid
L. hellenica (reviewed by Sutton, 1988). Most species seem to be
allogamous (Bruun, 1937; Valdés, 1970; Docherty, 1982;
M. Fernández-Mazuecos, unpubl. res.). Section Versicolores is
an ideal system for the evolutionary analysis of several flower
traits that restrict the access of pollinators to nectar reward: spur
length, tube width and palate development. Although morpho-
logical affinities among species have not been analysed in detail,
some divergent traits have been described. At least the two
species of subsect. Elegantes (L. elegans and L. nigricans)
display a widely open corolla mouth and a narrow tube (Fig. 1P,
Q), while species of subsect. Versicolores usually exhibit typical
personate (closed) corollas with a wider tube (e.g. Fig. 1A, K).
Some authors, however, have suggested that flowers of certain
species of subsect. Versicolores (L. incarnata, L. bipartita;
Fig. 1B, E) resemble those of subsect. Elegantes regarding their
narrow tubes and broad lower lips (Viano, 1969; Sutton, 1988).
In addition, sect. Versicolores exhibits a wide variation in spur
length, including some of the shortest (L. clementei; Fig. 1C)
and longest (L. elegans; Fig. 1P) spurs in the genus (Sutton,
1988; Sáez and Bernal, 2009). These traits seem to be associated
with contrasting species diversities: only a few species display
narrow tubes, and spurs as short as those of L. clementei seem to
be rare. Nevertheless, inter- and intra-specific morphological vari-
ability has not been quantitatively assessed to date.

The potential effects of alpha taxonomy on diversification rate
analyses have been pointed out by some authors (Marazzi and
Sanderson, 2010; Valente et al., 2010b). Indeed, correct
species delimitation is crucial in obtaining accurate estimates
of speciation and extinction rates. Therefore, we first conducted
a review of the taxonomic literature (Viano, 1978a, b; Sutton,
1988; Dobignard, 1997; Fennane and Ibn Tattou, 1998; De
Leonardis et al., 1999; Tan and Iatrou, 2001; De Leonardis
et al., 2003; Gómiz, 2004; Hamdi et al., 2009; Sáez and
Bernal, 2009) and a survey of herbarium specimens mainly
from two herbaria with a broad representation of Linaria sect.
Versicolores specimens from Iberia (MA) and northern Africa
(RNG) (see Supplementary Data Appendix S1). Although the
first modern synthesis of the group is due to Viano (1978a, b),
we generally adopted the more inclusive taxonomic treatment
of Sutton (1988), except for some modifications detailed in
Supplementary Data Appendix S2. In the end, we accepted 30
taxa (including species and subspecies; Table 1) that are morpho-
logically and geographically cohesive.

Phylogenetic relationships and divergence times

Sampling strategy and DNA sequencing. We sampled a total
of 45 specimens of Linaria sect. Versicolores, including
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representatives of 29 of the 30 recognized species and subspecies
(one or two specimens per taxon; Table 1; Supplementary Data
Table S1). To minimize the impact of recent hybridization, we
selected unambiguously identified individuals, and some with
intermediate traits or uncertain identification were discarded.
We only failed to sample L. dissita, which is a poorly known

northern African taxon (Sutton, 1988; Fennane and Ibn Tattou,
1998). We also sampled nine additional species representing
six other sections of Linaria, one species of Antirrhinum and
one of Chaenorhinum to be used as the outgroup based on previ-
ous phylogenetic evidence (Vargas et al., 2004; Fernández-
Mazuecos et al., 2013). Plant material was collected in the

A B C D
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I J K L M

N O P Q

FI G. 1. Representatives of Linaria sect. Versicolores. Subsect. Versicolores: (A) L. algarviana; (B) L. bipartita; (C) L. clementei; (D) L. gharbensis; (E) L. incarnata;
(F) L. maroccana; (G) L. multicaulis subsp. heterophylla; (H) L. onubensis; (I) L. pedunculata; (J) L. salzmannii; (K) L. spartea; (L) L. tenuis; (M) L. viscosa subsp.
spicata; (N) L. viscosa subsp. viscosa; (O) L. weilleri. Subsect. Elegantes: (P) L. elegans; (Q) L. nigricans. Floral morphological types (see Fig. 4): Type I (broad tube,
variable spur: A, D, F, G, I–O); Type II (broad tube, very short spur: C); Type III (narrow tube, variable spur: B, E, H, P, Q). Photographs by A. Fernández-Mazuecos

(A, E), J. Quiles (B, F, K, N, O), J. Ramı́rez (C, I, J, M), J.L. Blanco-Pastor (D), E. Rico (G), P. Vargas (H, P, Q) and O. Fragman-Sapir (L).
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field and dried in silica gel or obtained from herbarium collec-
tions (RNG, MA, ATH, UPOS; Supplementary Data Table S1).

For phylogenetic analyses, we selected one nuclear (ITS) and
three plastid (rpl32-trnLUAG, trnK-matK and trnS-trnG) DNA
regions employed in our previous phylogenetic and phylogeo-
graphic analyses of the genus Linaria (Fernández-Mazuecos and
Vargas, 2011; Blanco-Pastor et al., 2012, 2013; Fernández-
Mazuecos et al., 2013; Fernández-Mazuecos and Vargas, 2013).
One hundred and eighty-one sequences were taken from our

previous studies, while the remaining 43 were newly generated.
Procedures used for DNA extraction, amplification and sequen-
cing of DNA regions followed Fernández-Mazuecos and Vargas
(2011) and Fernández-Mazuecos et al. (2013). Sequences of
each DNA region were separately aligned using MAFFT 6
(Katoh et al., 2002) with default parameters, and further adjust-
ments were made by visual inspection. The three ptDNA
regions were concatenated in a single matrix after congruence
was confirmed in preliminary phylogenetic analyses. All new

TABLE 1. Taxonomic treatment followed in this paper, taxon distributions, individuals sampled for phylogenetic
and morphometric analyses and flower morphological types

Taxon Distribution

No. individuals sampled
for phylogenetic

analyses

No. individuals sampled
for spur and tube

measures

No. individuals sampled for
geometric morphometric

analysis
Morphological

type

Linaria Mill.
Linaria sect. Versicolores (Benth.) Wettst.
Subsect. Versicolores
L. algarviana Chav. SW Portugal (Algarve) 1 7 24 I
L. bipartita (Vent.) Willd. W Morocco 2 46 — III
L. bordiana Santa & Simonneau
subsp. bordiana Algeria 1 8 — III
subsp. kralikiana (Maire)
D. A. Sutton

NW Algeria 2 4 — I

L. clementei Haens. S Spain (Málaga) 2 22 21 II
L. dissita Pomel NW Africa — 6 — I
L. gattefossei Maire &
Weiller

C Morocco 1 6 — I

L. gharbensis Batt. & Pit. NW Africa, SW Spain 2 29 23 I
L. hellenica Turrill S Greece 1 2 — I
L. imzica Gómiz S Morocco (Anti Atlas) 1 9 — I
L. incarnata (Vent.)
Spreng.

