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† Background Auxin is a versatile plant hormone with important roles in many essential physiological processes. In
recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and
development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of
environmental adaptation in plants.
† Scope This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify
their root system architecturewhen responding to diverse biotic and abiotic rhizosphere signals, including macro- and
micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and
neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environ-
ment-mediated root development are also briefly highlighted.
† Conclusions The auxin pathway constitutes an essential component of the plant’s biotic and abiotic stress tolerance
mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately
lead to the development of crops better adapted to stressful environments.
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hormones.

INTRODUCTION

Plants are extremely flexible organisms adaptable to a range of
diverse environments. Their intrinsic ability to simultaneously
inhabit both above- and below-ground domains makes them
unique among most other living organisms, which occupy a
single habitat at a given time. In response to diverse environmen-
tal signals, plants modify their development through the percep-
tion and integration of exogenous signals into the signalling
pathways of plant hormones. Auxin is one of the most versatile
plant hormones and plays essential roles in growth and develop-
ment. The revelation of the existence of an auxin biosynthesis,
signalling and transport apparatus in single-celled green algae
is a clear indication that auxin has played an important evolu-
tionary role during the adaptation of plants to diverse land en-
vironments (De Smet et al., 2010). In recent years, significant
progress has been made towards understanding how this
hormone regulates plant growth and development. However,
less is known about the roles of auxin as a regulator of biotic
and abiotic stress responses. In this review, after a brief
account of auxin biosynthesis, signalling and transport, interest-
ing new insights into the role of auxin as an integrator of environ-
mental signals are highlighted.

AUXIN BIOSYNTHESIS, SIGNALLING
AND TRANSPORT

Auxin biosynthesis, signalling and transport processes, which
are particularly relevant to the findings discussed in this
article, have been extensively reviewed elsewhere (Vanneste

and Friml, 2009; Tromas and Perrot-Rechenmann, 2010; Zhao,
2010; Finet and Jaillais, 2012; Mano and Nemoto, 2012;
Rosquete et al., 2012; Swarup and Péret, 2012). Therefore,
only a brief account of these processes will be presented here.

Auxin biosynthesis

As reviewed extensively elsewhere (Zhao, 2010; Mano and
Nemoto, 2012; Rosquete et al., 2012; Sauer et al., 2013), auxin
[indole-3-acetic acid (IAA)], is produced in meristematic
tissues through tryptophan-dependent and -independent bio-
synthetic pathways. So far, three tryptophan-dependent auxin
biosynthetic pathways, named after the intermediate compounds
generated in each pathway, have been identified. These include
the IPA (indole-3-pyruvic acid) pathway, the IAM (indole-
3-acetamide) pathway, the TAM (tryptamine) pathway and the
IAOx (indole-3-acetaldoxime) pathway. To maintain optimal
concentrations and ratios of IAA and IAA derivatives in plant
tissues, auxin homeostasis is regulated by processes such as deg-
radation, conjugation to amino acids and transport. The apparent
complexityand redundancyof auxin biosynthesis, signalling and
transport seem to indicate the absolute requirement of this
hormone for multiple plant processes.

Auxin signalling

In recent years, tremendous progress has been made towards
dissecting the signalling pathway of auxin (reviewed by
Vanneste and Friml, 2009; Tromas and Perrot-Rechenmann,
2010; Swarup and Péret, 2012). Briefly, at low auxin
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concentrations, auxin responses are suppressed by AUX/IAA
(AUXIN/INDOLE-3-ACETIC ACID) proteins. AUX/IAA pro-
teins repress AUXIN RESPONSE FACTORS (ARFs), a class of
transcription factors that regulate auxin-responsive gene expres-
sion. Auxin perception by TIR1 (TRANSPORT INHIBITOR
RESPONSE 1) and related AUXIN F-BOX (AFB) proteins
AFB1, AFB2 and AFB3 leads to the degradation of AUX/IAAs
by the 26S proteasome and the subsequent release of ARFs from
suppression. By binding to the auxin-responsive element (ARE)
commonly found in the promoters of auxin-responsive genes,
ARFs regulate (activate or repress) auxin-responsive gene ex-
pression, leading to a variety of auxin-mediated phenotypic
alterations.

Auxin transport

Plant processes involved in auxin transport have also been ex-
tensively reviewed (Vanneste and Friml, 2009; Spalding, 2013).
Briefly, auxin synthesized in aerial tissues (e.g. apical meris-
tems) is transported locally and systemically throughout the
plant. The cell-to-cell active movement of auxin is known as
polar auxin transport (PAT), as opposed to the direct and rapid
transport of auxin from shoots to roots through the phloem.
Two general classes of transporters involved in PAT are auxin
influx carriers such as AUX1 (AUXIN RESISTANT 1) and
LAX1 (like aux1),which pump auxin into the cell, and auxin
efflux carriers such as the PIN (PIN-FORMED) and ATP-
binding cassette type B (ABCB) families [also known as the mul-
tidrug resistant proteins or P-glycoproteins (MDR-PGPs)],
which pump auxin out of the cell. The specific localization of
PIN proteins within the cell influences the direction of auxin
transport (see below). More recently another class of auxin car-
riers, called PILS (PIN-LIKES), has been identified based on
their structural similarity to the PIN family (Barbez et al., 2012).