W Iberian Peninsula 2 36 48 III

L. mamorensis Mazuecos,
Vigalondo & L. Sáez

NW Morocco 2 34 — III

L. maroccana Hook.f. Morocco (mainly High
Atlas)

2 31 — I

L. multicaulis (L.) Mill.
subsp. multicaulis Sicily, S Italy

(Calabria)
1 4 — I

subsp. aurasiaca (Pomel)
D.A.Sutton

Tunisia, NE Algeria 1 3 — I

subsp. galioides (Ball)
D. A. Sutton

Morocco (High Atlas) 2 31 — I

subsp. heterophylla (Desf.)
D. A. Sutton

NW Africa 2 46 — I

L. onubensis Pau SW Spain (Huelva) 2 15 45 III
L. pedunculata (L.) Chaz. S Iberian Peninsula,

NW Africa, Balearic
Islands

2 39 27 I

L. pinifolia (Poir.) Thell. Tunisia, Algeria 1 5 — I
L. pseudoviscosa Murb. Tunisia 1 7 — I
L. salzmannii Boiss. S Spain (Málaga) 1 5 20 I
L. spartea (L.) Chaz. Iberian Peninsula, S

France
2 87 25 I

L. tenuis (Viv.) Spreng. N Africa, Middle East 2 3 — I
L. tingitana Boiss. &
Reuter

NW Africa 1 12 — I

L. viscosa (L.) Chaz.
subsp. viscosa S Iberian Peninsula 2 60 45 I
subsp. spicata (Kunze)
D. A. Sutton

SE Iberian Peninsula 1 45 24 I

L. weilleri Emb. & Maire S Morocco (Anti Atlas) 1 4 — I
Subsect. Elegantes (Viano) D. A. Sutton
L. elegans Cav. NW Iberian Peninsula 2 58 24 III
L. nigricans Lange SE Spain (Almerı́a) 2 32 43 III

Fernández-Mazuecos et al. — Corolla morphology and diversification rates in toadflaxes1708

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct214/-/DC1


sequences have been deposited in the GenBank database (see
Supplementary Data Table S1 for accession numbers).

Gene tree estimation and dating. Separate phylogenetic ana-
lyses were conducted on the ITS and ptDNA matrices using
three methods: Bayesian inference (BI; implemented in
MrBayes v3.1.2; Ronquist and Huelsenbeck, 2003); maximum
likelihood (ML; implemented in RaxML; Stamatakis, 2006);
and maximum parsimony (MP; implemented in TNT 1.1;
Goloboff et al., 2003) (see Supplementary Data Appendix S2
for details). Based on previous phylogenetic evidence (Vargas
et al., 2004), Chaenorhinum was used as the outgroup sequence
in all analyses.

In order to obtain time-calibrated gene trees, separate ITS and
ptDNA matrices including a single individual per species were
analysed through the relaxed molecular clock approach imple-
mented in BEAST 1.6.2 (Drummond et al., 2006; Drummond
and Rambaut, 2007). Following previous dating analyses of
Linaria sect. Versicolores (Fernández-Mazuecos and Vargas,
2011, 2013), the root node (divergence between Chaenorhinum
and Linaria) was calibrated using a normal distribution with
mean 23 million years ago (Ma) and standard deviation 4
million years (Myr). This was based on a dating analysis of
ndhF sequences of the tribe Antirrhineae (P. Vargas et al., in
prep.), which in turn incorporates a calibration of 74 Ma for the di-
vergence time between Oleaceae and Antirrhineae (Bell et al.,
2010), and minimum stem-age constraints for Lamiales families
and tribes based on five fossils (see Fernández-Mazuecos and
Vargas, 2011 for details). Models of nucleotide substitution
were selected for each DNA region under the Akaike information
criterion (AIC) in jModelTest 0.1 (Posada, 2008). A birth–death
process (Gernhard, 2008) was employed as tree prior. The substi-
tution rate variation was modelled using an uncorrelated log-
normal distribution. Based on previous estimates for herbaceous
plants, uniform prior distributions were set for the substitution
rates, with a range of 5 × 1024 to 5 × 1022 substitutions per
site per Myr for ITS and 1 × 1024 to 1 × 1022 substitutions per
site per Myr for ptDNA (see Blanco-Pastor et al., 2012 for
details). For each dataset, four Markov chain Monte Carlo
(MCMC) analyses with 10 million generations each and a
sample frequency of 1000 were run through the CIPRES
Science Gateway (Miller et al., 2010). Parameter analysis in
Tracer 1.5 (Rambaut and Drummond, 2007) showed adequate
chain length, with effective sample sizes above 1000. Chains
were combined using LogCombiner 1.6.2 after discarding the
first 10 % of sampled generations as burn-in. Trees were summar-
ized in a maximum clade credibility (MCC) tree obtained in
TreeAnotator 1.6.2 and visualized in FigTree 1.3.1.

Significant incongruence between loci prevented us from con-
catenating the ITS and ptDNA sequences for total-evidence
phylogenetic and dating analyses (Kubatko and Degnan, 2007;
Edwards, 2009). Instead, we implemented a species tree estima-
tion analysis (see below).

Species tree estimation. Phylogenetic incongruence between
loci is frequently found in plants, particularly in Linaria, due to in-
complete lineage sorting and hybridization, among other causes
(Blanco-Pastor et al., 2012). While no standard method is current-
ly available for the inference of phylogenetic relationships in the
presence of these two processes, a number of coalescent-based
methods have been recently proposed for the inference of
species trees that account for incongruence between gene trees

caused by incomplete lineage sorting (Liu, 2008; Heled and
Drummond, 2010). Here we employed the ITS and ptDNA data-
sets including one or two individuals per taxon to estimate a
species phylogeny of Linaria sect. Versicolores under the multi-
species coalescent method *BEAST (Heled and Drummond,
2010), implemented in BEAST 1.6.2.

Haplotypic data are needed for coalescent-based analyses,
which posed a challenge in the case of the multi-copy ITS
region. Cloning of ITS copies was not considered due to the
low quality of DNA extracts and PCR products obtained from
herbarium material. Instead, in order to reconstruct haplotypes
from the unphased ITS sequences, we employed the Bayesian
statistical method PHASE 2.1 (Stephens et al., 2001; Stephens
and Donnelly, 2003), as implemented in DnaSP v5 (Librado
and Rozas, 2009), with default parameters (recombination
model MR0, 100 iterations, 100 burn-in iterations, thinning
interval 1). A Bayesian phylogenetic analysis of the inferred hap-
lotypes was conducted in MrBayes. Given that close (or unre-
solved) relationships between haplotypes of the same
individual were recovered in all cases (Supplementary Data
Fig. S1), the error introduced by potentially incorrect haplotype
inference was considered negligible. Therefore, all ITS haplo-
types inferred by PHASE were included in subsequent analyses
following Blanco-Pastor et al. (2012).

Both datasets (ITS and ptDNA) were included as independent
loci in the *BEAST analysis. The tree model and substitution
model priors were set as indicated above for dating analyses.
Based on results of separate dating analyses of ITS and ptDNA
sequences (see above), the crown age of sect. Versicolores was
calibrated using a normal prior with mean 6.07 Ma and standard
deviation 1.85 Myr. Twenty MCMC analyses were run for 100
million generations each, with a sample frequency of 10 000.
Analysis with Tracer 1.5 confirmed convergence and adequate
sample sizes, with effective sample sizes above 250. Runs were
combined using LogCombiner 1.6.2, after discarding the first 10
% of sampled generations as burn-in. Trees were summarized in
an MCC tree obtained in TreeAnotator 1.6.2 and visualized in
FigTree 1.3.1. In order to visualize the temporal dynamics of
Linaria sect. Versicolores diversification, lineage-through-time
(LTT) plots were generated in the R package ape (Paradis et al.,
2004) for the MCC species tree and a random sample of 1000
trees from the posterior distribution of the *BEAST analysis.

Analysis of corolla shape

Metric measures. In the personate corolla of Linaria, the main
reward for pollinators (nectar) is located at the end of an abaxial
spur of variable length (Fig. 1). Three main traits determine
nectar accessibility to pollinators: spur length, tube width and
palate development. Of these, spur length and tube width can
be readily measured in herbarium specimens. In order to charac-
terize the inter- and intra-specific variability of these traits in
bifid toadflaxes, the two variables were scored for 696 herbarium
specimens representing the 30 recognized species and subspe-
cies of Linaria sect. Versicolores (Supplementary Data
Appendix S1). Most specimens were provided by the MA,
RNG and ATH herbaria. In addition, specimens from the
MPU, RAB, FI, K, BM, LD and S herbaria were electronically
surveyed through JSTOR Plant Science (Gallagher, 2010). A
single, fully developed flower per specimen was measured.
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Spur length was measured from the corolla–calyx insertion to
the spur tip (Fig. 2A, C). Tube width was measured at the
opening level (Fig. 2B, D). In addition, the same variables
were measured for 377 living specimens collected from 18
Iberian populations of 12 representative species and subspecies
sampled for geometric morphometric analyses (see below). All
measurements were obtained from scaled digital photographs
using ImageJ 1.44p (Abràmoff et al., 2004).

Geometric morphometrics. Geometric morphometrics pro-
vides a powerful tool to assess intra- and inter-specific variation
in flower morphology (Shipunov and Bateman, 2005; Gómez
et al., 2006; Abdelaziz et al., 2011). We used a landmark-based
geometric morphometric analysis to describe corolla shape, in-
cluding palate development, in 18 populations belonging to 12
species and subspecies of Linaria sect. Versicolores from the
Iberian Peninsula (Supplementary Data Table S2). These
species were considered to represent the full range of corolla
shapes of sect. Versicolores based on our metric measures of
herbarium specimens of all 30 species and subspecies (see
Results). A total of 369 living specimens (7–25 per population;
Supplementary Data Table S2) were sampled, and digital photo-
graphs were taken of one completely developed flower per individ-
ual in lateral viewand planar position. Nine landmarks (Fig. 2A, C)
were defined at points of evident homology across species
(Zelditch et al., 2004). In addition, one pseudolandmark was
defined at the mid-point of the spur. Landmarks were captured
using tpsDig 2.16 (Rohlf, 2010). The two-dimensional coordinates
of the landmarks were determined for each individual, and the gen-
eralized orthogonal least-squares Procrustes average configuration

of landmarks was calculated using the generalized Procrustes ana-
lysis (GPA) superimposition method (Rohlf and Slice, 1990; Slice,
2001). Corolla shape differences among species were assessed
using a canonical variate analysis, a multivariate analysis that opti-
mizes between-groupdifferences relative towithin-groupvariation
(Albrecht, 1980; Klingenberg and Monteiro, 2005). It generates
several canonical variate axes and computes between-group
Procrustes distances in the canonical variate space. The analysis
was performed with the software MorphoJ (Klingenberg, 2011).
Values of canonical variates 1 and 2 for all individuals were
plotted. The statistical significance of the between-groups
Procrustes distances was determined by randomization tests
using 10 000 permutations.

Evolution of flower morphology

Effect of flower morphology on diversification rate.
Morphometric analyses allowed the identification of three major
floral morphological types (see Results). We estimated the effect
offlower morphologyon Linaria sect. Versicolores diversification
using the binary-state speciation and extinction (BiSSE) model
(Maddison et al., 2007; FitzJohn et al., 2009) implemented in
the R package diversitree v.0.7–2 (FitzJohn, 2012). We defined
two character states: (0) wide-tubed flower (Types I and II, see
below); and (1) narrow-tubed flower (Type III) (Table 1). The
fact that Type II was found in a single species (L. clementei) pre-
vented us from using the multiple state speciation and extinction
(MuSSE) method, which is an extension of BiSSE for more than
two character states (FitzJohn, 2012). Instead, Type II was
grouped with Type I based on their morphometric similarity
(see below). All recognized taxa (species and subspecies) were
included as independent entities in this analysis, based on the
fact that subspecies belonging to the same species were usually
not closely related in phylogenetic analyses (see below). The
MCC species tree from the *BEAST analysis [with nodes with
posterior probability (PP) ,0.5 collapsed] and 10 additional
species trees randomly chosen from the Bayesian posterior distri-
bution were analysed. For each tree, we compared a model with
state-dependent speciation and extinction and asymmetrical tran-
sition rates against nested models with speciation, extinction and
transition rate parameters constrained to be equal for both states.
We calculated ML parameter values of the unconstrained model
(full BiSSE model, six parameters) versus the constrained
models (five parameters), and the significance of model differ-
ences was assessed by performing likelihood ratio tests.
Parameter values of the full BiSSE model were additionally
explored for the MCC tree and the ten additional trees in a
two-step process using ML values as a prior for an MCMC sam-
pling of parameters, a Bayesian approach (MCMC-BiSSE) that
provides a measure of parameter uncertainty (FitzJohn et al.,
2009). The trees were analysed with 10 000 steps per tree
(chain) and a prior for each parameter exponentially distributed
(prioritizing small rates of change, in the absence of evidence to
the contrary). After discarding the first 2000 steps of each chain
as burn-in, parameter values for each tree were summarized and
plotted.