Lateral root development

One of the plant processes regulated by auxin is lateral root de-
velopment, which has been extensively reviewed elsewhere
(Osmont et al., 2007; Nibau et al., 2008; Péret et al., 2009;
Overvoorde et al., 2010; Smith and De Smet, 2012; Petricka
et al., 2012) and will not be discussed here in detail. Briefly,
upon germination, young seedlings contain only primary roots
formed directly from the radicle present in the embryo. Lateral
root primordia originate from pericycle cells located in front of
the xylem of primary roots. Additional lateral roots reiteratively
generated during root growth play essential roles in the water and
nutrient uptake required to sustain proper plant growth and devel-
opment. Auxin biosynthesis, signalling and transport are
required for lateral root formation since auxin mutants show
reduced or defective lateral root production, and exogenous treat-
ment of pericycle cells with auxin promotes lateral root forma-
tion. Over recent years, research into lateral root development
has introduced a new paradigm whereby the role of auxin as a
key regulator of plant root architecture in response to environ-
mental stimuli has been studied (Malamy, 2005). In this review
I will briefly highlight some of the recent studies in this exciting
research area.

AUXIN- AND NUTRIENT-DEPENDENT
ALTERATIONS IN ROOT ARCHITECTURE

Given the importance of macro- and micro-nutrient elements for
plant growth and development, it is not surprising that plant roots
have developed unique capabilities to sense and respond to nutri-
ents available in soil. Emerging evidence implicates auxin as one
of the main players involved in this essential adaptive response.
Since different plant species may respond differently to the lack
or excess of a particular nutrient (Niu et al., 2012), for consist-
ency this review will discuss mainly examples from the dicot
model plant arabidopsis (Arabidopsis thaliana).

Nitrogen

Nitrogen (N) is an essential element taken up mostly in the
form of nitrate (NO3

2) from the soil solution. It has long been
known that nitrogen deficiency leads to directional root growth
towards nitrogen-rich regions of the soil (Zhang and Forde,
2000). Until recently how this nutritional signal is integrated
into plant root development had remained elusive. So far, a
number of plasma membrane-located transporters involved in
nitrate uptake have been identified. One of such transporters,
the arabidopsis NITRATE TRANSPORTER1.1 (NRT1.1)
protein (also known as CHL1), has dual functionality as a high-
activity nitrate influx carrier and nitrate sensor (Ho et al., 2009).
At high nitrate concentrations, the chl1/nrt1.1 mutant shows
decreased lateral root proliferation relative to wild-type, suggest-
ing that the nitrate-sensing mechanism is compromised in this
mutant (Remans et al., 2006). Remarkably, recent research has
provided a mechanistic new insight into the role of NRT1.1 in
lateral root development. It appears that under low NO3

2 concen-
trations NRT1.1 promotes basipetal auxin transport (from the
lateral root tip shootward) to inhibit auxin accumulation in
lateral root initials. At high NO3

2 levels, NRT1.1-dependent
auxin transport out of the lateral roots is inhibited, leading to
the accumulation of auxin in lateral root initials and promotion
of lateral root growth (Krouk et al., 2010; Gojon et al., 2011;
Bouguyon et al., 2012). Therefore, it appears that auxin transport
and nitrate uptake and sensing mechanisms are linked so that
rapid alterations in root architecture can be achieved during adap-
tive responses to this essential nutrient.

Potassium

Similar to the dual roles of NRT1.1, the arabidopsis TRH1
(TINY ROOT HAIR 1) gene, which encodes a KT/KUP/HAK
family protein, has been proposed to play a role in both auxin
and potassium (K+) transport (Vicente-Agullo et al., 2004).
TRH1 is expressed in root-cap cells known to be involved in
gravity perception and auxin redistribution (Vicente-Agullo
et al., 2004). The arabidopsis trh1 mutant shows defects in root
hair development and gravitropism and a reduced ability to trans-
port K+ (Rigas et al., 2001). These phenotypic defects could be
restored by an exogenous auxin supply, suggesting that auxin is
involved in TRH1-mediated root development (Vicente-Agullo
et al., 2004). Indeed, recent research has shown that TRH1 reg-
ulates auxin transport by influencing the localization of the
auxin efflux protein PIN1 (Rigas et al., 2013), although, as high-
lighted by Dolan (2013), additional research is required to further
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dissect the possible roles of TRH1 in auxin and K+ transport.
Recent transcriptome analyses of rice roots during K+deficiency
have also identified a large number of auxin-related genes (Ma
et al., 2012), further suggesting that auxin regulates root
responses to this nutrient.