Reconstruction of flower morphology shifts. Ancestral state
reconstruction (ASR) of the two morphological types analysed
in BiSSE was performed in diversitree using ML under the
BiSSE model (ASR-BiSSE), thus accounting for differential
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speciation, extinction and character transition rates in character
optimization (Goldberg and Igić, 2008). To account for phylo-
genetic uncertainty, analyses were conducted separately for the
MCC species tree and the same ten additional trees for which par-
ameter values were estimated using MCMC-BiSSE. A higher
number of trees was not analysed due to the high computational
demands of this method. Given that the sister group to sect.
Versicolores is currently unknown (Fernández-Mazuecos
et al., 2013), outgroup taxa, potentially biasing ASRs, were
pruned from the analysed trees. Parameter distributions obtained
in MCMC-BiSSE analyses were used to account for parameter
uncertainty.

For comparison with the ASR-BiSSE approach described
above, and to fully account for phylogenetic uncertainty, ASR
was also performed using parsimony in Mesquite 2.75
(Maddison and Maddison, 2011). In this case, the three morpho-
logical types were included, thus treating Type II as a separate
state. Reconstructions were conducted on the full set of species
trees of the *BEAST posterior distribution using the ‘trace char-
acter over trees’ option. Additionally, the ‘summarize state
changes over trees’ option was used to summarize the number
of changes between character states across the Bayesian posterior
distribution of trees.

Models of spur length and tube width evolution. We tested for
the existence of one or more evolutionary optima for spur length
and tube width using the ML method implemented in the R
package ouch (Butler and King, 2004; King and Butler, 2009).
Two models based on an Ornstein–Uhlenbeck process (Hansen,
1997) with one and two optima respectively were tested against
a null Brownian motion model. Morphological Types I/II and III
were defined as hypothetical selective regimes, and ancestral
states were included based on the ASR-BiSSE reconstruction.
Model comparisons were performed using AIC values. Analyses
were conducted for the MCC species tree and the ten randomly
sampled trees.

Pollinator observations

We performed flower visitor surveys in populations of the 12
Iberian species and subspecies of Linaria sect. Versicolores,
which represent the full range of corolla shapes of the group.
A total of 4618 min of observations (267–941 min per taxon)
were performed in 2009, 2010, and 2011 in 14 populations that
were also included in geometric morphometric and phylogenetic
analyses. Visits were considered legitimate when the visitor

touched the anthers and stigma. The placement of pollen on
the insect body (thorax or proboscis) was recorded.

RESULTS

Phylogenetic relationships and divergence times

The ITS and ptDNA datasets had total aligned lengths of 610 and
2679 bp respectively (see characteristics of the four DNA
regions in Table 2). Overall, the BI, ML and MP analyses
yielded congruent topologies, except for some weakly supported
clades. The separate phylogenetic analyses of nuclear ITS
(Fig. 3A) and ptDNA (Fig. 3B) sequences consistently retrieved
sect. Versicolores as a monophyletic group with strong statistical
support [PP ¼ 1; bootstrap support (BS) . 90 % in ML and MP
analyses] and subsections Elegantes and Versicolores also as
monophyletic (PP ¼ 1; BS . 95 %) and sister to each other.
However, topological incongruence between both datasets was
extensive within subsect. Versicolores. In general, higher clade
support values were obtained in ptDNA analyses.

Separate dating analyses of the two loci (Supplementary Data
Fig. S2) consistently recovered a crown age for sect.
Versicolores around 6 Ma. This age was then used to calibrate
the species tree analysis. The time-calibrated species tree obtained
in *BEAST (Fig. 3C) strongly supported major clades of Linaria
sect. Versicolores, but displayed lower resolution at shallow
phylogenetic levels. Divergence between subsections Elegantes
(PP ¼ 1) and Versicolores (PP ¼ 1) was dated back to the late
Miocene or Pliocene. Two strongly supported sister clades were
recognized within subsect. Versicolores (Fig. 3C): the ‘Iberian
clade’ (PP ¼ 1) included all species that are endemic or suben-
demic to the Iberian Peninsula, while the ‘northern African
clade’ (PP ¼ 1) included all northern African endemics, plus the
Ibero-North African L. pedunculata and L. gharbensis, the south-
ern Italian L. multicaulis subsp. multicaulis and the Greek
L. hellenica. A Quaternary diversification of subsect. Versicolores
was estimated, with the Iberian and northern African clades di-
verging 0.69–2.24 Ma and both clades diversifying in the last
million years. The LTT plots (Fig. 3C) clearly depicted diversi-
fication of Linaria sect. Versicolores since the late Miocene–
Pliocene, and primarily during the Quaternary.

Analysis of corolla shape

Measures of spur length and tube width from herbarium speci-
mens of the 30 recognized species and subspecies of sect.

TABLE 2. Characteristics of the four DNA regions sequenced for 45 individuals of Linaria sect. Versicolores and 11 outgroup taxa, and
employed in phylogenetic analyses

Nuclear DNA, ITS (ITS1-5.8S-ITS2)

Plastid DNA

rpl32-trnLUAG trnK-matK trnS-trnG

Aligned length (bp) 610 830 1230 619
Ungapped length range (bp) 577–597 582–768 1206–1221 466–590
Pairwise identity (%) 90.7 94.0 98.2 92.7
Variable characters 199 211 186 139
Parsimony-informative characters 134 106 82 59
Mean G + C content (%) 56.1 23.6 32.3 27.4
Substitution model GTR + G GTR GTR + G HKI + I + G
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Versicolores (Fig. 4A; Supplementary Data Table S3) revealed
three major morphological types. Type I was the most frequent
(22 species and subspecies) and was characterized by a broad
tube (.2 mm) and wide variation in spur length (4–18 mm).
Type II was only found in L. clementei, and displayed a broad
tube (4–7 mm) and a very short spur (1–4.5 mm). Type III,
found in seven taxa, had a narrow tube (1–3 mm) and variable
spur length (5–19 mm). The same three groups were consistently
recovered when measuring living specimens of the 12 taxa
present in the Iberian Peninsula (Supplementary Data Fig. S3).

The canonical variate analysis of landmark-based geometric
morphometric data of these 12 Iberian taxa (Fig. 4B) recovered
the same three morphological types. The first two canonical vari-
ates explained 83.6 % of the variance, and all between-taxa
Procrustes distances were statistically significant (P , 0.001)
based on randomization tests. Variation along canonical variate
1 was related to palate development, since it affected the relative
position and shape of the upper and lower lips (Fig. 4B;
Supplementary Data Fig. S4A). Variation along canonical
variate 2 was related to the shape of the spur and the relative
sizes and positions of the upper and lower lips (Fig. 4B;
Supplementary Data Fig. S4B). Taxa of Types I and II displayed
well-developed palates, while Type III had broader and expanded
lower lips. Type II (L. clementei) was clearly related to Type I,
from which it was mainly differentiated by its short spur.