Phosphorus

Plants also alter their root development in response to low
phosphate (Pi) (López-Bucio et al., 2002, 2005; Nacry et al.,
2005; Svistoonoff et al., 2007; Niu et al., 2012). Such alterations
include the reduction of primary root growth but promotion
of lateral root development to facilitate exploration of the
rhizosphere for new nutrient sources. The response to Pi defi-
ciency of the auxin signalling mutant axr1 is similar to that of
wild-type plants (Williamson et al., 2001). Also, in contrast to
N deficiency, which alters lateral root development through al-
teration of auxin transport, no increase in free auxin levels or
auxin transport was found in the roots of Pi-deprived seedlings
(Pérez-Torres et al., 2008). However, pericyle cells in the
primary roots of Pi-deprived seedlings show increased sensitiv-
ity to exogenous auxin as determined by analysis of expression
of the DR5-GUS synthetic auxin reporter in these cells (Pérez-
Torres et al., 2008). As mentioned above, lateral root primordium
originates from pericycle founder cells and the increased sensitiv-
ity of these cells to auxin under low-Pi conditions suggests that Pi
starvation primes these cells to produce lateral roots. The sensitiv-
ity of lateral root formation to Pi deficiency was reduced in the tir1
mutant and nearly completely lost in the tir1 afb2 afb3 triple auxin
receptor mutant. Furthermore, in the absence of Pi, the AUX/IAA
protein AXR3/IAA7 shows an increased degradation rate (Pérez-
Torres et al., 2008). Together, these findings suggest that function-
al auxin perception is required for proper root responses to Pi.

Another link between auxin transport and Pi-mediated lateral
root development has recently been uncovered through the ana-
lysis of the arabidopsis siz1 mutant. SIZ1, which encodes a
SUMO E3 ligase, was previously identified as a negative regula-
tor of lateral root development under Pi-deficient conditions
(Miura et al., 2005). The siz1 mutant displays extreme sensitivity
to Pi deficiency with a reduction in primary root but an increase in
lateral root development. This response appears to occur through
earlier accumulation of auxin in siz1 roots (Miura et al., 2011).
N-1-naphthylphthalamic acid (NPA), a chemical inhibitor of
auxin (efflux) activity, reverses the phenotypes caused by the
siz1 mutation under Pi-deficient conditions. This suggests that
SIZ1 is a negative regulator of auxin transport and lateral root de-
velopment in plants grown under Pi-deficient conditions (Miura
et al., 2011).

Other nutrient elements

Metal ions such as copper (Cu2+), aluminium (Al3+), iron
(Fe), boron (B) and cadmium (Cd) also cause drastic alterations
in lateral root development, elongation and overall plant root
architecture (Lequeux et al., 2010; Aquea et al., 2011;
Martı́n-Rejano et al., 2011; Peto et al., 2011; Giehl et al.,
2012; Hu et al., 2013; Yuan et al., 2013). Altered auxin biosyn-
thesis, signalling and/or transport seem to have an underlying
effect on these alterations as transcriptional activation of auxin-
related genes and increased auxin levels were observed in roots

exposed to various concentrations of these metals (Mattiello
et al., 2010; Lequeux et al., 2010; Giehl et al., 2012). For in-
stance, genetic analyses show that root growth is inhibited less
by Al3+ in aux1 and pin2 mutants than in wild-type plants.
Chemical inhibition of auxin transport also reduces the negative
effects of Al3+ on root growth (Sun et al., 2010). Similarly, the
AUX1 auxin transporter is required for Fe-triggered lateral root
elongation (Giehl et al., 2012). Sulphur (S) deficiency also sup-
presses lateral root development in wild-type arabidopsis, while
this response is compromised in the axr1–3 mutant (Dan et al.,
2007).

Together, these findings are consistent with the view that auxin
signalling and transport play important roles in regulating root
responses to soil nutrients.

AUXIN-MEDIATED ALTERATIONS OF ROOT
ARCHITECTURE DURING ABIOTIC STRESS

ADAPTATION

Low-temperature stress

During gravitropic responses, asymmetrical localization of
auxin to one side of the cell through the action of auxin transport
proteins, in particular PINs, redirects the root growth towards
the centre of gravity (Friml, 2010). Exposure of roots to cold
inhibits such gravity responses in arabidopsis (Rahman, 2013).
In cold-exposed root cells, trafficking and lateral localization
of the auxin efflux proteins PIN2 and PIN3 is inhibited until
the seedlings are returned to normal growth temperatures
(Shibasaki et al., 2009). Possible roles of auxin as a regulator
of cold stress responses of arabidopsis have recently been
reviewed (Rahman, 2013) and will not be discussed here in
detail.