Evolution of flower morphology

Aneffectofflowermorphologyondiversification rateswassup-
ported by the likelihood ratio tests of BiSSE models (Table 3). In
particular, we detected a significant effect on speciation rates, as
the ‘symmetric speciation’ model was rejected for the MCC
species tree and nine out of ten randomly chosen trees. Bayesian
estimation of BiSSE parameters revealed significantly higher spe-
ciation rates for morphological Type I/II than for Type III, as
shown by the non-overlapping 95 % credibility intervals obtained
when analysing the MCC species tree (Fig. 5A) and the ten ran-
domly chosen trees (Supplementary Data Fig. S5). No effect on
extinction rates was detected (see the widely overlapping 95 %
credibility intervals in Fig. 5A and Supplementary Data Fig.
S5). Diversification (speciation minus extinction) rates were
higher for Type I/II, although with certain overlap of the 95 %
credibility intervals for three out of ten trees. No significant differ-
ence between transition rates was found.

Ancestral state reconstruction under state-dependent diversifi-
cation (ASR-BiSSE) using the MCC species tree (Fig. 5B) recov-
ered morphological Type III as ancestral to sect. Versicolores and
subsect. Elegantes. Type I/II was inferred as ancestral to subsect.
Versicolores, which implied an old shift from Type III to Type I/II.
Four to five shifts from Type I/II to Type III were inferred within
subsect. Versicolores, in both the Iberian and the northern African

clade. Similar results were obtained when conducting ASR-
BiSSE analysis on ten randomly chosen trees, although with vari-
able ancestral state probabilities (Supplementary Data Fig. S6).
Parsimony-based reconstructions yielded congruent results, al-
though with equivocal reconstruction at the root node
(Supplementary Data Fig. S7). Accordingly, zero to two shifts
from Type III to Type I were estimated when accounting for topo-
logical uncertainty (Fig. 5C). Four tosix shifts from Type I toType
III were estimated, and one shift from Type I to Type II was un-
equivocally reconstructed. No shifts were obtained from Type II
to Types I and III, and from Type III to Type II (Fig. 5C).

Different models of trait evolution were supported for spur
length and tube width in relation to the two main morphological
types (Table 4). When analysing the MCC species tree, the
Ornstein–Uhlenbeck model with one optimum at 8.98 mm
was supported for spur length, while the Ornstein–Uhlenbeck
model with two optima at 4.67 (Type I/II) and 1.86 mm (Type
III) was preferred for tube width. Similar results were obtained
for the ten additionally analysed trees (Table 4).

Pollinator observations

Observations of flower visitors in the 12 Iberian species and
subspecies of Linaria sect. Versicolores (Table 5; Fig. 6) sug-
gested that flowers of Types I and II are mainly pollinated by
bees (Hymenoptera) carrying pollen on the back of the thorax
(Fig. 6A), although sporadic visits by nectar-feeding butterflies
(Lepidoptera; Fig. 6B) and bee flies (Bombyliidae, Diptera) carry-
ing pollen on the proboscis were also recorded for three taxa:
L. spartea, L. viscosa subsp. viscosa (Type I) and L. clementei
(Type II). For the four Type III species, a wide variety of flower
visitors were observed, most of them displaying a long proboscis:
hawk moths (Sphingidae, Lepidoptera), Anthophora-like
bees (Anthophorini, Apidae, Hymenoptera) and bee flies
(Bombyliidae, Diptera). All of them carried pollen on the
proboscis (Fig. 6C).

DISCUSSION

This study provides key insights into the evolution and diversifica-
tion of bifid toadflaxes, with important consequences for under-
standing the relationship between floral specialization and
species diversification. Species with narrow-tubed flowers were
found to have evolved recurrently from broad-tubed ancestors,
suggesting that similar selective pressures have driven flower evo-
lution in independent lineages. However, the increasing pollinator
specialization associated with narrower corolla tubes appears to
have prevented narrow-tubed lineages from further diversifica-
tion. Therefore, our results supporta significant effect of floral spe-
cialization on the evolutionarysuccess of flowering plant lineages.

FI G. 3. Phylogenetic analyses of Linaria sect. Versicolores. (A, B) Gene trees of ITS (A) and ptDNA (B) sequences. The 50 % majority rule consensus trees obtained
in Bayesian analyses are shown. A black dot indicates clade support in BI (PP . 0.95), ML (ML – BS . 70 %) and MP (MP – BS . 70 %) analyses. A grey dot indi-
cates support only in BI and ML analyses. A white dot indicates support only in the BI analysis. A white square indicates support only in the ML analysis. (C)
Time-calibrated maximum clade credibility species tree obtained in the Bayesian *BEAST analysis based on ITS and ptDNA sequences. Node bars represent the
95 % highest posterior density intervals for the divergence time estimates. Numbers along the branches are Bayesian posterior probabilities. Major clades are
named, including subsections following Sutton (1988). The inset shows a log-lineage-through-time plot for Linaria sect. Versicolores, based on 1000 trees randomly

sampled from the posterior distribution of the *BEAST analysis. The thick line corresponds to the MCC species tree.
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FI G. 4. Morphological traits of Linaria sect. Versicolores flowers. (A) Scatter plot of tubewidthversus spur length measured in 696 herbariumspecimens representing
the 30 species and subspecies of Linaria sect. Versicolores. Means (numbered dots) and standard deviations (bars) for each taxon are plotted. Notice the broad tubes of
Types I and II, and the narrow tubes of Type III. (B) Canonical variate analysis of the landmark-based geometric morphometric dataset. Scatter plot of canonical variate
2 versus canonical variate 1 for 369 living specimens sampled in 18 populations belonging to the 12 Iberian species and subspecies (colours), which represent the full
range of corolla shapes of Linaria sect. Versicolores. The variance explained by each axis is shown in brackets. In both plots, the three major morphological types

discussed in the text are indicated, and representative taxa are shown.
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Recent diversification of bifid toadflaxes

Our phylogenetic analyses based on nuclear and plastid
sequences confirmed the monophyly of Linaria sect. Versicolores
(Fernández-Mazuecos and Vargas, 2011; Fernández-Mazuecos
etal., 2013).Datingresults indicate thatdiversificationofbifid toad-
flaxes began in the late Miocene or Pliocene. Most inferred clado-
genetic events occurred since the onset of the Mediterranean
climate (�3.2 Ma; Suc, 1984) and particularly during the
Quaternary (i.e. the last 2.6 Ma), as previously suggested based
on plastid markers alone (Fernández-Mazuecos and Vargas,
2011; Fiz-Palacios and Valcárcel, 2013). While our species tree
analysis provided strong support for several clades within sect.
Versicolores (particularly the two subsections; Fig. 3C), fine-scale
relationships between species were mostly unresolved or poorly
supported. Low phylogenetic resolution is a common feature of
recent radiations (e.g. Hughes and Eastwood, 2006; Scherson
et al., 2008; Valente et al., 2010a). It is well known that rapid diver-
sification brings about processes, such as hybridization and incom-
plete lineage sorting, that cause incongruence between gene trees
and therefore may obscure phylogenetic relationships (Degnan
and Rosenberg, 2009). This has recently been demonstrated for a
different clade of toadflaxes, Linaria sect. Supinae (Blanco-
Pastor et al., 2012). Methods based on the multi-species coalescent
(such as the one implemented in *BEAST), rather than concate-
nated analyses, currently constitute the best approach for the infer-
ence of species phylogenies in the presence of incongruent gene
trees, because they account for incomplete lineage sorting
(Edwards, 2009; Leaché and Rannala, 2011). We cannot rule out
hybridization as a source of incongruence between gene trees
(Fig. 3A, B). However, all phylogenetic comparative methods cur-
rently available are tree-based (Nunn, 2011). Incorporation of hy-
bridization will strengthen phylogenetic inference (Yu et al.,
2011, 2012), and the development of comparative methods able
to deal with reticulate phylogenies will probably lead to the recon-
struction of more realistic evolutionary scenarios in the future. At
present, however, the assumption of a tree-like phylogeny must
be made in order to test evolutionary hypotheses using available
tools. To account for uncertainty about phylogenetic relationships
at shallow levels (part of which might be due to hybridization),
we performed all comparative analyses on the consensus species
tree and a random sample of ten species trees from the posterior dis-
tribution of the *BEAST analysis. Congruence of results across
such sample was interpreted as evidence for a strong evolutionary

signal in spite of phylogenetic uncertainty (Huelsenbeck et al.,
2000).

Convergence in the evolution of flower shape

Different biotic interactions affecting Linaria flowers have
been studied previously, including floral herbivory, nectar
robbery and insect pollination (Arnold, 1982; Stout et al.,
2000; Newman and Thomson, 2005a, b; Sánchez-Lafuente,
2007). The last is likely the most relevant factoraffecting the evo-
lution of morphological traits studied here (Sánchez-Lafuente,
2007). Our phylogenetic comparative analyses suggest that the
evolution of flower morphology in bifid toadflaxes has been
dominated by shifts between two morphological types mainly
differentiated by the width of the tube and the development of
the palate (Figs 4 and 5). It is suggested (Table 5; Fig. 6) that
these two types constitute divergent strategies of pollen place-
ment on nectar-feeding insects (Armbruster et al., 1994; Grant,
1994; Kay, 2006; Yang et al., 2007). These two strategies of
Linaria pollination (Fig. 6) were first identified by Robertson
(1888) and Hill (1909). One strategy corresponds to the typically
nototribic pollination of broad-tubed species (Type I/II), in
which pollen is deposited on the back of the thorax (scutum) of
the nectar-feeding insect (Fig. 6A). This is the strategy found
in most Linaria species of other sections, and has been demon-
strated to result in effective pollination (Macior, 1967; Arnold,
1982; Stout et al., 2000; Newman and Thomson, 2005a;
Sánchez-Lafuente, 2007; Sánchez-Lafuente et al., 2011). In
sect. Versicolores, the placement of the first optimum inferred
by the two-peak Ornstein–Uhlenbeck model (�4.67 mm;
Table 4) suggests an adaptive adjustment to the thorax width of
frequent pollinators. Indeed, closely related species pollinated
by similar insects should be similarly selected for the floral
phenotype that most efficiently uses these pollinators (Kay and
Sargent, 2009). In our case, an adjustment of flower tube size
to pollinator size probably maximizes pollen transfer in per-
sonate, wide-tubed corollas (but see Vargas et al. (2010) for
Antirrhinum). The other strategy is displayed by narrow-tubed
species (Type III), in which nectar-feeding insects usually
carry pollen on the proboscis (Fig. 6C). In this situation, pollen
transfer is maximized by narrowing the tube, so that contact of
the proboscis with the anthers and the stigma is guaranteed
when the insect reaches for nectar contained in the spur
(Robertson, 1888; Kampny, 1995). This would lead to the

TABLE 3. Maximum likelihood estimates of BiSSE parameters and likelihood ratio tests of alternative models based on the maximum
clade credibility tree of the *BEAST analysis

df lI/II lIII mI/II mIII qI/II�III qIII�I/II lnL AIC x2
P

value
No. trees with

P , 0.05

Unconstrained model 6 3.75 2.83 × 1026 3.02 2.33 1.03 7.51 × 1026 223.05 58.10 — — —
Symmetric speciation (lI/II ¼ lIII) 5 2.97 2.97 1.17 6.45 2.05 5.25 × 1028 225.54 61.08 4.97 0.03* 9/10
Symmetric extinction (mI/II ¼ mIII) 5 3.53 1.93 × 1029 2.61 2.61 1.19 1.55 × 1027 223.09 56.19 0.09 0.77 ns 0/10
Symmetric transition rate
(qI/II�III ¼ qIII�I/II)

5 4.20 4.45 × 1029 3.87 1.77 0.88 0.88 223.88 57.75 1.65 0.20 ns 0/10

The last column shows the number of trees (out of a random sample of ten trees from the posterior distribution of the *BEAST analysis) where each model was
significantly worse (P , 0.05) than the unconstrained model according to a likelihood ratio test. Abbreviations and symbols: df, degrees of freedom; l, speciation
rates; m, extinction rates; q, character transition rates; lnL, log likelihood; AIC, Akaike information criterion.

*0.01 , P , 0.05; ns, not significant.
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second optimum of tube width (�1.86 mm; Table 4), which is
large enough to fit the anthers (�0.5 mm) but narrow enough
to guarantee pollen transfer by long-proboscis visitors. Similar
strategies of pollen placement on pollinators are frequently
found in angiosperm lineages with spurred flowers, particularly
those pollinated by long-proboscis insects (Herrera, 1993;
Johnson and Steiner, 1997; Schiestl and Schlüter, 2009). In
Linaria, the narrow-tubed strategy has been previously related
to pollination by butterflies (Robertson, 1888; Hill, 1909) and
moths (Sutton, 1988; Kampny, 1995). Our observations partially
support these predictions (see L. elegans and L. incarnata in
Table 5). Additionally, we have found the narrow-tube morph-
ology to be also suited to other long-proboscis pollinators,
such as long-tongued bees (mainly from tribe Anthophorini)
and bee flies (Bombyliidae) (Table 5; see Supplementary Data
Appendix S2 for further discussion on flower visitors).