Water stress

The importance of roots during water stress has been studied in
much lessdetailcomparedwithabove-groundparts.Nevertheless,
plant roots are capable of sensing and responding to the presence
of moisture in soil, a phenomenon known as hydrotropism. The
auxin response pathway, but not auxin transport, appears to play
a role in hydrotropism (Kaneyasu et al., 2007). The gravitropic
and hydrotropic responses are antagonistic, and the overall in-
volvement of auxin in hydrotropism is predicted to be less than
that on gravitropism (Cassab et al., 2013). Hydrotropic root
responses seem to be mainly regulated by abscisic acid (ABA)
signalling, which can overcome the effect of auxin-mediated
responses (e.g. gravitropism) when these two forces are at odds
to facilitate the extension of roots towards moist regions of the
soil profile (Taniguchi et al., 2010). Under moderate water stress
conditions, ABA is required for maintaining primary root and
root hair growth by modulating auxin transport in both arabidopsis
and rice.This response isalso accompaniedbyan enhancedproton
secretion process through the action of plasma membrane-located
H-ATPases, which are essential for maintaining root elongation
(Xu W et al., 2013). Further research is needed to dissect the
complex interactions between auxin and other plant hormones
that may beat play during water stress-or drought-mediated altera-
tions in root architecture.
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Recently, an important role for arabidopsis IAR3 (IAA-Ala
Resistant3) as a modulator of root architecture during osmotic
stress has been shown (Kinoshita et al., 2012). IAR3 is a hydro-
lase capable of generating free auxin by hydrolysing an inactive
auxin form such as an IAA–amino acid conjugate (e.g. IAA-Ala)
(Rampey et al., 2004). It was therefore proposed that, under
drought stress, IAR3 generates bioactive auxin which then stimu-
lates lateral root development and contributes to survival under
drought stress (Kinoshita et al., 2012).

Genetic screens designed to identify mutants compromised
in hydrotropism have also identified MIZU-KUSSEI (MIZ)1,
encoding a novel protein in arabidopsis. Roots of miz1 mutants
grow vertically towards gravity, but do not show curved
growth towards moisture (Kobayashi et al., 2007). MIZ1 over-
expression lines show earlier and more pronounced growth
curvature towards moisture and reduced primary root elongation,
lateral root development and auxin levels (Miyazawa et al.,
2012).

Genome-wide expression analyses of plants under water stress
often reveal differentially expressed auxin-responsive genes. For
instance, genes encoding various members of the ARF transcrip-
tion factor family are differentially expressed during dehydration
stress in soybean roots, leading to the suggestion that these genes
may be potential candidates for the generation of soybeans with
increased drought tolerance (Ha et al., 2013).

Salt stress

Salinity is an abiotic stress that severely affects plant and root
development. A mild salt stress results in a drastic reduction of
lateral root elongation but an increase in lateral root numbers,
while higher salt levels completely inhibit root elongation
(Zolla et al., 2010). Increased lateral root numbers due to salt
stress were reduced in auxin signalling mutants axr1, axr4 and
tir1, and completely blocked in the auxin influx mutant aux1
(Wang et al., 2009; Zolla et al., 2010).

As stated above, uneven distribution of auxin efflux carriers,
in particular PIN2, in the cells of the root elongation zone is
known to control gravitropic root responses through the regula-
tion of basipetal auxin transport (reviewed by Vanneste and
Friml, 2009). Salt stress, in addition to altering PIN2 cellular
localization, inhibits PIN2 expression (Sun et al., 2008).
Therefore, like cold stress, salt stress interferes with root gravi-
tropism, which appears to be an adaptive response to reduce
the damaging effects of salt stress (Galvan-Ampudia and
Testerink, 2011).

The SOS (SALT OVERLY SENSITIVE) pathway character-
ized by molecular genetic analysis of several mutants (e.g. sos1,
sos2 and sos3) is required for salt tolerance in arabidopsis
(Ji et al., 2013). The tolerance provided by this pathway seems
to occurat least partly through the promotion of lateral root devel-
opment as transgenic plants over-expressing SOS genes show
both increased salt tolerance and lateral root development
under salt stress (Yang et al., 2008). Lateral root development
in the sos3 mutant shows increased inhibition (salt sensitivity)
at low salt concentrations, accompanied by reduced auxin
levels in lateral root primordia. The reduced lateral root emer-
gence observed in sos3 appears to be due to the reduced
shoot-to-root (acropetal) auxin transport as well as reduced ba-
sipetal auxin transport within the roots. The reduced expression

of the auxin efflux protein PIN2 in the roots of sos3 plants sup-
ports this proposal (Zhao et al., 2011). These findings indicate
that auxin signalling and influx are both required for lateral
root development under salt stress.

pH

Soil acidity or pH directly and indirectly influences root
development. Plant roots respond to changes in soil pH with
massive transcriptional alterations in the expression of a large
number of auxin-responsive genes, suggesting that pH-mediated
changes in root architecture are at least partly mediated by auxin
(Lager et al., 2010). Plant roots grown under alkaline conditions
(e.g. pH 8) show increased auxin transport activity mediated by
PIN2 (Xu W et al., 2012). PIN2-transported auxin is also
required for the activation of plasma membrane H+-ATPase-
mediated proton secretion from the root tips. This process
appears to be essential in acidifying the environment around
the roots and maintaining primary root growth (Xu W et al.,
2012). Additional studies are certainly required to dissect the
effect of pH on root development and the potential roles of
auxin signalling and transport in the integration of pH-mediated
effects into root architecture.

Waterlogging

Submergence or waterlogging is another abiotic stress factor
that negatively affects root development by restricting the O2

supply to the roots. Plants tend to develop adventitious roots
when submerged to alleviate the negative effects of this stress
on plant growth and development. The accumulation of auxin
in the base of the stem promotes adventitious root formation.
In the tomato, adventitious root formation requires auxin sensi-
tivity as the formation of these roots is inhibited in submerged
tomato plants compromised in auxin sensing (Vidoz et al.,
2010). In addition, chemical inhibition of PAT inhibits adventi-
tious root formation, suggesting that auxin transport is required
for their formation (Vidoz et al., 2010). Furthermore, recent evi-
dence discussed by Muday et al. (2012) indicates that the stress
hormone ethylene, which accumulates in waterlogged plants,
can contribute to the regulation of lateral and adventitious root
formation in a complex crosstalk with auxin.

Redox status/reactive oxygen

The redox status of cells is altered during biotic and abiotic
stress responses and affects auxin signalling and lateral root de-
velopment. The arabidopsis triple mutant ntra ntrb cad2, which
lacks the key components of the thioredoxin and glutaredoxin
signalling involved in redox regulation, shows compromised
auxin transport (Bashandy et al., 2010). Nitric oxide accumu-
lates in response to auxin treatment during lateral root formation
and chemical inhibition of nitric oxide accumulation abolishes
lateral root formation. Nitric oxide is also required for normal op-
eration of auxin signalling by promoting the degradation of
AUX/IAAs (Terrile et al., 2012). During cadmium stress, rice
root growth is regulated by an interplay between reactive
oxygen species (ROS) (H202) and auxin signalling, in which
increased ROS alters the expression of key auxin signalling com-
ponents (Zhao et al., 2012). Together, these findings point to an
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essential link between the signalling pathways of auxin and ROS
during the adaptive responses to stress.

The involvement of auxin signalling in salt and oxidative
stress tolerance seems to occur, at least in part, through modula-
tion of the cellular redox status. The primary root growth of tir1
afb2 seedlings show reduced sensitivity to salt (Iglesias et al.,
2010). Similarly, tir1 afb2 and tir1 afb3 double receptor
mutants exhibit a higher percentage of primary root elongation
and reduced H202-induced cell death than wild-type roots
under oxidative stress. To explain this phenomenon, it was pro-
posed that the mutant seedlings may have reduced levels of
endogenous ROS. Indeed, higher levels of anti-oxidant
enzymes such as CAT (CATALASE) and APX (ASCORBATE
PEROXIDASE) were detected in salt-stressed tir1 abf2 plants.
Increased activities of these ROS-degrading enzymes also corre-
lated with transient induction of GST1, encoding glutathione
S-transferase 1 (GST1), APX1, encoding a cytosolic ascorbate
peroxidase, and ZAT12, encoding a zinc finger transcription
factor in response to salt stress (Iglesias et al., 2010). These find-
ings have led to the suggestion that under stress conditions auxin
signalling promotes the production of ROS, which potentiates
tissue damage. Therefore, an attenuated auxin signalling
pathway may be a strategy employed by plants to enhance toler-
ance to ROS-generating abiotic stresses (Iglesias et al., 2010).

BIOTIC FACTORS AND AUXIN-MEDIATED
ALTERATIONS OF PLANT ROOT

ARCHITECTURE

In a complex environment like soil, plant roots encounter many
living organisms, such as symbiotic/endophytic bacteria and
fungi as well as bacterial and fungal pathogens, nematodes,
insects and even parasitic plants. In the following sections,
recent findings on how diverse biotic signals alter root develop-
ment by directly or indirectly modifying auxin signalling and
transport will be briefly reviewed.

Beneficial microbes

Many plant species establish symbiotic relationships with
fungi such as arbuscular mycorrhiza (AM). AM enter plant
roots through lateral roots and manipulates the plant’s root
system architecture, at least partly through the host auxin signal-
ling pathway (Hanlon and Coenen, 2011; Sukumar et al., 2013).
Arabidopsis is not susceptible to infection by AM and therefore
the interaction between AM and plant roots has been mostly
studied in species other than arabidopsis. Nevertheless, arabi-
dopsis roots can recognize the signals generated by AM. For in-
stance, the mycorrhizal fungus Laccaria bicolor can induce
lateral root development after indirect contact with arabidopsis
roots (Felten et al., 2009). Chemical or genetic inhibition of
PAT through NPA treatment or the use of the pin2 mutant
leads to a dramatic reduction in L. bicolor-mediated lateral
root induction during this interaction. Similar results were also
reported for the interaction between arabidopsis roots and
the mycorrhizal fungi known as truffles (Tuber borchii and
T. melanosporum) (Splivallo et al., 2009). Furthermore,
Trichoderma virens, a plant-beneficial fungus, promotes lateral
root growth in arabidopsis through an auxin signalling- and

transport-dependent mechanism. The lateral root-promoting
ability of T. virens is attenuated in the auxin transport or signal-
ling mutants aux1, big1, eir1/pin2 and axr1 (Contreras-Cornejo
et al., 2009). It should be noted that AM can also produce
auxin and/or auxin-like compounds that can potentially contrib-
ute to the alterations observed in root development. For
instance, the growth-promoting effects of the beneficial fungus
Piriformospora indica on arabidopsis appears to be mediated
through a highly branched root system promoted by fungally pro-
duced auxin (Sirrenberg et al., 2007).