Several independent origins of similarly configured narrow-
tubed flowers have been inferred by ancestral state reconstruc-
tions (Fig. 5B, C and Supplementary Data Figs S6 and S7).
Therefore, this is definitely a case of phenotypic homoplasy,
i.e. convergence sensu Scotland (2011). In addition, reversal to
an ancestral state (which can be regarded as a special case of con-
vergence; Scotland, 2011) is suggested by the ancestral narrow-
tubed flower inferred by the ASR-BiSSE analysis, together with
its loss and subsequent repeated reappearance in subsect.
Versicolores (Fig. 5B) (Hall, 2003; Porter and Crandall, 2003).
The convergent evolution of narrow-tubed phenotypes in
several different lineages of bifid toadflaxes may have involved
similar genetic and developmental mechanisms (Hall, 2012),
in which case it would be interpreted as an instance of parallel
evolution sensu Scotland (2011) (note that the definitions of con-
vergence and parallelism are controversial; see also Hall, 2003;
Arendt and Reznick, 2008; Wake et al., 2011; Hall, 2012).
Homoplasy of morphological traits can result from common
adaptive responses to similar selection pressures, coupled with
genetic and developmental constraints (Wake, 1991;
Brakefield, 2006; Wake et al., 2011). While no information
about the latter is yet available for the study group, pollinator
observations suggest an adaptive meaning of the two morpho-
logical types, as they correspond to different strategies of
pollen placement on pollinators. Indeed, the recurrent shifts

TABLE 5. Potential pollinators of Iberian species of Linaria sect.
Versicolores, recorded after 4618 min of observations in 2009,

2010 and 2011

Taxon Pollinators

Subsect. Versicolores
L. algarviana (I) Hymenoptera: Ceratina saundersi (S) +

Coleoptera: Attagenus sp. (S)
L. clementei (II) Hymenoptera: Amegilla quadrifasciata (T),

Rhodanthidium sticticum (T), Bombus ruderatus (T),
Xylocopa sp. (T), Heliophila bimaculata (T) 2,
Ceratina mocsaryi (S) –
Diptera: Dischistus separatus (P)
Lepidoptera (P)

L. gharbensis (I) Hymenoptera: Anthophora plumipes (T) +
L. incarnata (III) Diptera: Systoechus gradatus (P), Amictus variegatus (P)

Lepidoptera: Thymelicus spp. (P)
Hymenoptera: Lasioglossum sp. (S), Ceratina sp. (S) 2

L. onubensis (III) Hymenoptera: Eucera nigrilabris (P) +
L. pedunculata (I) Not seen (autogamous species)
L. salzmannii (I) Hymenoptera: Heliophila bimaculata (T) +,

Rhodanthidium sticticum (T), Lasioglossum sp. (S),
Hoplitis sp. (S) 2

L. spartea (I) Hymenoptera: Apis mellifera (T), Heliophila
bimaculata (T), Ceratina cucurbitina (S) 2,
Lasioglossum sp. (S) 2

Lepidoptera: Euchloe crameri (P) 2

L. viscosa subsp.
viscosa (I)

Hymenoptera: Apis mellifera (T) +, Hoplitis sp. (T),
Xylocopa uclesiensis (T) 2, Heliophila bimaculata
(T) 2, Lasioglossum sp. (S) 2

Lepidoptera: Euchloe crameri (P) 2

L. viscosa subsp.
spicata (I)

Hymenoptera: Rhodanthidium sticticum (T) +,
Osmia andrenoides (T)

Subsect. Elegantes
L. elegans (III) Lepidoptera: Macroglossum stellatarum (P) +,

Lasiommata megera (P) 2
Hymenoptera: Anthophora retusa (P) 2

Diptera: Bombylius major (P) 2

L. nigricans (III) Hymenoptera: Eucera nigrilabris (P) +, Apis
mellifera (P)
Lepidoptera: Colias croceus (P) 2, Pontia daplidice
(P) 2

Observed strategies of pollen placement on insect body are coded as
follows: (T) pollen placed on the back of the thorax; (P) pollen placed on the
proboscis; (S) small insects with variable pollen placement. +, .50 % of
flower visits; 2, ,5 % of flower visits. Morphological types are indicated in
brackets after taxon names.

TABLE 4. Testing of evolution models for spur length and tube width

lnL AICc s2 a Optima (mm) No. trees supporting the model

Spur length
BM 283.98 172.43 230.45 NA NA 0/10
OU1* 268.36 143.68 4891.41 374.84 8.98 (8.94–9.06) 10/10
OU2 268.10 145.86 2253.02 175.54 8.77 (8.72–8.87) 0/10

9.61 (9.57–9.78)
Tube width
BM 262.33 129.12 51.76 NA NA 0/0
OU1 251.12 109.20 6301.93 1584.62 3.99 (3.81–4.00) 0/0
OU2* 232.27 74.20 726.20 669.87 4.67 (4.66–4.68) 10/10

1.86 (1.83–1.86)

Three models were tested: Brownian motion (BM), Ornstein–Uhlenbeck process with one optimum (OU1) and Ornstein–Uhlenbeck process with two optima
(OU2). Values for the MCC species tree obtained in the *BEAST analysis are shown. Optimum values for the MCC species tree and minimum and maximum
values obtained for ten randomly chosen species trees from the Bayesian posterior distribution (in brackets) are indicated. The last column summarizes the number
of trees of the same sample where each model was significantly supported based on corrected AICc values. Abbreviations and symbols: *preferred model; lnL, log
likelihood; AICc, corrected Akaike information criterion; s, a, model parameters.
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from broad-tubed flowers to narrow-tubed ones in subsect.
Versicolores are not surprising given the fact that broad-tubed
species are visited at a low rate by long-proboscis insects, includ-
ing butterflies and even bee flies, which carry pollen on their pro-
boscis (Table 5; Fig. 6B). Following the ‘pollinator shift’
hypothesis (Grant and Grant, 1965; Stebbins, 1970; Campbell,
2008), when a broad-tubed species is faced with an environment
in which such long-proboscis insects are dominant, natural selec-
tion would favour a narrowing of the tube that would maximize
pollen transfer, a mechanism similar to that previously invoked
to explain spur elongation in American columbines (Whittall
and Hodges, 2007). Additional research on reproductive and pol-
lination biology at the population level will be needed to shed
further light on the microevolutionary mechanisms (including
selective pressures) involved in these putatively adaptive mor-
phological shifts.

Trait dependent diversification?