Root inoculation of arabidopsis with the rhizobacterium
Phyllobacterium brassicaceae leads to a 50 % increase in lateral
root growth, while this effect is abolished in aux1 and axr1
mutants, again suggesting that auxin signalling and transport are
both required for thiseffect (Contestoetal., 2010).Similarly,bene-
ficial Pseudomonas, which promotes plant growth, inhibits
primary root elongation while promoting lateral root formation
in arabidopsis in an auxin-dependent manner, as the auxin receptor
mutant tir1 afb2 afb3 mutant shows insensitivity to Pseudomonas-
stimulated lateral root formation (Zamioudis et al., 2013). The
nitrogen-fixing nodules formed during the interaction of plant
roots with the beneficial soil bacterium Frankia are structurally
and developmentally related to lateral roots (Pawlowski et al.,
2011). The involvement of auxin in the formation of root
nodules in legumes by rhizobia has recently been reviewed
(Mathesius, 2010) and will not be discussed here.

Pathogenic microbes

Plant roots are constantly exposed to a variety of soil-
inhabiting organisms, including pathogenic bacteria and fungi
that modify the plant’s root architecture in an auxin-dependent
manner. The root-infecting pathogenic bacterium Ralstonia
solanacearum, for instance, reduces the formation of lateral
roots in petunia (Zolobowska and Van Gijsegem, 2006).
Similarly, the soil-borne fungal pathogen Fusarium oxysporum
infects arabidopsis through lateral root initials (Kidd et al.,
2011). Several arabidopsis auxin signalling and transport
mutants in which lateral root development is known to be
altered show increased resistance to F. oxysporum, indicating
the possible involvement of the host’s auxin signalling and trans-
port pathways in the infection process (Kidd et al., 2011).

Recognition of the conserved molecules collectively known
as microbe-associated molecular patterns (MAMPs) by pattern
recognition receptors (PRRs) elicits developmental alterations
that may be executed through the auxin pathway. For instance,
flg22, a conserved MAMP from the flagellin of the bacterial
pathogen Pseudomonas syringae, inhibits root growth in arabi-
dopsis (Gómez-Gómez et al., 1999). This effect is most likely
mediated by flg22-responsive microRNA393, a known inhibitor
of auxin receptors TIR1, AFB2 and AFB3 (Navarro et al., 2006).
As expected, the inhibition of auxin receptor gene expression
leads to the stabilization of IAA/AUX repressors, which act as
repressors of auxin-responsive genes, including those involved
in lateral root development.

Oligogalacturonides, elicitors derived from plant cell wall hy-
drolysis during parasitism, reduce primary root cell elongation
and development but promote lateral root formation in an auxin-
dependent manner (Hernández-Mata et al., 2011). Interestingly,
in contrast to flg22-mediated effects, the stabilization of
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IAA/AUX repressors is not required for the antagonistic inter-
action between oligogalacturonides and auxin signalling
(Savatin et al., 2011). It was proposed that the effect of oligoga-
lacturonides on auxin signalling is at least partly due to the pro-
moting effects of oligogalacturonides on flavonoids (Savatin
et al., 2011), known inhibitors of auxin transport (Brown et al.,
2001). Supporting this view, auxin signalling (e.g. tir1) and
transport (e.g. doc1, pgp1, pgp4, pgp19 and tt4) mutants show
altered responses to oligogalacturonides (Hernández-Mata
et al., 2011).

Nematodes

Nematodes are soil-dwelling organisms that cause signifi-
cant damage to many crop plants. Root-knot nematodes
(Meloidogyne spp.) induce multinucleated giant cells in infected
roots while cyst nematodes (e.g. Heterodera sp.) modify root
cells to form specialized cells called syncytia. Like lateral
roots, these nematode-induced root cells originate from pericyle
cells, and their formation requires components of the host’s
auxin signalling and transport pathways (Grunewald et al.,
2009a). Indeed, nematode infectivity is compromised in auxin
signalling and transport mutants (Grunewald et al., 2009b).
Numbersof the infectedbeetcystnematode (Heteroderaschachtii)
are significantly reduced in the aux1 lax3 double mutant, sug-
gesting that this nematode takes advantage of the host’s auxin
transport process during the colonization of arabidopsis roots
(Lee et al., 2011). Supporting this view, Hs19C07, an effector
of H. schachtii, physically interacts with the arabidopsis auxin
influx transporter LAX3, a close relative of the better known
auxin influx protein AUX1 (Lee et al., 2011). A possible mech-
anism for the reduced nematode infectivity observed in the
mutant would be that LAX3-mediated auxin transport may be
required for the activation of the cell wall-loosening enzymes
(e.g. expansins) required for both lateral root formation
(Swarup et al., 2008) and syncytium development.

Other arabidopsis auxin transport proteins are also known to
have roles in nematode susceptibility. Based on the analysis of
single and double mutants of the PIN auxin efflux family, it
was shown that PIN1 is required for the initiation and PIN3
and PIN4 are required for the expansion of nematode feeding
sites in arabidopsis (Grunewald et al., 2009b). Whether nema-
tode effectors are involved in this phenomenon is not known;
however, this finding further supports the view that nematodes
can exploit the host’s auxin transport process for their benefit
(Gheysen and Mitchum, 2011; Haegeman et al., 2012).

TRANSCRIPTIONAL AND
POSTTRANSCRIPTIONAL REGULATION OF

ENVIRONMENT- AND AUXIN-MEDIATED ROOT
SYSTEM ARCHITECTURE

Transcription factors

So far, a few transcriptional regulators involved in the environ-
mental regulation of lateral root development have been identi-
fied. For instance, the Medicago truncatula HD-Zip I
transcription factor HB1 is required for the inhibition of lateral
root emergence under salt stress (Ariel et al., 2010). HB1

represses LBD1, which encodes an auxin-responsive lateral
organ boundaries (LOB) domain-containing transcription
factor (reviewed by Majer and Hochholdinger, 2011) by directly
binding to the promoter of this transcription factor (Ariel et al.,
2010). Several members of the LBD gene family (e.g. LBD18/
ASL20, LBD16/ASL18 and LBD29/ASL16) regulate lateral root
formation and the expression of these genes is directly regulated
by ARFs (Okushima et al., 2007; Lee et al., 2009). More recently,
the involvement of LBD18 in the regulation of EXPANSINA 14
(EXPA14) and EXPA17 genes, which encode the cell wall-
loosening expansin enzymes implicated in lateral root formation,
has been shown (Lee et al., 2012; Lee and Kim, 2013). Indeed,
knocking down EXPA17 expression delays lateral root emergence
while EXPA17over-expressionpromotes lateral rootdensity in the
presence of exogenous auxin (Lee and Kim, 2013). Another
member of the LBD gene family, JAGGED LATERAL ORGAN
(JLO), is required for all auxin responses in the root (Bureau
et al., 2010). Identification of environmental signals that activate
root-specific expression of these transcription factors may lead
to new insights into the regulation of root architecture.

The arabidopsis transcription factor MYB77 is proposed to be
a positive regulator of lateral root development under low IAA or
low nutrient levels. MYB77 interacts with ARF7 and promotes
auxin-responsive gene expression (Shin et al., 2007). MYB77 ex-
pression is negatively regulated by K+ deprivation and the lateral
root density of the myb77 mutant is lower than that of wild-type
plants under K-deprived conditions. The response of myb77 to N
and P remains unchanged, suggesting that MYB77 is required for
correct responses to K+.

Over-expression of NAC2, a NAC (NAM-ATAF1/2-CUC2)
domain-containing transcription factor whose salt-responsive
induction is dependent on the auxin receptor TIR1, promotes
lateral root development under salt stress, although the exact
mechanism(s) of NAC2-mediated salt tolerance is currently
unknown (He et al., 2005). NTM2, another NAC transcription
factor of arabidopsis, integrates auxin and salt signals during
seed germination (Park et al., 2011) while NAC4, acting down-
stream from the auxin receptor AFB3, controls nitrate-mediated
lateral root development, most likely by directly or indirectly
regulating the expression of other transcription factors, such as
the zinc finger protein OCS ELEMENT BINDING FACTOR 4
(OBF4) (Vidal et al., 2013). The arabidopsis WRKY75 transcrip-
tion factor is induced by Pi deprivation. wrky75 knockdown
plants were more sensitive to Pi deprivation and exhibited
increased lateral root length and numbers under both normal or
Pi deprivation conditions. It was proposed that this transcription
factor might exert its effect on lateral root development by regu-
lating the genes involved in auxin transport (Devaiah et al.,
2007). GbWRKY1, a novel cotton (Gossypium barbadense)
transcription factor, also positively regulates Pi deprivation tol-
erance by altering auxin sensitivity when over-expressed in ara-
bidopsis (Xu L et al., 2012). OsWRKY72, the rice orthologue of
WRKY75, has also recently been associated with auxin transport
(Yu et al., 2010). Finally, the role of OsARF16, a positive regu-
lator of auxin responses, in primary root, lateral root and root
hair development under Pi deficiency, has recently been shown
(Shen et al., 2013). OsARF16 and rice PIN genes such as
OsPINb, OsPIN4 and OsPIN9 are co-regulated, suggesting
that OsARF16-mediated effects occur through altered auxin
transport (Shen et al., 2013).
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More recently, the involvement of three PLETHORA (PLT3,
PLT5 and PLT7) transcription factors, which seem to act down-
stream from ARF7 and ARF19, in lateral root development was
shown (Hofhuis et al., 2013). It is unknown, however, whether
these transcription factors regulate environmentally related
root responses.