Even though we have inferred a higher number of shifts from
broad- to narrow-tubed flowers (4–6) than in the opposite direc-
tion (0–2) (Fig. 5B, C), a directional trend in the evolution of
morphological types is not supported by BiSSE analyses
(Fig. 5A and Supplementary Data Fig. S5). Instead, our analyses
of trait-dependent diversification revealed a dissimilar evolu-
tionary success of the broad- and narrow-tube strategies, as
shown by the consistently higher speciation rate of broad-tubed

species found in BiSSE analyses (Fig. 5A and Supplementary
Data Fig. S5). Thus, despite having repeatedly evolved, the
narrow-tubed strategy seems to display limited success in
terms of speciation. In fact, radiation of subsect. Versicolores
(23–28 species) may have been triggered not only by the onset
of the Mediterranean climate (see above), but also by a shift
from the ancestral narrow tube (as inferred by the ASR-BiSSE
analysis; Fig. 5B) to the broad tube in the common ancestor of
this clade. This is illustrated by the fact that the sister subsect.
Elegantes, which maintained the ancestral state (narrow tube),
yielded only two species during the same period of time and
under similar climatic conditions (Fig. 3C; see Supplementary
Data Appendix S2 for additional analyses and discussion).

BiSSE results suggest that trait-dependent diversification
rates, rather than asymmetrical rates of change, are responsible
for the contrasting species diversities of the two morphological
types. Caution should be exercised in this interpretation, given
the small size of our study group (Maddison et al., 2007;
Wertheim and Sanderson, 2011; Davis et al., 2013). It is import-
ant to note that ouranalyses were able to reject the null hypothesis
of symmetrical speciation rates (Table 3; Fig. 5A) despite the
reported low statistical power of BiSSE with small datasets
(Davis et al., 2013). However, confounding effects of asymmet-
rical extinction rates and/or rates of change cannot be ruled out.
In any case, the differential diversification success of morpho-
logical types is further suggested at the genus level (�150
species), as shown by the fact that additional Linaria clades

C

A B

FI G. 6. Different behaviours of potential pollinators of morphological Types I (broad tube) and III (narrow tube). (A) Apis mellifera (Hymenoptera) in L. viscosa
subsp. viscosa (Type I). (B) Euchloe sp. (Lepidoptera) in L. viscosa subsp. viscosa. (C) Bombyliidae (Diptera) in L. elegans (Type III). White arrows indicate

pollen placement on pollinators. Photographs by M. Fernández-Mazuecos (A, B) and P. Vargas (C).
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displaying narrow tubes are remarkably species-poor (sects
Macrocentrum and Lectoplectron, six species) compared with
broad-tubed clades (sects Linaria, Speciosae, Supinae,
Diffusae and Pelisserianae, .120 species) (Sutton, 1988;
Fernández-Mazuecos et al., 2013).

Several flower traits have been found previously to influence
diversification rates, including flower symmetry (Sargent,
2004), biotic/abiotic pollination mode (Dodd et al., 1999) and
the presence of nectar spurs (Hodges and Arnold, 1995;
Hodges, 1997; but see Hagen and Kadereit, 2003; Cacho et al.,
2010). In general, it has been proposed that floral specialization
promotes diversification (but see Smith et al., 2008), although it
has in turn been suggested that high species diversity may
promote floral specialization (Armbruster and Muchhala,
2009). Our results suggest that traits restricting pollinator
access to rewards and pollen placement on pollinators have sig-
nificant effects on diversification rates of Linaria sect.
Versicolores. Mechanisms of species selection (Stanley, 1975;
Jablonski, 2008; FitzJohn, 2010; Rabosky and McCune, 2010)
causing such differences in trait-dependent ‘emergent fitness’
(i.e. heritable differences in net diversification rates) are different
from those involved in selection at the individual level (Rabosky
and McCune, 2010). Indeed, the narrow-tube strategy in bifid
toadflaxes has recurrently evolved by means of individual-level
selection mechanisms, yet it may have exerted a negative influ-
ence on diversification rates, thus leading to the low frequency
of this character state (Fig. 5). Specific mechanisms of species se-
lection acting in bifid toadflaxes may include differential oppor-
tunities for exploitation of pollinator fauna (e.g. higher diversity
of pollinators carrying pollen on the thorax than on the proboscis)
and differential extinction risks (e.g. due to the likely higher spe-
cialization of narrow-tubed species; Johnson and Steiner, 2000).
Even though our analyses have detected significant effects on
speciation rather than extinction rates, the latter cannot be
ruled out given the reported limitations of phylogeny-based
methods to detect variation in extinction rates (FitzJohn, 2010;
Rabosky, 2010). Further research will be needed to understand
the mechanisms that account for the effects of pollinator-
restrictive traits on diversification rates of Linaria and other
genera with highly specialized corollas.

Our results support a relationship between resource special-
ization and evolutionary success in terms of diversification.
The intriguing finding that opposing individual-level and
species-level selection pressures may drive the evolution of spe-
cialized traits is worth further investigation in additional model
systems.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour-
nals.org and consist of the following. Appendix S1: Herbarium
specimens studied for taxonomic delimitation and measurement
of flower traits. Appendix S2: Additional methods, results and dis-
cussion. Fig. S1: Bayesian phylogenetic analysis of ITS haplo-
types inferred by PHASE. Fig. S2: Maximum clade credibility
trees produced by relaxed molecular-clock analyses of ITS and
ptDNA sequences in BEAST. Fig. S3: Scatter plot of tube width
versus spur length measured from living specimens of the 12
Iberian species and subspecies of Linaria sect. Versicolores.
Fig. S4: Visualization of landmark displacements along canonical

variates 1 and 2 of the geometric morphometric analysis. Fig. S5:
Results of the BiSSE analysis of ten species trees randomly chosen
from the posterior distribution of the *BEAST analysis. Fig. S6:
Ancestral state reconstructions of morphological Types I/II and
III under state-dependent diversification, performed on ten trees
randomly chosen from the posterior distribution of the *BEAST
analysis. Fig. S7: Summary of parsimony-based ancestral state re-
construction of the three major flower types of Linaria sect.
Versicolores, conducted over the full posterior distribution of
trees obtained in the *BEAST analysis. Table S1: Voucher speci-
mens and GenBank accession numbers of species and subspecies
of Linaria sect. Versicolores and the outgroup sampled for DNA
sequencing. Table S2: Voucher specimens of Iberian species
and subspecies of Linaria sect. Versicolores and the outgroup
sampled for geometric morphometric analyses. Table S3:
Measures of spur length and tube width obtained from herbarium
specimens of the 30 species and subspecies of Linaria sect.
Versicolores.
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Schiestl FP, Schlüter PM. 2009. Floral isolation, specialized pollination, and
pollinator behavior in orchids. Annual Review of Entomology 54: 425–446.

Scotland RW. 2011. What is parallelism? Evolution & Development 13:
214–227.

Shipunov AB, Bateman RM. 2005. Geometric morphometrics as a tool for
understanding Dactylorhiza (Orchidaceae) diversity in European Russia.
Biological Journal of the Linnean Society 85: 1–12.

Slice DE. 2001. Landmarkcoordinates aligned by Procrustes analysis do not lie in
Kendall’s shape space. Systematic Biology 50: 141–149.

Smith CI, Pellmyr O, Althoff DM, Balcázar-Lara M, Leebens-Mack J,
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