MicroRNAs

Over the years, a number of microRNAs that target plant genes
involved in the regulation of root architecture have been identi-
fied (reviewed by Khan et al., 2011). The mode of action of
some of these microRNAs, which can also be responsive to
signals such as nutrient deficiency or other stresses, clearly
involves auxin. For instance, arabidopsis plants over-expressing
miR393, a microRNA that downregulates the expression of the
AFB3 auxin receptor, resemble afb3 mutant plants, which

show compromised primary root and lateral root growth in re-
sponse to nitrate (Vidal et al., 2010). Interestingly, drought
stress activates miR393. The miR393-dependent degradation
of TIR1 and AFB2 transcripts contributes to osmotic stress-
mediated inhibition of lateral root growth by attenuating auxin
signalling (Chen et al., 2012a). These findings indicate that
diverse signals converge on these microRNAs, which in turn
regulate the expression of key genes involved in auxin signalling
and lateral root development. More recently, IAR3 has been
identified as a target of miR167. As discussed above, IAR3 reg-
ulates lateral root development and contributes to osmotic stress
tolerance in arabidopsis. miR167 also controls the expression
of ARF8 and modulates N-responsive lateral root initiation
(Kinoshita et al., 2012). Other stress-responsive microRNAs
regulating lateral root development by targeting the auxin
pathway have been reported. For instance, miR164 affects
lateral root development by targeting NAC1, which in turn reg-
ulates auxin signalling in arabidopsis (Guo et al., 2005).
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CONCLUDING REMARKS: IS AUXIN A
COMPONENT OF THE OVERALL BIOTIC

AND ABIOTIC STRESS TOLERANCE
MECHANISM OF PLANTS?

Better understanding of how plant roots integrate environmental
signals can lead to the development of potential remedies to
improve crop productivity, such as the use of soil microbes to op-
timize plant growth in stressful environments (Remans et al.,
2012; Schenk et al., 2012). Although this review article has
mainly focused on the role of auxin as an integrator of environ-
mental signals in plant root development, emerging evidence
also implicates auxin as an integral part of the plant’s overall
biotic and stress tolerance mechanism (see for instance Zhang
et al., 2008, 2012; Kazan and Manners, 2009; Shen et al.,
2010; Wang et al., 2010; Stirnberg et al., 2012). For instance,
the arabidopsis activation-tagged yuc7-1D mutant, with consti-
tutively elevated auxin levels, shows increased expression of
the stress-associated genes RD29A (RESPONSIVE TO
DESSICATION 29A) and COR15A (COLD-REGULATED
15A) and increased drought tolerance (Lee et al., 2012). A
similar role in drought tolerance has been shown for another ara-
bidopsis YUCCA gene implicated in auxin production when
expressed in potato (Solanum tuberosum) (Kim et al., 2012). In
rice, a novel YUCCA protein, CONSTITUTIVELY WILTED1,
is involved in maintaining water homeostasis and an appropriate
root-to-shoot ratio (Woo et al., 2007). A role in drought tolerance
has also recently been shown for the putative auxin efflux carrier
OsPIN3t in rice (Zhang et al., 2012).

In their natural environments, plants also encounter strong
competition from nearby plants. The auxin pathway has long
been known to be an essential part of the plant’s shade-avoidance
mechanism, an evolutionarily important response triggered by
reduced red:far red light ratios under light-limiting conditions
(Morelli and Ruberti, 2000; Keuskampa et al., 2010). New evi-
dence also suggests extensive communication between roots of
different plants in the rhizosphere (Cahill et al., 2010; Chen
et al., 2012b; Faget et al., 2013; Falik et al., 2013). Although pos-
sible mechanisms involved in this phenomenon are not yet clear,
root tips seem to function as sensors for detecting the presence of
other roots from nearby plants (Fang et al., 2013). Given the
prominent role of auxin in root adaptive responses, it would
not be surprising if auxin also plays a role in regulating root–
root communication. In fact, auxin is known to play a role in
root–shoot communication, a process that can be critical for sur-
vival during environmental adaptation (Kabouw et al., 2012).

The extensive interplay reported between auxin and other
plant hormones might be at least partly responsible for some of
the stress-related developmental alterations in auxin biosyn-
thesis, signalling or transport mutants (Ivanchenko et al., 2008;
Teale et al., 2008; Seo and Park, 2009; Fukaki and Tasaka,
2009; Gou et al., 2010; Blomster et al., 2011; Lewis et al.,
2011; Gutierrez et al., 2012; Bielach et al., 2012; Durbak
et al., 2012; Muday et al., 2012; Shani et al., 2013; Löfke
et al., 2013; Rahman, 2013). In addition, as reviewed here,
auxin also crosstalks with other stress-responsive signalling
pathways, such as those of Ca2+ and ROS, produced in the
plant during adaptive responses to various biotic and abiotic
stresses. Despite all these complexities, different stresses
appear to induce an overlapping set of plant responses, called

the ‘stress induced morphogenic response’ (SIMR) (Potters
et al., 2007, 2009), which helps the plant to reallocate available
resources between defence and development (Fig. 1). An
improved understanding of the role of auxin during plants’ adap-
tation to environmental signals will help in the design of future
strategies aimed at improving biotic and abiotic stress tolerance
in crop plants.
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Swarup K, Benková E, Swarup R, et al. 2008. The auxin influx carrier LAX3
promotes lateral root emergence. Nature Cell Biology 10: 946–954.
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